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Introduction

This document contains notes taken as personal self-study in Summer 2024 of the book
Calculus on Manifolds, by Michael Spivak. The notes closely follow the structure of Spivak’s
text. The appendix contains solutions for selected exercises out of the book.
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Chapter 1

Euclidean Space

1.1 Vector Properties of Euclidean Space

In this course, we study functions over Euclidean space. We will assume knowledge of
most of the basic properties of the real numbers, and will only briefly introduce the basic
properties of Euclidean space.

Definition 1.1

Euclidean n-space, denoted Rn, is the set of n-tuples

(x1, x2, . . . , xn)

such that xi ∈ R for each i.

Euclidean space is intended to align with the “standard” notions of space. That is, R1

is often referred to as the line, R2 as the plane, and R3 as space. Moreover, from linear
algebra we can see that Rn can be considered as an n-dimensional vector space over R, with
addition and scalar multiplication defined coordinate-wise, so elements of Rn will alternately
be called points or vectors. In fact, it is the canonical representative of n dimensional vector
spaces over R, further justifying its study. We denote by 0 or 0 the vector (0, 0, . . . , 0).

Moreover, Rn is an example of a normed vector space. Specifically, we have

Definition 1.2

Given a vector x = (x1, . . . , xn) ∈ Rn, define the norm of x, denoted |x|, by

|x| :=
√
x21 + . . .+ x2n

Note that for n = 1, the norm aligns with the standard absolute value of real numbers.
Briefly, we can verify that the norm as defined here indeed satisfies the definition of a norm
on a vector space:

3



Proposition 1.1

Let x, y ∈ Rn, and a ∈ R be arbitrary. Then we have:

• |x| ≥ 0, with |x| = 0 if and only if x = 0.

• |
∑n
i=1 xiyi| ≤ |x||y|, with equality if and only if x, y are linearly dependent.

• |x+ y| ≤ |x|+ |y|.

• |ax| = |a||x|

Beyond being a normed vector space, Euclidean space is also an inner product space.
We can define the inner product as follows:

Definition 1.3

Given two vectors x, y ∈ Rn, define the inner product of x and y, denoted ⟨x, y⟩,
as

⟨x, y⟩ :=
n∑
i=1

xiyi

Similarly, we can verify that this inner product satisfies the definitions of an inner prod-
uct:

Proposition 1.2

Let x, x1, x2, y, y1, y2 ∈ Rn and a ∈ R be arbitrary. Then we have:

• ⟨x, y⟩ = ⟨y, x⟩ (Symmetric)

• a ⟨x, y⟩ = ⟨ax, y⟩ = ⟨x, ay⟩ (Bilinear)
⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩
⟨x, y1 + y2⟩ = ⟨x, y1⟩+ ⟨x, y2⟩

• ⟨x, x⟩ ≥ 0, with ⟨x, x⟩ = 0 if and only if x = 0. (Positive definite)

Moreover, given our definitions of the norm and inner product, we can also identify
further properties:

Proposition 1.3

Let x, y ∈ Rn be arbitrary. Then we have:

• ⟨x, y⟩ ≤ |x||y| (Cauchy-Schwarz Inequality)

• |x| =
√
⟨x, x⟩

• ⟨x, y⟩ = |x+y|2−|x−y|2
4 (Polarization Identity)
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Definition 1.4

The standard basis of Rn is given by {e1, . . . , en}, where (ei)j = δij , so that ei has
a 1 in the ith coordinate and 0 everywhere else.

Definition 1.5

Let T : Rm → Rn be a linear transformation. Then denote by [T ] the n×m matrix
such that T (x) = [T ]x for each x ∈ Rn. In particular, the ith column of [T ] is given
by T (ei).

If x = (x1, . . . , xm)Rm and y = (y1, . . . , yn) ∈ Rn, then let us adopt the convention that
(x, y) is the concatenation (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.

1.2 Topology of Euclidean Space

In many results in single variable analysis, we make use of open and closed intervals, denoted
[a, b] and (a, b). The analog of these intervals in Rn is the notion of a rectangle or k-cell.

Definition 1.6

Let A ⊆ Rm, B ⊆ Rn. Then define the Cartesian product of A and B as A ×
B = {(a, b) ∈ Rm+n|a ∈ A, b ∈ B}. Since this operation is associative, denote by
A1 ×A2 × . . .×Ai the product of any number of sets.

Definition 1.7

A closed rectangle, closed box, or closed k-cell is a set of the form [a1, b1]× . . .×
[an, bn] ⊆ Rk. An open rectangle, open box, or open k-cell is a set of the form
(a1, b1)× . . .× (an, bn) ⊆ Rk.

Then similarly to how we use open intervals to define a topology on R, we can use open
boxes to define a topology on Rn:

Definition 1.8

A set U ⊆ Rn is open if, for every point x ∈ U , there is some open box B(x) ⊆ U
such that x ∈ B(x). A set C ⊆ Rn is closed if Rn \ C is open.
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Remark

Note that because every open box has an open ball inside, and because every open
ball has an open box inside, the topology defined by open boxes on Rn is the same
topology defined by open balls on Rn. Thus, for x ∈ Rn and r ∈ R, denote by Br(x)
the open n-ball with center x and radius r. That is, Br(x) := {y ∈ Rn : |x−y| < r}.
When the dimension is ambiguous, denote this nBr(x). Then we can alternately use
open balls and open boxes as the definition of an open set, depending on which is
more convenient.

Definition 1.9

If A ⊆ Rn, then the interior of A is the set of points contained in an open rectangle
entirely in A.

intA := {x ∈ Rn : there exists an open rectangle B s.t. x ∈ B ⊆ A}

Define the exterior of A to be the set of points contained in an open rectangle
entirely in Rn \A.

extA := {x ∈ Rn : there exists an open rectangle B s.t. x ∈ B ⊆ Rn \A

Define the boundary of A to be the set of points where all open rectangles contain
points of both A and Rn \A.

∂A := {x ∈ Rn : ∀ open rectangles B, x ∈ B =⇒ B ∩A ̸= ∅, B ∩ Rn \A ̸= ∅}

Proposition 1.4

Every set of finitely many points in Rn is closed.

Proof. Let C ⊆ Rn be a finite set. Let x ∈ Rn \C be arbitrary. Then for each point y ∈ C,
x ̸= y, so d(x, y) > 0. Then since there are only finitely many points in C, the quantity
d′ = min{d(x, y)|y ∈ C} is defined and greater than 0. So we can define an open ball with
radius d′/2, which does not contain any points in C. Thus we have an open ball containing
x that is a subset of Rn \ C. So Rn \ C is open and thus C is closed.

Definition 1.10

An open cover of a set A is a collection O of open sets such that for any x ∈ A,
x ∈ U for some U ∈ O. A subcover of O is a subcollection of O which is also a
cover for A.

Definition 1.11

A set K is compact if for any open cover O of K, there exists a finite subcover U
of O.
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In particular, we can derive certain theorems to identify compact sets.

Theorem 1.5: Heine-Borel Theorem

The closed interval [a, b] is compact.

Proof. Let U be some open cover of [a, b]. Then consider the set

A = {x ∈ [a, b] : [a, x] is covered by a finite number of sets in U}

The goal is to prove that b ∈ A. First, consider α = supA (since this set is bounded above
and nonempty). We have α ≤ b, so α ∈ [a, b] and thus α ∈ U1 for some U1 ∈ U . Since U1

is open and α is the supremum of A, there is some a ≤ x < α with x ∈ U1. Then we have
x ∈ A, so some finite number of open sets in U cover [a, x], and U1 covers [x, α], so a finite
number of sets cover [a, α] and thus α ∈ A.

Now suppose α < b. Then there is some y ∈ U1 such that α < y < b. But if [a, α] is covered
by a finite number of open sets, then so is [a, y], so y ∈ A, contradicting α = supA. So we
must have α = b, completing the proof.

Note that if B ∈ Rm is compact and x ∈ Rn, then the set {x} × B is clearly compact.
gMoreover, given any cover of {x} ×B, the finite subcovers have a “minimum width”:

Theorem 1.6

If B ⊆ Rm is compact and x ∈ Rn, then given any open cover U of {x} × B, there
is some open set U ∈ Rn such that U ×B is covered by a finite number of sets in U .

Proof. Take some finite subcover U ′ of U . Then we just need to find a set U such that U×B
is covered by U ′.

For each y ∈ B, (x, y) is in some open set O ∈ U ′, so there is an open box Ux × Vy such
that (x, y) ∈ Ux × Vy ⊆ O. Then consider the collection (Vy)y∈B . This set covers B,
which is compact, so we can pick a finite number V1, . . . , Vk. Let U =

⋂
Ui. Then for any

(x1, y1) ∈ U ×B, we have y1 ∈ Vi for some 1 ≤ i ≤ n, and x1 ∈ Ui, so x1 ∈ Ui× Vi ⊆ O′ for
some O′ ∈ U ′. Thus U ′ covers U ×B.

Corollary

If A ⊆ Rn and B ⊆ Rm are compact, then A×B ⊆ Rn+m is compact.

Proof. Let O be some open cover of A×B. Then for each x ∈ A, O covers {x}×B, so there
is some Ux such that a finite subcover O1x, . . . , Okx covers Ux × B and x ∈ Ux. Then the
collection (Ux)x∈A covers A, so there is a finite subcover Ux1

, . . . , Uxj that covers A. Then
the sets O1x1

, . . . , Okx1
, . . . , O1xj , . . . , Ok′xj form a finite subcover of O that covers A× B.

So A×B is compact.
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Corollary

A product A1 × . . .×Ak is compact if each Ai is. A closed rectangle is compact.

Proof. Induct on k using the previous corollary.

This gives an important result which allows us to work with compactness much more
easily in Rn (though it is not necessarily true for other topological vector spaces).

Theorem 1.7

A set K ⊆ Rn is compact if and only if it is closed and bounded.

Proof. ( =⇒ ) Suppose K ⊆ Rn is compact. The collection of open rectangles (i − 1, i +
1)× (j− 1, j+1) . . .× (k− 1, k+1) for i, j, . . . , k ∈ Z covers R, so it covers K. Then a finite
number of these boxes covers K, so it is bounded.

( ⇐= ) Suppose K ⊆ Rn is closed and bounded. Then there exists a closed rectangle B
with K ⊆ B. From the previous corollary, we know that B is compact. Then take some
cover of K, O = {O1, . . .}. Now let U consist of all the sets in O, as well as the set Rn \K
(which is open since K is closed). U covers Rn, so it covers B. Then we can take a finite
subcollection U ′ of U . Then U ′ covers B as well as K, and in order to create a subcollection
of O, we simply remove Rn \K if it is in U ′ to get O′. So K is compact.

1.3 Functions and Continuity

In this section, we study vector valued functions, which are functions f : Rn → Rm, or
more generally, f : A → B for some A ⊆ Rn and B ⊆ Rm. We briefly list a few definitions
related to these functions that should be familiar to the reader.

Definition 1.12

If f : A → B, then the image of C ⊆ A is f(C) = {f(x) : x ∈ C}. The preimage
of D ⊆ B is f−1(D) = {y ∈ A : f(y) ∈ D}.

Definition 1.13

If f : A → Rm and g : B → Rn with B ⊆ Rm, then the composition is defined as
(g ◦ f)(x) = g(f(x)), with domain A ∩ f−1(B).

Definition 1.14

If f : Rn → Rm is one-to-one, then the inverse of f is the function f−1 : f(Rn) → Rn
which takes x ∈ f(Rn) to the unique y ∈ Rm such that f(y) = x.

In addition to studying a vector valued function f , we can also study the component
functions which encode its behavior on each axis individually.

8



Definition 1.15

If f : A → Rm, then f defines m component functions f1, f2, . . . , fm such
that f(x) = (f1(x), . . . , fm(x)). Similarly, for any functions g1, . . . , gm : A → R,
we denote by (g1, . . . , gm) the function f : A → Rm which satisfies f(x) =
(g1(x), . . . , gm(x)).

Note that the above definition implies that we can write f = (f1, . . . , fm).

Definition 1.16

Let π : Rn → Rn be the identity function. Then π = (π1, . . . , πn). Then πi is called
the i-th projection function, such that πi(x) gives the ith coordinate of x.

With the above out of the way, we now turn our attention to limits of functions, which
will prove important as we continue our study of multivariate calculus.

Definition 1.17

We write limx→a f(x) = b (the functional limit) if, for any ε > 0 there exists
δ = δ(ε) > 0 such that whenever 0 < |x− a| < δ, we have |f(x)− b| < ε.

Just as the above definition is reproduced from single-variable analysis (with the ex-
ception of generalizing the notion of distance in Rn), we have an analogous definition of
continuity:

Definition 1.18

A function f : A→ Rm is continuous at a point a ∈ A if limx→a f(x) = f(a). If f
is continuous at each a ∈ A, we simply say that f is continuous.

Alternatively, we can utilize the topological nature of Rn, which we discussed in the last
section, to characterize continuity using the topological definition instead.

Proposition 1.8

A function f : A → Rm for A ⊆ Rn is continuous if and only if for every open set
U ⊆ Rm, there is an open set V ⊆ Rn such that f−1(U) = V ∩A.

Proof. ( =⇒ ) Suppose f is continuous. Then let U ⊆ Rm. For each point x ∈ f−1(U),
f(x) ∈ U which is open. Thus, there is an open ball Bεx(f(x)) ⊆ U , there is an open ball
Bεx(f(x)) ⊆ U , and a corresponding open ball Bδx(x) ⊆ f−1(Bεx(f(x))). Then the set
V =

⋃
x∈f−1(U)Bδx(x) is an open set.

Moreover, by construction, for any point y ∈ V ∩ A, y ∈ Bδx(x) for some x, implying that
f(y) ∈ Bεx(f(x)) ⊆ U (which is defined since y ∈ A). So V ∩ A ⊆ f−1(U). For any point
x ∈ f−1(U), x ∈ Bδx(x), so x ∈ V . Moreover, any point in f−1(U) is in the domain of f ,
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so x ∈ V ∩A, and thus f−1(U) = V ∩A.

( ⇐= ) Suppose every open set U ⊆ Rm has an associated open set V ⊆ Rn such that
f−1(U) = V ∩ A. Then pick a point a ∈ A, and let ε > 0 be arbitrary. Then the open ball
Bε(f(a)) has an associated open set V . Moreover, a ∈ Bε(f(a)) =⇒ a ∈ V ∩A =⇒ a ∈ V ,
so there exists an open ball Bδ(a) ⊆ V . Then for any x ∈ A with |x−a| < δ, x ∈ Bδ(a) ⊆ V ,
so x ∈ f−1(Bε(f(a))), and thus f(x) ∈ Bε(f(a)). So limx→a f(x) = f(a).

When A = Rn, this condition can be phrased as saying “the preimage of every open set
is open.” Analogously, a function f : Rn → Rm is continuous if and only if the preimage of
every closed set is closed. Note that it is not necessarily true that the image of every open
set is open. For instance, the function f(x) = x2 maps the open set R to the set [0,∞),
which is not open. However, this condition does imply that for any open set which is not
also closed (the only examples are ∅ and Rn), the image is not closed. Thus, continuity
allows us to infer openness backward through the function.

In contrast, compactness is passed forward through continuous functions, which is another
reason that it is useful for our study.

Theorem 1.9

If f : A→ Rm is continuous and A ⊆ Rn is compact, then f(A) is compact.

Proof. Pick an open cover O of f(A). Then by the proposition, for each open set O ∈ O
there exists an open set U ∈ Rn such that U ∩ A = f−1(O). Then the collection U of all
such U covers A, so we pick a finite number U1, . . . , Un. Then the finite cover O1, . . . , On
cover f(A). So f(A) is compact.

One disadvantage of these definitions of continuity is that they are binary in nature: a
function is either continuous or discontinuous at a certain point. The following definition
allows us to measure how discontinuous a function is at a certain point.

Definition 1.19

Let f : A→ Rm with A ⊆ Rn bounded, and let a ∈ A. Define

M(f, a, δ) = sup{f(x) : x ∈ A, |x−a| < δ},m(f, a, δ) = inf{f(y) : y ∈ A, |y−a| < δ}

Then the oscillation of f at a, denoted o(f, a), is defined as

o(f, a) = lim
δ→0

[M(f, a, δ)−m(f, a, δ)]

which always converges since it decreases as δ → 0 and is bounded below by 0.

In agreement with the intuition for o(f, a) as measuring the discontinuity of f at a, we
have the following theorem:
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Theorem 1.10

A function f : A → Rm with A ⊆ Rn bounded is continuous at a ∈ A if and only if
o(f, a) = 0.

Proof. ( =⇒ ) Suppose f is continuous at a. Let ε > 0 be arbitrary. Then there exists δ > 0
such that for any x ∈ A with |x− a| < δ, we have

|f(x)− f(a)| < ε/2 =⇒ f(a)− ε

2
< f(x) < f(a) +

ε

2

ThenM(f, a, δ)−m(f, a, δ) < ε. So o(f, a) < ε for every positive ε, and of course o(f, a) ≥ 0,
so o(f, a) = 0.

( ⇐= ) Suppose o(f, a) = 0. Then let ε > 0 be arbitrary. Since limδ→0[M(f, a, δ) −
m(f, a, δ)] = 0, we can pick δ such that M(f, a, δ) − m(f, a, δ) < ε. Then for any x ∈ A
with |x− a| < δ,

f(x) ≤M(f, a, δ) < ε+m(f, a, δ) < ε+ f(a)

Similarly, f(x) ≥ f(a)− ε. So |f(x)− f(a)| < ε. Thus f is continuous at a.

Proposition 1.11

Let A ⊆ Rn be closed, and let f : A → Rm be bounded. For ε > 0, the set
Oε = {x ∈ A : o(f, x) ≥ ε} is closed.

Proof. We wish to show that Rn \ Oε is open. Pick a point y ∈ Rn \ Oε. If y /∈ A, then
y ∈ Rn \A open so there exists an open rectangle B ⊆ Rn \A ⊆ Rn \Oε such that y ∈ B.

If y ∈ A, then o(f, y) < ε. Then there exists Bδ(y) with M(f, y, δ) − m(f, y, δ) < ε. I
claim that any point z ∈ Bδ(y) has o(f, z) < ε. Pick δ′ small enough that Bδ′(z) ⊆ Bδ(y).
Then M(f, z, δ′) ≤ M(f, y, δ) and m(f, z, δ′) ≥ m(f, z, δ), so M(f, z, δ′) − m(f, z, δ)′ ≤
M(f, y, δ) −m(f, y, δ) < ε. So o(f, z) < ε, and thus Bδ(y) ⊆ Rn \ Oε, so Rn \ Oε is closed
and Oε is open.
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Chapter 2

Differentiation

2.1 Basic Definitions

We now turn our attention to the first major topic of this book; namely, the generalization
of differentiation to functions of the form f : Rn → Rm. To do so, first recall that f : R → R
is differentiable at a ∈ R if there exists a number f ′(a) such that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

We cannot directly use this formula to define vector valued differentiation. First, the quo-
tient would not even make sense when dividing vectors, and even if absolute value bars are
taken, it would often be the case that this limit does not exist. However, we can rearrange
this equation as

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0

In other words, our new condition is that there is a linear transformation λ(h) = f ′(a)(h)
such that

lim
h→0

f(a+ h)− f(a)− λ(h)

h
= 0

Conceptually, this is the statement that f is approximated well near a by f(a) + λ. This
interpretation extends nicely to higher dimensions:

Definition 2.1

A function f : Rn → Rm is differentiable at a ∈ Rn if there exists a linear trans-
formation λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

In this case, λ is denoted Df(a) and is called the derivative of f at a.

To justify uniqueness, we prove the following.
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Proposition 2.1

If f : Rn → Rm is differentiable at a ∈ Rn then there exists a unique linear transfor-
mation λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

Proof. Existence follows from the definition of differentiability. Suppose that λ, µ are two
linear transformations which satisfy the above. Then we have

lim
h→0

|λ(h)− µ(h)|
|h|

= lim
h→0

|λ(h) + f(a)− f(a+ h)− µ(h)− f(a) + f(a+ h)|
|h|

≤ lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

+ lim
h→0

|f(a+ h)− f(a)− µ(h)|
|h|

= 0

Picking any x ̸= 0 ∈ Rn, and any t ̸= 0,

|λ(x)− µ(x)|
|x|

=
t

t

|λ(x)− µ(x)|
|x|

=
|λ(tx)− µ(tx)|

|tx|

But we just showed that

lim
t→0

|λ(tx)− µ(tx)|
|tx|

= 0

and |λ(x)−µ(x)|
|x| is constant so it must be 0. Thus

|λ(x)− µ(x)|
|x|

= 0 =⇒ λ = µ

We also are often interested in the matrix form of Df(a), so we give it a special notation.

Definition 2.2

If f : Rn → Rm is differentiable, then the Jacobian matrix of f is the m×n matrix

f ′(a) := [Df(a)]

Lastly, we note that although many of the theorems presented in this chapter will assume
that f is defined on all of Rn, it is often only necessary that f is defined on an open set
containing a, so we lose little generality.

2.2 Basic Theorems

As in single variable analysis, the ε − δ definition of continuity is often quite cumbersome
to work with in practice. Thus, we present a number of theorems in this section which will
allow us to easily prove differentiability and calculate derivatives.
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Theorem 2.2: Chain Rule

Suppose f : Rn → Rm is differentfiable at a, and suppose g : Rm → Rp is differ-
entiable at f(a). Then g ◦ f : Rn → Rp is differentiable at a with derivative given
by

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a)

which can also be written

(g ◦ f)′(a) = g′(f(a)) · f ′(a)

Remark

When n = m = p = 1, this reduces to the single variable form of the chain rule.

Proof. Here, it will be more convenient to work with the errors of these functions relative
to their derivatives:

φ(x) := f(x)− f(a)−Df(a)(x− a)

ψ(x) := g(x)− g(f(a))−Dg(f(a))(x− a)

ρ(x) := g(f(x))− g(f(a))−Dg(f(a))(Df(a)(x− a))

By the definition of the derivatives, we know that

lim
x→a

|φ(x)|
|x− a|

= 0

and

lim
x→f(a)

|ψ(x)|
|x− f(a)|

= 0

We want to show that

lim
x→a

|ρ(x)|
|x− a|

= 0

Expanding and using linearity, we have

ρ(x) = g(f(x))− g(f(a))−Dg(f(a))(Df(a)(x− a))

= g(f(x))− g(f(a))−Dg(f(a))(f(x)− f(a)− φ(x))

= g(f(x))− g(f(a))−Dg(f(a))(f(x)− f(a)) +Dg(f(a))(φ(x))

= ψ(f(x)) +Dg(f(a))(φ(x))

Let ε > 0 be arbitrary. Then there exists δ > 0 such that whenever |f(x)− f(a)| < ε,

|ψ(f(x))| < ε|f(x)− f(a)|

Since f is continuous, there exists δ′ > 0 such that whenever |x− a| < δ′, |f(x)− f(a)| < δ.
Then whenever |x− a| < δ′,

|ψ(f(x))| < ε|f(x)− f(a)|
= ε|φ(x) +Df(a)(x− a)|
≤ ε|φ(x)|+ ε|Df(a)(x− a)|
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By Exercise 1-10, there exists M1 such that

|Df(a)(x− a)| ≤M1|x− a|

so we have
|ψ(f(x))| ≤ ε(|φ(x)|+M1|x− a|)

Thus

0 ≤ |ψ(f(x))|
|x− a|

≤ ε
|φ(x)|
|x− a|

+ εM1

so

0 ≤ lim
x→a

|ψ(f(x))|
|x− a|

≤ ε lim
x→a

|φ(x)|
|x− a|

+ εM1 = εM1

for all ε > 0, and thus we have

lim
x→a

|ψ(f(x))|
|x− a|

= 0

For the second term,

lim
x→a

|Dg(f(a))(φ(x))|
|x− a|

= lim
x→a

|Dg(f(a))(φ(x))|
|φ(x)|

|φ(x)|
|x− a|

Since Dg(f(a)) is linear, Exercise 1-10 tells us that there exists M > 0 such that for any h

|Dg(f(a))h|
|h|

< M

so the first factor is bounded, and the second goes to zero, so we have

lim
x→a

|Dg(f(a))(φ(x))|
|x− a|

= 0

and thus

lim
x→a

|ρ(x)|
|x− a|

= 0

which implies that
D(g ◦ f)(a) = Dg(f(a)) ◦Df(a)

15



Theorem 2.3

1. If f : Rn → Rm is a constant function, then

Df(a) = 0

2. If f : Rn → Rm is a linear transformation, then

Df(a) = f

3. If f : Rn → Rm, then f is differentiable at a ∈ Rn if and only if each component
function f i is, and in this case

Df(a) = (Df1(a), . . . , Dfm(a))

In matrix form, f ′(a) is an m× n matrix with (f i)′(a) as its ith row.

4. Let s : R2 → R be the sum function, defined by s(x, y) = x+ y. Then

Ds(a, b) = s

5. Let p : R2 → R be the product function, defined by p(x, y) = xy. Then

Dp(a, b)(x, y) = bx+ ay

1. Proof. Suppose f is constant. Let a ∈ Rn be arbitrary. Then

lim
x→a

|f(x)− f(a)− 0|
|x− a|

= lim
x→a

0 = 0

so Df(a) = 0.

2. Proof. Suppose f is linear. Let a ∈ Rn be arbitrary. Then

lim
x→a

|f(x)− f(a)− f(x− a)|
|x− a|

= lim
x→a

|f(x− a)− f(x− a)|
|x− a|

= 0

so Df(a) = f .

3. Proof. ( =⇒ ) Suppose f : Rn → Rm is differentiable at a ∈ Rm. Then any component
function f i : Rn → R is simply the composition πi ◦ f , where πi is the ith projection
function. πi is linear, so by part 2 of this theorem it is also differentiable, and the
chain rule tells us that f i = π ◦ f is also differentiable.

( ⇐= ) Now suppose each component function is differentiable at a ∈ Rn, and define

λ = (Df1(a), . . . , Dfm(a))

Then the function f(a+ h)− f(a)− λ(h) has components

(f1(a+ h)− f1(a)−Df1(a)(h), . . . , fm(a+ h)− fm(a)−Dfm(a)(h))

16



so that

|f(a+ h)− f(a)− λ(h)| ≤
m∑
i=1

|f i(a+ h)− f i(a)−Df i(a)(h)|

and thus

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

≤
m∑
i=1

lim
h→0

|f i(a+ h)− f i(a)−Df i(a)(h)|
|h|

= 0

so that
Df(a) = (Df1(a), . . . , Dfm(a))

4. Proof. s is linear, so this follows from part 2.

5. Proof. Let λ(x, y) = bx+ ay. Then

lim
(h,k)→0

|p(a+ h, b+ k)− p(a, b)− λ(h, k)|
|(h, k)|

= lim
(h,k)→0

|hk|
|(h, k)|

≤ lim
(h,k)→0

h2 + k2√
h2 + k2

= lim
(h,k)→0

√
h2 + k2

= 0

Using the sum and product functions, we can now prove the multivariate equivalent of the
sum and product rules from single variable analysis.

Theorem 2.4

If f, g : Rn → R are differentiable at a ∈ Rn, then

D(f + g)(a) = Df(a) +Dg(a)

and
D(fg)(a) = g(a)Df(a) + f(a)Dg(a)

If g(a) ̸= 0, then

D(f/g)(a) =
g(a)Df(a)− f(a)Dg(a)

[g(a)]2

Proof. Note that we can express sums and products of (R-valued functions) as compositions
of the functions with the functions s, p : R2 → R from the previous theorem.

Specifically, f + g = s ◦ (f, g). Then

D(f + g)(a) = D(s ◦ (f, g))(a)
= Ds(f(a), g(a)) ◦D(f, g)(a)

= s ◦ (Df(a), Dg(a))
= Df(a) +Dg(a)
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Similarly, fg = p ◦ (f, g), Then

D(fg)(a) = D(p ◦ (f, g))(a)
= Dp(f(a), g(a)) ◦D(f, g)(a)

= Dp(f(a), g(a)) ◦ (Df(a), Dg(a))
= g(a)Df(a) + f(a)Dg(a)

Finally, let h : R \ {0} → R be defined by x 7→ 1/x. Since we know g(a) ̸= 0, then we have
f/g = f ∗ (h ◦ g). We also know from single variable calculus that Dh(x) = − 1

x2 . Using the
product rule we just derived, we have

D(f/g)(a) = D(f ∗ (h ◦ g))(a)
= (h ◦ g)(a)Df(a) + f(a)D(h ◦ g)(a)

=
Df(a)

g(a)
+ f(a)Dh(g(a))Dg(a)

=
g(a)Df(a)

[g(a)]2
− f(a)Dg(a)

[g(a)]2

=
g(a)Df(a)− f(a)Dg(a)

[g(a)]2

The above theorems allow us, at least in theory, to differentiate vector-valued functions
which have components given by sums, products, and quotients of the input components, as
well as of single-variable differentiable functions and compositions thereof. However, using
the rules above is not always the most convenient in practice.

Example 2.1

Let f : R2 → R be defined by

f(x, y) = sin(xy2) = sin ◦(π1 · [π2]2)

Then we have

f ′(a, b) = sin′(ab2)(π1 · [π2]2)′(a, b)

= cos(ab2)[b2(π1)′(a, b) + a([π2]2)′(a, b)]

= cos(ab2)[b2π1 + a(2π2(a, b))(π2)′(a, b)]

= cos(ab2)[b2π1 + 2abπ2]

= cos(ab2) · (b2, 2ab)
= (b2 cos(ab2), 2ab cos(ab2))
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2.3 Partial Derivatives

Although the results of the previous section are helpful in assuring us of differentiability of
functions, the application of those theorems is often not very efficient, as can be seen in the
example at the end of the previous section. Thus, we instead develop the theory of partial
derivatives, which will allows us to differentiate these functions much more quickly.

Definition 2.3

If f : Rn → R and −→a ∈ Rn, then the i-th partial derivative of f at −→a , if it exists,
is the limit

Dif(
−→a ) = lim

h→0

f(−→a + hei)− f(−→a )
h

In other words, the ith partial derivative is the single variable derivative of the function
gi(x) = f(a1, . . . , x, . . . , an) which is produced by treating all the variables except the ith
as constant.

Example 2.2

Let f(x, y) = sin(xy2). Then by treating y as constant,

D1f(x, y) = y2 sin(xy2)

and treating x as constant,

D2f(x, y) = 2xy sin(xy2)

Example 2.3

Let f(x, y) = xy. Then treating y as constant,

D1f(x, y) = yxy−1

Treating x as constant,
D2f(x, y) = xy lnx

Assuming that Dif exists at all points in Rn, we obtain another function Rn → R, and
thus we can attempt to take another partial derivative of this function. The notation for
repeated partial differentiation is ”inside out,” that is,

Dj(Dif)(x) = Di,jf(x)

However, the order of mixed partial derivatives is irrelevant for many common functions:
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Theorem 2.5

If Di,jf and Dj,if are continuous in an open set containing −→a , then

Di,jf(
−→a ) = Dj,if(

−→a )

Proof. This proof is Exercise 3-28.

By repeatedly taking mixed partial derivatives of higher orders, we can continue to apply
this theorem. In particular, if each partial derivative of f of each order is continuous, then
f is said to be C∞. In this case, the order of partial differentiation is always irrelevant.

Theorem 2.6

Let A ⊆ Rn. If f : A → R attains a maximum (or minimum) at a point −→a ∈ intA
and Dif(

−→a ) exists, then Dif(
−→a ) = 0.

Proof. Let gi : R → R be defined by

gi(x) = (a1, . . . , x, . . . , an)

Then gi is defined in an open interval around ai, and attains a maximum there, so g′i(ai) = 0,
and thus Dif(

−→a ) = g′i(ai) = 0.

As in single variable calculus, the above theorem only gives candidate extremal points.
Moreover, we still have to check boundary points separately. However, when in single
variable calculus this was only a problem of evaluating a function at 2 points, in multivariable
calculus, the boundary may not be discrete at all.

2.4 Derivatives

By computing some partial derivatives of functions and comparing them to their derivatives,
the reader may observe a correspondence between the two. Of course, this correspondence,
which allows for the easy computation of derivatives, was our original motivation for studying
partial derivatives. Thus we are retroactively justified in this study, and this correspondence
can be summarized in the following theorem:

Theorem 2.7

If f : Rn → Rm is differentiable at −→a ∈ Rn, then Djf
i(−→a ) exists for 1 ≤ i ≤ m, 1 ≤

j ≤ n, and f ′(−→a ) is the m× n matrix where [f ′(−→a )]ij = Djf
i(−→a ).

Proof. We only need to prove this for the case m = 1, since we already know that the ith
row of f ′(−→a ) is given by (f i)′(ai).
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Fix j, and let h : R → Rn be defined by h(t) = −→a + tej . Then Djf(
−→a ) = D(f ◦ h)(0). By

the chain rule,

Djf(
−→a ) = (f ◦ h)′(0)

= f ′(h(0))h′(0)

= f ′(−→a )



0
...
1
...
1


The right side of this equation is the jth entry of f ′(−→a ), showing that Djf(a) exists. This
extends easily for all m.

While the converse of this theorem is false, we can add another condition to make it
true.

Definition 2.4

If f : Rn → Rm, then f is called continuously differentiable at a if all Djf
i(x)

exist in an open set containing a and if each function Djf
i is continuous at a.

Theorem 2.8

If f : Rn → Rm is continuously differentiable at a, then Df(a) exists.

Proof. Suppose f is continuously differentiable at −→a . Then each Djf
i(−→a ) exists. Define

λ : Rn → Rm by

λ(x1, . . . , xn) =

 n∑
j=1

Djf
1(−→a )xj , . . . ,

n∑
j=1

Djf
m(−→a )xj


Then we have

lim−→
h→0

∣∣∣f(−→a +
−→
h )− f(−→a )− λ(

−→
h )
∣∣∣∣∣∣−→h ∣∣∣ ≤

m∑
i=1

lim−→
h→0

∣∣∣f i(−→a +
−→
h )− f i(−→a )−

∑n
j=1Djf

i(−→a )hj
∣∣∣∣∣∣−→h ∣∣∣

Thus it is sufficient to consider the case m = 1. When
−→
h = (h1, . . . , hn), define [

−→
h ]k :=

(h1, . . . , hk, 0, . . . , 0) ∈ Rn. Then we can telescope:

f(−→a +
−→
h )− f(−→a ) =

n∑
k=1

f
(−→a + [

−→
h ]k
)
− f

(−→a + [
−→
h ]k−1

)
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So

f(−→a +
−→
h )− f(−→a )−

n∑
j=1

Djf(
−→a )hj =

n∑
j=1

[
f
(−→a + [

−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
]

Thus we need to prove that

lim−→
h→0

∣∣∣f (−→a + [
−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = 0

for all j. Fix some j. Then define gj : Rn → Rm by

gj(x) = f(a1 + h1, . . . , aj−1 + hj−1, aj + x, aj+1, . . . , an)

Since f is continuously differentiable, we can pick
−→
h small enough that Djf exists at

−→a + [
−→
h ]j−1. Then Djf(

−→a + [
−→
h ]j−1) = g′j(0), so we have

lim−→
h→0

∣∣∣f(−→a + [
−→
h ]j)− f(−→a + [

−→
h ]j−1)−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = lim−→

h→0

|gj(hj)− gj(0)−Djf(
−→a )hj |∣∣∣−→h ∣∣∣

= lim
hj→0

|gj(hj)− gj(0)− g′j(0)hj + g′j(0)hj −Djf(
−→a )hj |

|hj |

≤ lim
hj→0

|gj(hj)− gj(0)− g′j(0)hj |
|hj |

+ lim
hj→0

|g′j(0)hj −Djf(
−→a )hj |

|hj |
= lim
hj→0

|g′j(0)−Djf(
−→a )|

= lim
hj→0

|Djf(
−→a + [

−→
h ]j−1)−Djf(

−→a )|

= 0

where the fourth line follows since gj is differentiable at 0, and the last equality because
Djf is continuous at aj . Thus Df(a) = λ exists.

The above theorem, in combination with the Chain Rule, allows us to derive a specific
version of the Chain Rule that allows us to bypass checking for differentiability when the
partial derivatives are known.

Corollary 2.9

Let g1, . . . , gm : Rn → R be continuously differentiable at a, and let f : Rm → R be
differentiable at (g1(a), . . . , gm(a)). Let F : Rn → R be defined by

F (a) = f(g1(a), . . . , gm(a))

Then

DiF (a) =

m∑
j=1

Djf(g1(a), . . . , gm(a)) ·Digj(a)
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Proof. Define g : Rn → Rm by g = (g1, . . . , gm). Then F = f ◦ g. Since g1, . . . , gm are
continuously differentiable, g is continuously differentiable, so it is differentiable. Thus the
Chain Rule tells us that

F ′(a) = (f ◦ g)′(a) = f ′(g(a))g′(a)

Matrix multiplication tells us that

[F ′(a)]1i =

m∑
j=1

[f ′(g(a))]1j [g
′(a)]ji

Moreover, Theorem 2.7 tells us that

[F ′(a)]1i = DiF (a)

[f ′(g(a))]1j = Djf(g(a))

[g′(a)]ji = Dig
j(a) = Digj(a)

Thus we conclude that

DiF (a) =

m∑
j=1

Djf(g1(a), . . . , gm(a)) ·Digj(a)

Example 2.4

Let f(x, y, z) = xyz, and let g1(a, b) = a sin b, g2(a, b) = b cos a, g3(a, b) = a3b. Then

∂

∂a
(f ◦ g)

∣∣∣∣
(a,b)

= D1(f ◦ g)(a, b)

= D1f(g(a, b))D1g1(a, b) +D2f(g(a, b))D1g2(a, b) +D3f(g(a, b))D1g3(a, b)

= a3b2 cos a sin b− a4b2 sin b sin a+ 3a2b2 sin b cos a

In cases where one or more of the gi do not explicitly depend on all of the variables, the
derivatives with respect to those variables is zero.

Example 2.5

Let f(x, y, z) = xyz, and let g1(a, b) = ab, g2(a) = a, g3(b) = b. Replacing D1 with
Da for clarity, we consider

Dag3(b) = 0, Dbg2(a) = 0

Thus

Da(f ◦ g)(a, b) = D1f(g(a, b))Dag1(a, b) +D2f(g(a, b))Dag2(a)

= ab2 + ab2

= 2ab2
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(This can be formally established by writing ĝ2(a, b) = a, ĝ3(a, b) = b, but this is
generally unnecessary.)

2.5 Inverse Functions

In Exercise 2-16, we began our study of inverse functions, showing that in the case that
f : Rn → Rn is differentiable with a differentiable inverse f−1 : Rn → Rn,

(f−1)(a) = [f ′(f−1(a))]−1

However, the requirement that f has an inverse, and that both are differentiable is a rela-
tively stringent condition. Thus, it is of interest to us to identify when the above equality
may be obtained under weaker conditions. In particular, the requirement that f is invertible
is a strong global condition. However, it can be weakened by instead requiring that f is
invertible locally; that is, the restriction of f to a sufficiently small open set is invertible.
Thus, it falls to us to determine the conditions where this occurs.

Consider the case of f : R → R. We would like our conditions to be in terms of the differen-
tiability of f , since that is what we have studied so far. One observation that we can make
is that if f is strictly increasing or decreasing on a small interval, it is 1-1 on that interval.
In other words, if f ′(x) > 0 in an interval around a, then f is invertible in that interval,
and similarly if f ′(x) < 0. Moreover, if f is continuously differentiable, then f ′(a) > 0 is
sufficient to conclude that f(x) > 0 in an interval around a. This leads to our multivariate
generaliziation, but it will take some work to arrive there.

Lemma 2.10

Let A ⊆ Rn be a rectangle and let f : A → Rn be continuously differentiable. If
there is a number M > 0 such that |Djf

i(x)| ≤M for all x ∈ intA, then

|f(x)− f(y)| ≤ n2M |x− y|

for all x, y ∈ A.

Proof. First, we have

|f(x)− f(y)| ≤
n∑
i=1

|f i(x)− f i(y)|

Now, let z = y − x and define hiz(t) = f i(x+ tz), so that hiz(0) = f i(x) and hiz(1) = f i(y).
Since f i is differentiable (this follows from Theorem 2.8), we know that the directional

derivative Dzf
i(x) exists, and moreover that hi

′
(t) = Dzf

i(x + tz) (see Exercise 2-35).
Thus

|f i(y)− f i(x)| = |hi(0)− hi(1)| =
∣∣∣∣∫ 1

0

hi
′
(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

Dzf
i(x+ tz)dt

∣∣∣∣
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We also showed in Exercise 2-29 that D∗ is linear with respect to direction, so we can expand
this: ∣∣∣∣∫ 1

0

Dzf
i(x+ tz)dt

∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

0

n∑
j=1

zjDjf
i(x+ tz)dt

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∫ 1

0

zjDjf
i(x+ tz)dt

∣∣∣∣
≤

n∑
j=1

|zj |
∣∣∣∣∫ 1

0

Djf
i(x+ tz)dt

∣∣∣∣
≤

n∑
j=1

|zj |M

≤
n∑
j=1

|z|M

= nM |y − x|

Thus we have
|f i(y)− f i(x)| ≤ nM |y − x|

Combining this with our first inequality, we have

|f(x)− f(y)| ≤
n∑
i=1

|f i(x)− f i(y)| ≤
n∑
i=1

nM |y − x| = n2M |y − x|

Lemma 2.10 provides the necessary machinery to extend our result about locally invert-
ible functions to the multivariate case:

Theorem 2.11: Inverse Function Theorem

Suppose that f : Rn → Rn is continuously differentiable in an open set containing
a, and det f ′(a) ̸= 0. Then there is an open set V containing a and an open set W
containing f(a) such that f : V → W has a continuous inverse f−1 : W → V which
is differentiable and for all y ∈W satisfies

(f−1)′(y) = [f ′(f−1(y))]−1

Briefly speaking, this theorem says that so long as f ′(a) is nonsingular, then we can find
a restriction to a small open set where f is invertible and the derivative condition is met.

Proof. Let λ = Df(a). Since det f ′(a) ̸= 0, λ is invertible. Now suppose that the theorem
is true for λ−1 ◦ f . Then letting ϕ = (λ−1 ◦ f)−1, I claim that ϕ ◦ λ−1 = f−1. To see this,
we check that ϕ ◦ λ−1 is both a left and right identity:

(ϕ ◦ λ−1) ◦ f = (λ1− ◦ f)−1 ◦ (λ−1 ◦ f) = id

f ◦ (ϕ ◦ λ−1) = f ◦ f−1 ◦ λ ◦ λ−1 = id
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Moreover, this composition is continuous and differentiable, so if the theorem holds for
λ−1 ◦ f , it holds for f . Thus it suffices to prove the case where λ is the identity.

Now we know that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

so we can choose a small closed rectangle U containing a such that

|f(a+ h)− f(a)− λ(h)|
|h|

< 1

Now suppose for contradiction that there exists x ∈ U with f(x) = f(a). Then we would
have

|f(x)− f(a)− λ(x− a)|
|x− a|

=
|x− a|
|x− a|

= 1

which contradicts the inequality we just established for U . So f(x) ̸= f(a) for all x ̸= a ∈ U .

Now note that x 7→ det f ′(x) consists of sums and products of continuous functions (each
Djf

i exists and is continuous since f is continuously differentiable), so it is continuous.
Thus we can also choose U small enough such that det f ′(x) ̸= 0 for x ∈ U .

Lastly, since f is continuously differentiable, we can pick U small enough such that for any
i, j and x ∈ U we have

|Djf
i(x)−Djf

i(a)| < 1

2n2

Next, let g(x) = f(x)− x. Then since Df(a) = id, for any x ∈ intA we have

|Djg
i(x)| = |Djf

i(x)−Dj id
i(x)| = |Djf

i(x)−Djf
i(a)| < 1

2n2

so |Djg
i(x)| ≤ M = 1/2n2 for all i, j and x ∈ U . Thus we may apply Lemma 2.10 to

conclude that for any x, y ∈ U ,

|f(x)− x− (f(y)− y)| = |g(x)− g(y)| ≤ n2M |x− y| = |x− y|
2

Moreover, by the reverse triangle inequality,

|x− y| − |f(x)− f(y)| ≤ |f(x)− x− (f(y)− y)|

so we know that for any x, y ∈ U ,

|x− y| ≤ 2|f(x)− f(y)|

Since U is a closed rectangle, ∂U ⊆ U , so for any x ∈ ∂U we know f(x) ̸= f(a). Thus
f(a) /∈ f(∂U). Moreover, ∂U is compact, so f(∂U) is compact and there exists d > 0 such
that |f(a)− f(x)| ≥ d for any x ∈ ∂U . Then define

W =

{
y : |y − f(a)| < d

2

}

26



If y ∈W and x ∈ ∂U , then
|y − f(a)| < |y − f(x)|

Then we show that for any y ∈W , there exists a unique preimage x ∈ intU with f(x) = y.
To prove this, note that defining g : U → R by

g(x) = |y − f(x)|2 =

n∑
i=1

(yi − f i(x))2

This function is continuous, so it achieves a minimum on U . But since |y−f(a)| < |y−f(x)|
for x ∈ ∂U , we know that g(a) < g(x). So the minimum cannot be in ∂U . Thus there exists
x ∈ intU such that g is minimized, which allows us to conclude that Djg(x) = 0 for all j.
Thus

n∑
i=1

2(yi − f i(x))Djf
i(x) = 0

Since this holds for every j, we can rewrite this system of equations as

f ′(x)

y1 − f1(x)
...

yn − fn(x)

 = 0

But det f ′(x) ̸= 0 so we conclude that yi − f i(x) = 0 for all i. Thus y = f(x). So we know
that a preimage x exists. If another preimage x2 exists, then we have

|x− x2| ≤ 2|f(x)− f(x2)| = 2|y − y| = 0

so x = x2. Thus x is unique as well. Thus, we have shown that f is locally invertible.
Letting V = intU ∩ f−1(W ), we may write that f : V → W has an inverse f−1 : W → V .
Moreover, for any y1, y2 ∈W with x1 = f−1(y1) and x2 = f−1(y2), we have

|f−1(y1)− f−1(y2)| = |x1 − x2| ≤ 2|f(x1)− f(x2)| = 2|y1 − y2|

So f−1 is Lipschitz and is thus continuous.

Now we must show that f−1 is differentiable. Let x ∈ V , and write µ = Df(x). Let
y = f(x) ∈ W . Then we show that f−1 is differentiable at y with Df−1(y) = µ−1. Let
φ(x1) = f(x1)− f(x)− µ(x1 − x), such that

f(x1) = f(x) + µ(x1 − x) + φ(x1 − x)

Moreover, since f is differentiable at x we have

lim
x1→x

|φ(x1 − x)|
|x1 − x|

= 0

So
µ−1(f(x1)− f(x)) = x1 − x+ µ−1(φ(x1 − x))

or
x1 = µ−1(f(x1)− f(x)) + x− µ−1(φ(x1 − x))
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But any y1 ∈W is of the form f(x1) for x1 ∈ V , so without loss of generality we may wriet

f−1(y1) = f−1(y) + µ−1(y1 − y)− µ−1(φ(f−1(y1)− f−1(y)))

and we only need to show that

lim
y1→y

|µ−1(φ(f−1(y1)− f−1(y)))|
|y1 − y|

= 0

By Exercise 1-10 the linear transformation µ−1 is irrelevant here and we only need to show
that

lim
y1→y

|φ(f−1(y1)− f−1(y))|
|y1 − y|

= 0

We can apply a trick here, splitting the fraction:

|φ(f−1(y1)− f−1(y)|)
|y1 − y|

=
|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

|f−1(y1)− f−1(y)|
|y1 − y|

Since f−1 is continuous, f−1(y1) → f−1(y) as y1 → y, so

lim
y1→y

|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

= lim
x1→x

|φ(x1 − x)|
|x1 − x|

= 0

and the second factor is bounded by 2, completing the proof.

2.6 Implicit Functions

Having now proved our major result concerning local invertibility of functions, we will apply
it to the study of converting implicit function relations into explicit functions.

Example 2.6

Let f : R2 → R be defined by f(x, y) = x2 + y2 − 1. Let C be the set of points (x, y)
with f(x, y) = 0 (this defines a level curve of f). Then this curve is simply a circle
of radius 1 centered at the origin.

To convert this curve into an explicit function, we attempt to answer the following
question: given a point (a, b) ∈ C, do there exist intervals A around a and B around
b such that for any x ∈ A there exists exactly one y ∈ B with (x, y) ∈ C. In the case
that there is, we can then define a function g : A → B which maps each x to that
unique y.

If we choose (x, y) such that x ̸= ±1, then we can indeed do so. When y > 0, the
graph of the function g(x) =

√
1− x2 traces out the upper semicircle. When y < 0,

we instead pick h(x) = −
√
1− x2, tracing out the lower circle. In both cases, our

choice of g or h is forced. However, when x = ±1, we cannot pick an interval around
x where such a function can be defined.

It is also worth remarking that both g and h are differentiable.
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To generalize the above discussion to multiple variables, we consider functions of the
form f : Rn × Rm → R. If x ∈ Rn and y ∈ Rm, then we would like to find neighborhoods
V around x and W around y such that any x ∈ V corresponds to exactly one y ∈ W with
f(x, y) = 0, which allows us to implicitly define a function g : V →W , which maps x to y.

Theorem 2.12: Implicit Function Theorem

Let f : Rn×Rm → Rm be continuously differentiable in an open set aroud (a, b), and
suppose f(a, b) = 0. Let M be an m×m matrix defined by Mij = Dn+jf

i(a, b). If
detM ̸= 0, then there is an open set A ⊆ Rn containing a and an open set B ⊆ Rm
containing b, such that for any x ∈ A there is a unique y ∈ B such that f(x, y) = 0.
Moreover, the function g defined by x 7→ y is differentiable.

Proof. Define F : Rn × R + summ → Rn × Rm by F (x, y) = (x, f(x, y)). Then F ′(a, b) is
given by a block matrix

F ′(a, b) =

[
I O
O M

]
so detF ′(a, b) = detM ̸= 0. Apply the Inverse Function Theorem to produce open sets
V ⊆ Rn × Rm containing (a, b) and W ⊆ Rn × Rm containing F (a, b) = (a, 0). We can
write V = A × B (Spivak asserts this but I’m not sure how), and thus the restriction
F : A × B → W has a differentiable inverse h : W → A × B. Moreover, since F preserves
the first n coordinates, h must also, so that h(x, y) = (x, k(x, y)) for some differentiable
function k. Then define the projection π : Rn × Rm → Rm by π(x, y) = y, such that
π ◦ F = f . Thus

f(x, k(x, y)) = f ◦ h(x, y) = (π ◦ F ) ◦ h(x, y) = π ◦ (F ◦ h)(x, y) = π(x, y) = y

Then f(x, k(x, 0)) = 0. So for any x ∈ A, we can pick y = k(x, 0) ∈ B, and we will have
f(x, y) = 0. Moreover, if there exists another y′ ∈ B with f(x, y′) = 0, then we would have

F (x, y′) = (x, f(x, y′)) = (x, 0) = (x, f(x, y)) = F (x, y)

But F is invertible so we cannot have y ̸= y′. Thus our choice of y is unique, and the
implicitly defined function k is differentiable.

Since we know that the implicitly defined g is differentiable, we can calculate its deriva-
tive. For any coordinate i, we have f i(x, g(x)) = 0, so

Djf
i(x, g(x)) +

m∑
α=1

Dn+αf
i(x, g(x))Djg

α(x) = 0

which we can then solve for the various Djg
α(x) by inverting M (which can be done since

detM ̸= 0).

We can generalize the Implicit Function Theorem as follows:
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Theorem 2.13

Let f : Rn → Rp be continuously differentiable in an open set containing a, where
p ≤ n. If f(a) = 0 and the p×n matrix P with Pij = Djf

i(a) has rank p, then there
is an open set A ⊆ Rn and a differentiable function h : A → Rn with differentiable
inverse such that h(A) contains a and

f ◦ h(x1, . . . , xn) = (xn−p+1, . . . , xn)

Note: Spivak states that A contains a. This is incorrect.

We can interpret the above theorem by saying that whenever the derivative of f has
rank p, then we can find h such that f ◦ h acts to embed the last p coordinates of −→x into
Rp.

Proof. Consider f as a function Rn−p × Rp → Rp. Then if P has rank p, it has p linearly
independent columns. Let g : Rn → Rn permute the coordinates such that those linearly
independent columns are the last p columns. Taking f ◦ g, the matrix M as defined in the
Implicit Function Theorem, which is a p × p matrix with Mij = Dn+j(f ◦ g)i(a), has rank
p, and thus has nonzero determinant.

Now, as in the proof of the Implicit Function Theorem, define F : Rn−p ×Rp → Rn−p ×Rp
by F (x, y) = (x, f ◦ g(x, y)). Again, detF ′(a, b) = detM ̸= 0, so we apply the Inverse
Function Theorem to produce h which is locally an inverse of F . As in the previous proof,
we have

(f ◦ g) ◦ h(x, y) = y

so taking g ◦ h produces the requested function.
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Chapter 3

Integration

3.1 Basic Definitions

The following treatment of the basic definitions of integrals over a closed rectangle A ⊆ Rn
is rapid, as this case is similar to the single variable case of integration over an interval.

Definition 3.1

A partition of a closed interval [a, b] is a finite sequence {t0, . . . , tk}, such that
a = t0 ≤ . . . ≤ tk = b, such that [a, b] is divided into k subintervals.

Definition 3.2

Let A = [a1, b1] × . . . × [an, bn] ⊆ Rn be a closed rectangle. A partition of A is a
collection of partitions P = (P1, . . . ,Pn), such that Pi is a partition of [ai, bi]. If Pi
divides [ai, bi] into Ni subintervals, then P divides A into N1 × . . . × Nn subrect-
angles of P. Using a slight abuse of notation, we will write S ∈ P to denote that S
is a subrectangle of P.

If A ⊆ Rn is a rectangle, f : A→ R is bounded, and P is a partition, then we can define
the maximum and minimum values for each subrectangle S ∈ P:

mS(f) = inf{f(x) : x ∈ S}
MS(f) = sup{f(x) : x ∈ S}

Let v(S) denote the volume of S, defined as the product of the side lengths (regardless of
whether S is open or closed). Then the lower and upper sums of f with respect to P are

L(f,P) =
∑
S∈P

mS(f)v(S)

U(f,P) =
∑
S∈P

MS(f)v(S)
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Since mS(f) ≤MS(f) for any s, we then have L(f,P) ≤ U(f,P).

Definition 3.3

A partition P ′ is called a refinement of a partition P if each subrectangle of P ′ is
contained in a subrectangle of P.

Lemma 3.1

Let P ′ be a refinement of P. Then

L(f,P) ≤ L(f,P ′)

and
U(f,P) ≥ U(f,P ′)

Proof. Let S be a subrectangle of P. Then it contains subrectangles S1, . . . , Sk ∈ P ′ which
are disjoint and cover S, so that

∑
1≤i≤k v(Si) = v(S). For each Si, mSi(f) ≥MS(f). Thus∑

1≤i≤k

mSi(f)v(Si) ≥ mS(f)v(S)

Since P ′ refines P, each subrectangle of P ′ is contained in a subrectangle of P. Thus we
have

L(f,P ′) =
∑
S′∈P′

mS′(f)v(S′) =
∑
S∈P

∑
1≤i≤k

mSi(f)v(Si) ≥
∑
S∈P

mS(f)v(S) = L(f,P)

The proof for the other case is similar.

In essence, as we refine a given partition, the upper and lower sums will grow closer to
one another, and under the appropriate conditions, they will also converge to one another.
This provides a candidate value for the integral of f over A; however, it is dependent on our
starting partition. Ideally, our integral may be defined independent of a particular choice of
partition; to do so we must prove the following:

Corollary 3.2

If P and P ′ are partitions, then L(f,P ′) ≤ U(f,P).

To prove this, we first introduce an auxiliary construction:

Definition 3.4

Let P and P ′ be partitions of an interval [a, b]. Then their common refinement Q
is the partition P ∪P ′. If P = (P1, . . . ,Pn) and P ′ = (P ′

1, . . . ,P ′
n) be partitions of a

rectangle A ⊆ Rn. Then the common refinement Q is given by (P1∪P ′
1, . . . ,Pn∪P ′

n).

32



Proof. Let Q be the common refinement of P and P ′. Then by Lemma 3.1,

L(f,P ′) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P)

Now let U = inf U(f,P), where the infimum is taken over all partitions P of A, and let
L = supL(f,P). By Corollary 3.2, both U and L exist, and L ≤ U . As mentioned above, if
our continued refinements converge to a single value, then this provides a plausible definition
of the integral. As Corollary 3.2 shows, this convergence is only possible if U = L, and it
must converge to that common value. Moreover, the values of U and L are independent of
our choice of partition, which allows us to define the integral:

Definition 3.5

Let f : A → R be bounded, with A ⊆ Rn a rectangle. Then f is integrable if
U = L. In this case, we denote the integral of f on A by

∫
A
f = U = L, which may

alternatively be notated
∫
A
f(x1, . . . , xn) dx1 . . . dxn.

The following theorem gives us an equivalent criterion for integrability.

Theorem 3.3

A bounded function f : A → R is integrable if and only if, for every ε > 0 there
exists a partition P of A such that

U(f,P)− L(f,P) < ε

Proof. ( =⇒ ) If f is integrable then U exists, so there exists a partition P1 with U(f,P1) ≤
U + ε

2 . Similarly there exists P2 with L(f,P2) ≥ L− ε
2 . Let P be the common refinement

of P1,P2. Then

U(f,P)− L(f,P) ≤ U(f,P1)− L(f,P2) ≤ U +
ε

2
− (L− ε

2
) = ε

( ⇐= ) By Corollary 3.2, both U and L exist. Let ε > 0 be arbitrary, and let P be the
partition produced by the condition. Then

U − L ≤ U(f,P)− L(f,P) < ε

So U − L < ε for all ε > 0 and thus U = L. So f is integrable over A.

Example 3.1

Let f : A → R be constant with f(x) = c. Then if P is a partition and S ∈ P,
mS(f) =MS(f) = c, so

U(f,P) =
∑
S∈P

mS(f)v(S) = c
∑
S∈P

v(S) = cv(A)

L(f,P) = cv(A)
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so U = L = cv(A) and f is integrable with
∫
A
f = cv(A).

Example 3.2

Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x ∈ Q
1, x /∈ Q

If P is a partition and S ∈ P, by the density of Q in R we have mS(f) = 0, and by
the density of I ∈ R we have MS(f) = 1. So

U(f,P) =
∑
S∈P

MS(f)v(S) =
∑
S∈P

v(S) = v(A)

L(f,P) = 0

So f is not integrable over any rectangle A with v(A) > 0.

3.2 Measure Zero and Content Zero

In this section, we discuss the notions of measure and content zero. These quanity the
concept of a set which is small enough to be insignificant in certain contexts. Moreover, in
particular with the case of measure zero, this is a special case of a more general technique
which serves as the formalization of volume in higher dimensions.

Definition 3.6

A subset A ⊆ Rn has measure zero if for any ε > 0 there exists a cover O of A by
closed rectangles such that

∑
O∈O v(O) < ε > 0.

We may also use open rectangles rather than closed rectangles in the above.

Proposition 3.4

If a set A ⊆ Rn is countable, then it has measure zero.

Proof. Let ε > 0. Enumerate the points in A as a1, a2, . . .. Then for each ai, pick a closed
rectangle Oi containing ai such that v(Oi) <

ε
2i . Then O = {O1, O2, . . .} covers A, and

∑
O∈O

v(O) =

∞∑
i=1

v(Oi) ≤
∞∑
i=1

ε

2i
= ε

∞∑
i=1

1

2i
= ε

so A has measure zero.
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Importantly, Q is countable, and thus has measure zero.

Theorem 3.5

Let A =
⋃∞
i=1Ai be a countable union of measure zero sets Ai. Then A has measure

zero.

Proof. Let ε > 0. For each Ai, pick an open cover Oi such that∑
O∈Oi

v(O) <
ε

2i

Now let O =
⋃∞
i=1 Oi. Then O covers A, and

∑
O∈O

v(O) =

∞∑
i=1

∑
O∈Oi

v(Oi) ≤
∞∑
i=1

ε

2i
= ε

so A has measure zero.

While sets of measure zero are important (and indeed, this notion hints at more im-
portant themes in measure theory), there are times when we would prefer to work with a
finite cover rather than an open cover. This is analogous to our preference for compact sets.
Thus, we have a corresponding notion of measure zero for finite covers:

Definition 3.7

A subset A ⊆ Rn has content zero if for any ε > 0 there exists a finite cover O of
A by closed rectangles such that ∑

O∈O
v(O) < ε

By definition, a set having content zero is a special case of having measure zero.

Theorem 3.6

A nonsingleton interval [a, b] ⊆ R does not have content zero. For any finite cover
{O1, . . . , On} of [a, b], where each Oi is a closed interval,

n∑
i=1

v(Oi) ≥ b− a

Proof. Let O be a finite cover. We can pick a cover O′ = {O1 ∩ [a, b], . . . , On ∩ [a, b]},
which will be a cover if and only if O is, and which has smaller total length, so without
loss of generality we may consider O′. Let t0, . . . , tk be the endpoints of the O′

i, with
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a = O0 ≤ . . . ≤ Ok = b. Then each O′
i contains at least one interval [ti−1, ti], and each

interval is contained in at least one O′
i. Then

∑
O′∈O′

v(O′) ≥
k∑
j=1

(tj − tj−1) = b− a

The reader should note that the above proof also shows that [a, b] does not have measure
zero (as long as a < b).

Theorem 3.7

If A is compact and has measure zero, then it has content zero.

Proof. Let ε > 0. There exists an open cover O of A with∑
O∈O

v(O) < ε

Since A is compact, pick a finite subcover O′. Then∑
O′∈O′

v(O′) ≤
∑
O∈O

v(O) < ε

so A has content zero.

Example 3.3

Although we pointed out earlier that Q has measure zero, it does not have content
zero. Let O = {[ai, bi]} be a finite cover of Q ∩ [0, 1] by closed intervals. Then by
the density of Q, O must cover [0, 1]. But then

∑n
i=1 bi − ai ≥ 1, so Q ∩ [0, 1] does

not have content zero. It follows that Q does not either.

3.3 Integrable Functions

In this section, we will expand on the theory of which functions may be (Riemann) inte-
grated.

Recall that o(f, x) denotes the oscillation of f at x, defined as

lim
δ→0

M(x, f, δ)−m(x, f, δ)

where

M(x, f, δ) = sup{f(y) : |x− y| < δ}
m(x, f, δ) = inf{f(y) : |x− y| < δ}
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Lemma 3.8

Let A be a closed rectangle and let f : A → R be a bounded function such that
o(f, x) < ε for all x ∈ A. Then there is a partition P of A with

U(f,P)− L(f,P) < ε · v(A)

Proof. For each x, because o(f, x) < ε we may pick a closed rectangle Ux containing x such
that MUx(f) −mUx(f) < ε. Then the collection of Ux covers A compact, so we can pick
a finite subcover U1, . . . , Uk. Then pick a partition P such that each subrectangle of P is
entirely contained within one of the Ux. Then for any subrectangle S ∈ P we have

MS(f)−mS(f) ≤MUx(f)−mUx(f) < ε

Then
U(f,P)− L(f,P) =

∑
S∈P

v(S)[MS(f)−mS(f)] < ε
∑
S∈P

v(S) = εv(A)

Lemma 3.9

Let R be a finite collection of closed rectangles R1, . . . , Rk ⊆ Rn. Let A ⊆ Rn be a
closed rectangle. Then there exists a partition P of A such that for each S ∈ P and
each Ri, exactly one of the following is true: S ⊆ Ri or S ∩ intRi = ∅.

Proof. Let ai,j be the left endpoint of Ri in the jth direction and bi,j the right endpoint,
such that

Ri = [ai,1, bi,1]× . . .× [ai,n, bi,n]

Let Pj = {a1,j , b1,j , . . . , ak,j , bk,j} (not necessarily in order). Suppose that when ordered,
Pj = {tj,1, . . . , tj,2k} (note that the j has switched coordinates). Let P = (P1, . . . ,Pn).
Then for each S ∈ P,

S = [t1,i1−1, t1,i1 ]× . . .× [tn,in−1, tn,in ]

for appropriately chosen i1, . . . , in. Any Rj is of the form

Rj = [t1,i′1−1, t1,i′1 ]× . . .× [tn,i′n−1, tn,i′n ]

for some other i′1, . . . , i
′
n. Now consider the first coordinate direction. Suppose t1,i′1 ≤ t1,i1−1.

Then for any x ∈ S and y ∈ intRj , we have

y1 < t1,i′1 ≤ t1,i1−1 ≤ x1

so x ̸= y and thus S ∩ intRi = ∅. Similarly, if t1,i1 ≤ t1,i′1−1, then we have

x1 ≤ t1,i1 ≤ t1,i′1−1 < y1

so x ̸= y and S ∩ intRi = ∅. Thus we either immediately conclude that S ∩ intRi = ∅, or
we know that

t1,i′1 > t1,i1−1

t1,i1 > t1,i′1−1
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This is equivalent to

t1,i′1 ≥ t1,i1

t1,i1−1 ≥ t1,i′1−1

so we either have S ∩ intRi = ∅ or

t1,i′1−1 ≤ t1,i1−1 ≤ t1,i1 ≤ t1,i′1

We can apply this argument to each coordinate direction 1, . . . , n, so that it is either the
case that S ∩ intRi = ∅, or we have

t1,i′1−1 ≤ t1,i1−1 ≤ t1,i1 ≤ t1,i′1
...

tn,i′n−1 ≤ tn,in−1 ≤ tn,in ≤ tn,i′n

In this case, we have S ⊆ Ri.

In particular, the above statement shows that if O is a finite collection of rectangles such
that their interiors cover some set B ⊆ A ⊆ Rn, with A a closed rectangle, then there exists
a partition of A such that each subrectangle is either contained in some O ∈ O or does not
intersect B. Such a collection may be of interest, for instance, if B has content zero.

Theorem 3.10

Let A be a closed rectangle and let f : A→ R be a bounded function. Let B = {x :
f is not continuous at x}. Then f is integrable if and only if B is a set of measure
zero.

Proof. ( =⇒ ) Suppose that f is integrable. Define Bε : {x : o(f, x) ≥ ε}. I claim that B1/n

has measure zero for each n.

To see this, let P be a partition of A such that

U(f,P)− L(f,P) <
ε

n

Then let S be the collection of subrectangles S ∈ P such that S ∩B1/n ̸= ∅. Then S covers

B1/n. Now, for each S ∈ S we know that o(f, x) ≥ 1
n for some x ∈ S, soMS(f)−mS(f) ≥ 1

n .
So

1 ≤ n(MS(f)−mS(f))

Thus ∑
S∈S

v(S) ≤
∑
S∈S

v(S)n(MS(f)−mS(f)) ≤ n
∑
S∈P

v(S)[MS(f)−mS(f)] < ε

So B 1
n
has measure zero. Thus B =

⋃∞
n=1B1/n has measure zero.

( ⇐= ) Suppose that B has measure zero. Now let ε > 0. Suppose that |f(x)| < M for all
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x. Define ε′ = ε/2v(A). Define Bε := {x : o(f, x) ≥ ε′}. We have previously proved that
a set of this form is compact. Then Bε is compact and has measure zero, so it has content
zero. Then there exists a finite cover O of Bε by the interior of closed rectangles such that∑

O∈O
v(O) <

ε

4M

Apply Lemma 3.9 to produce a partition P ′ such that the subrectangles which do not
intersect Bε may be enumerated as R1, . . . , Rk, and o(f, x) < ε′ = ε/2v(A) for any x in any
of those closed rectangles. Then apply Lemma 3.8 to each Ri to produce a refinement P ′

such that for each Ri,∑
S∈P′:S⊆Ri

v(S)[MS(f)−mS(f)] < ε′v(Ri) =
ε

2v(A)
v(Ri)

Now, for each subrectangle S′ ∈ P ′, S′ ⊆ S for exactly one S ∈ P. We either have S ⊆ O
for some O ∈ O, or S = Ri for some i. Thus either S′ ⊆ O for some O ∈ O or S′ ⊆ Ri
for some i. Denote by L the collection of S′ such that S′ ⊆ O for O ∈ O and by R the
collection of S′ such that S′ ⊆ Ri for some i. Then

U(f,P ′)− L(f,P ′) =
∑
S∈P′

v(S)[MS(f)−mS(f)]

=
∑
S∈L

v(S)[MS(f)−mS(f)] +
∑
S∈R

v(S)[MS(f)−mS(f)]

We also have ∑
S∈L

v(S)[MS(f)−mS(f)] ≤
∑
O∈O

v(O)[MO(f)−mO(f)]

and ∑
S∈R

v(S)[MS(f)−mS(f)] =

k∑
i=1

∑
S′∈P′:S′⊆Ri

v(S′)[MS(f)−mS(f)]

so that

U(f,P ′)− L(f,P ′) ≤
∑
O∈O

v(O)[MO(f)−mO(f)] +
k∑
i=1

∑
S′∈P′:S′⊆Ri

v(S′)[MS(f)−mS(f)]

Since f is bounded by M , we must have MO(f)−mO(f) ≤ 2M for any O. Thus

∑
O∈O

v(O)[MO(f)−mO(f)] +

k∑
i=1

U(f,Pi)− L(f,Pi) < 2M
∑
O∈O

v(O) +
ε

2v(A)

k∑
i=1

v(Ri)

<
ε

2
+
ε

2

v(A)

v(A)

= ε

So f is integrable.
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We have thus presented an extremely useful criterion for determining when a function
may be successfully integrated, without requiring the use of partitions to do so.

We will now progress to expanding our theory of integration from integration on rectangles
to arbitrary bounded sets, which we define in terms of integrals on rectangles.

Definition 3.8

Let C ⊆ Rn. The characteristic function of C is

χC(x) =

{
1, x ∈ C

0, x /∈ C

Definition 3.9

Suppose that C ⊆ Rn is bounded by a closed rectangle A, and f : A→ R is bounded.
Then the integral of f on C is defined as∫

C

f =

∫
A

fχC

provided this quantity is defined.

As we can see from the definition,
∫
C
f is defined whenever fχC is integrable on A.

As we prove in Exercise 3-14, the product of integrable functions is integrable, so if χC
and f are both integrable, then

∫
C
f is well defined. Since we are mainly concerned with

integrating functions which integrable to begin with, the main task for us is to determined
when χC is integrable.

Theorem 3.11

If C ⊆ A ⊆ Rn, where A is a closed rectangle, then χC : A→ R, is integrable if and
only if ∂C has measure zero.

Proof. Note that whenever x ∈ ∂C, in any neighborhood of x there exists y ∈ C, such that
χC(y) = 1, and z /∈ C, such that χC(z) = 0. Thus χC is discontinuous on ∂C. On the other
hand, if x /∈ ∂C, then x ∈ intA or x ∈ extA. In either case, there exists a neighborhood
around x such that χC is constant, so χC is continuous on intA and extA. Thus χC is
discontinuous precisely on ∂C.

Since χC is integrable if and only if it is discontinuous on a set of measure zero, it is integrable
if and only if ∂C has measure zero.

We should note that since ∂C is closed and bounded, it also has content zero.

Definition 3.10

If C is bounded and ∂C has measure zero, then C is called Jordan-measurable.
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Thus, for any integrable function f ,
∫
C
f is defined if C is Jordan-measurable. It is

possible for
∫
C
f to be defined in other cases (for instance, if f is identically zero), but

this is of little interest to us. This also allows us to extend our definition of volume to
non-rectangle sets.

Definition 3.11

The volume (or content) of a Jordan-measurable set C is defined as

v(C) =

∫
C

1

Note that even if C is bounded and closed, it may not be Jordan-measurable, as we
showed in Exercise 3-11. Thus,

∫
C
f may not be defined even in the case of C open and f

continuous.

3.4 Fubini’s Theorem

As with our study of differentiation, we have so far been able to integrate on a case-by-case
basis, and now need to produce a general method that will simplify the computation of
integration in a broad class of cases. This section will develop Fubini’s Theorem, which
allows us to simplify computation of integrals into iterated integrals in single variables.

We will first proceed informally in order to develop intuition for the principle behind this
theorem. Consider the case of a ”sufficiently nice” function f : [a, b]× [c, d] → R. Then we
can partition [a, b] by t0, . . . , tk. For each ti, the area under the graph of f above {ti}× [c, d]
is ∫ d

c

f(ti, y) dy

If f is nice, then we can approximate the volume under the graph of f above [ti−1, ti]× [c, d]
by ∫

[ti−1,ti]×[c,d]

f ≈ (ti − ti−1)

∫ d

c

f(xi, y) dy

for any xi ∈ [ti−1, ti]. Thus we can approximate the overall integral by∫
[a,b]×[c,d]

f =

k∑
i=1

∫
[ti−1,ti]×[c,d]

f ≈
k∑
i=1

(ti − ti−1)

∫ d

c

f(xi, y) dy

But if we consider the single variable integral
∫ b
a
(
∫ d
c
f(x, y) dy) dx, then this would be ap-

proximated by partitions of [a, b] and sums of the form

k∑
i=1

(ti − ti−1)

∫ d

c

f(xi, y) dy
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So it seems that for ”sufficiently nice” functions, we should have∫
[a,b]×[c,d]

f =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

As it turns out, this indeed is the case, but the classification of which functions are ”suffi-

ciently nice” becomes a difficult problem. For instance, if
∫ d
c
f(xi, y) dy is not defined, then

the above equation doesn’t even make sense, although f may still be integrable.

Definition 3.12

Let f : A→ R be bounded with A ⊆ Rn a closed rectangle. Then the lower integral
of f on A is

L

∫
A

f = sup
P
U(f,P)

and the upper integral is defined similarly as

U

∫
A

f = inf
P
L(f,P)

regardless of whether f is integrable on A.

Theorem 3.12: Fubini’s Theorem

Let A ⊆ Rn and B ⊆ Rm be closed rectangles, and let f : A×B → R be integrable.
For any x ∈ A define gx : B → R by gx(y) = f(x, y). Let

L(x) = L

∫
B

gx = L

∫
B

f(x, y) dy

U(x) = U

∫
B

gx = U

∫
B

f(x, y) dy

Then L and U are integrable on A and∫
A×B

f =

∫
A

L =

∫
A

(
L

∫
B

f(x, y) dy

)
dx∫

A×B
f =

∫
A

U =

∫
A

(
U

∫
B

f(x, y) dy

)
dx

We refer to integrals of the form
∫
A

(
L
∫
B
f(x, y) dy

)
dx or

∫
A

(
U
∫
B
f(x, y) dy

)
dx as

iterated integrals.

Proof. Pick partitions PA of A and PB of B. Then P = (PA,PB) is a partition of A × B.
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Moreover, any subrectangle S ∈ P is of the form SA × SB for SA ∈ PA, SB ∈ PB . So

L(f,P) =
∑
S∈P

mS(f)v(S)

=
∑

SA∈PA,SB∈PB

mSA×SB (f)v(SA × SB)

=
∑

SA∈PA

v(SA)

( ∑
SB∈PB

mSA×SB (f)v(SB)

)

For any x ∈ SA we have mSA×SB (f) ≤ mSB (gx). So for fixed x ∈ SA,∑
SB∈PB

mSA×SB (f)v(SB) ≤
∑

SB∈PB

mSB (gx) ≤ L

∫
B

gx = L(x)

and thus

L(f,P) =
∑

SA∈PA

v(SA)

( ∑
SB∈PB

mSA×SB (f)v(SB)

)
≤

∑
SA∈PA

mSA(L)v(SA) = L(L,PA)

so that
L(f,P) ≤ L(L,PA) ≤ U(L,PA) ≤ U(U ,PA) ≤ U(f,P)

where the third inequality follows because L ≤ U and the fourth by a similar argument to
what we just proved. Now, f is integrable, which means that

supL(f,P) = inf U(f,P) =

∫
A×B

f

So that

supL(L,PA) = inf U(L,PA) =
∫
A×B

f

Thus L is integrable on A and ∫
A

L =

∫
A×B

f

and similarly U is integrable iwth ∫
A

U =

∫
A×B

f

Corollary

Under the same hypotheses,∫
A×B

f =

∫
B

(
L

∫
A

f(x, y) dx

)
dy =

∫
B

(
U

∫
A

f(x, y) dx

)
dy

Proof. Analogous.
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The fact that this proof may be repeated in the other order may seem clear based on
simply reading the proof However, the important implication is that, for these sufficiently
nice functions, not only may our integral be replaced with an iterated integral, but the order
of the iterated integral may be changed.

Remark

If each gx is integrable, then we may dispense with the functions L and U and simply
write ∫

A×B
f =

∫
A

(∫
B

f(x, y) dy

)
dx =

∫
B

(∫
A

f(x, y) dx

)
dy

In particular, this is the case if f is continuous.

Alternatively, if all but a finite number of gx are integrable, then we may still write
the same, and arbitrarily define the quantity

∫
B
f(x, y) dy if gx is not integrable (since

changing the value of L at a finite number of points will not change its integral).

Example 3.4

Define f : [0, 1]× [0, 1] → R by

f(x, y) =


1, x /∈ Q
1, x ∈ Q, y /∈ Q
1− 1

q , x = p
q , y ∈ Q

where x = p/q is assumed to be in lowest terms. Then f is integrable with∫
[0,1]×[0,1]

f = 1. But
∫ 1

0
f(x, y) dy = 1 when x ∈ Q and does not exist other-

wise. So we cannot arbitrarily set the value of
∫ 1

0
f(x, y) dy wherever the integral

doesn’t exist. For instance, defining this as zero gives Dirichlet’s function, which is
not integrable.

Remark

If A = [a1, b1] × . . . × [an, bn] and f : A → R is ”sufficiently nice,” then repeated
application of Fubini’s theorem gives∫

A

f =

∫ bn

an

(
. . .

(∫ b1

a1

f(x1, . . . , xn) dx1

)
. . .

)
dxn

An application of Fubini’s theorem is to integrate over subsets C ⊆ A×B by appropri-
ately setting bounds on the iterated integrals.
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Example 3.5

Let
C = ([−1, 1]× [−1, 1]) \ {(x, y) : |(x, y)| < 1}

Then ∫
C

f =

∫
[−1,1]×[−1,1]

χCf

Assuming that f is integrable, χCf is integrable since C is Jordan-measurable. So
we may write ∫

[−1,1]×[−1,1]

χCf =

∫ 1

−1

(∫ 1

−1

f(x, y)χC(x, y) dy

)
dx

We have

χC(x, y) =

{
1, |y| >

√
1− x2

0, |y| ≤
√
1− x2

so ∫ 1

−1

f(x, y)χC(x, y) dy =

∫ 1

√
1−x2

f(x, y) dy +

∫ −
√
1−x2

−1

f(x, y) dy

and thus∫
C

f =

∫ 1

−1

(∫ 1

√
1−x2

f(x, y) dy

)
dx+

∫ 1

−1

(∫ −
√
1−x2

−1

f(x, y) dy

)
dx

In general, the problem of determining bounds for arbitrary C ⊆ A × B is harder.
However, one important result of Fubini’s theorem is that these bounds may be set in either
the dy − dx order or the dx− dy order, whichever is easier.

3.5 Partitions of Unity

In this section, we will discussion partitions of unity. These are an important tool that will
help allow us to combine local results into global results, for instance when developing a
theory of integration on manifolds.
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Definition 3.13

Let A ⊆ Rn. Then a partition of unity for A is a collection Φ of C∞ functions φ
which are defined on an open set containing A, such that

1. For all x ∈ A and all φ ∈ Φ, 0 ≤ φ(x) ≤ 1.

2. For all x ∈ A there exists an open set V containing x such that all but finitely
many φ ∈ Φ are 0 on V .

3. For all x ∈ A it is the case that
∑
φ∈Φ φ(x) = 1, which is a finite sum by 2).

Definition 3.14

Let φ be a partition of unity for some A ⊆ Rn, and let O be an open cover of A.
Then Φ is subordinate to O if, for each φ ∈ Φ there exists an open set O ∈ O such
that φ = 0 outside of some compact set contained in O.

Note: Spivak only requires that φ = 0 outside of a closed contained in O, but later
he makes assumptions which require this set to be compact.

An important tool in proving the existence of partitions of unity will be the smooth
bump functions that we proved the existence of in Exercise 2-26. Exercise 2-26 states that
if O ⊆ Rn is open and C ⊆ O is compact, then there exists a closed set D ⊆ O and a C∞

function which is positive on C and 0 outside of D.

Theorem 3.13

Let A ⊆ Rn and let O be an open cover of A. Then there exists a partition of unity
Φ for A which is subordinate to O.

Proof. Case 1: A is compact.

Note that any partition of unity subordinate to a subcover of O is also subordinate to
O. Since A is compact, we will simply assume O = {U1, . . . , Uk} is finite. Now, we will
construct a corresponding set of compact sets Di ⊆ Ui such that {intD1, . . . , intDk} is also
an open cover for A.

To do so, we apply an inductive argument. Let D1, . . . , Dm be compact sets chosen so that
{intD1, . . . , intDm, Um+1, . . . , Uk} covers A. Then let

Ck+1 = A \

( m⋃
i=1

intDi

)
∪

 k⋃
j=m+2

Uj


Clearly Uk+1 covers Ck+1, and Ck+1 is the result of a closed set being finitely intersected
with the complement of open sets, and is thus closed. So Ck+1 is compact. Then by Exercise
1-22, there exists a compact set Dk+1 that satisfies

Ck+1 ⊆ intDk+1, Dk+1 ⊆ Uk+1
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By construction, the collection of Ci will cover A, so the collection of intDi do as well, and
Di ⊆ Ci ⊆ Ui, so this is our desired set.

Now, by Exercise 2-26, we can construct a C∞ ”bump” function ψi : which is nonnegative
everywhere, strictly positive on Di, and 0 outside of a closed set contained in Ui. Now, let

U =

k⋃
i=1

intDi

A ⊆ U since the intDi cover A. Moreover, for x ∈ U , x is in some Di, and the rest are
nonnegative, so

k∑
i=1

ψi > 0

on U . So we may define φi : U → R by

φi(x) =
ψi(x)∑k
j=1 ψj(x)

which is also smooth on U . Then the collection {φ1, . . . , φk} is a partition of unity. However,
it must be noted that this collection is not necessarily subordinate to O. Indeed, we know
that ψi = 0 outside of some closed set K contained in Ui. However, it may be the case that
K is not completely contained within U . In this case, φ1 is not even defined on K, let alone
outside of it.

Moreover, it is not necessarily that case that φ1 goes to zero at the boundary of its support.
For instance, suppose k = 1, so that we have only a single bump function ψ1. Then ψ1 goes
to zero, but φ1 is identically 1.

We can remedy this by applying Exercise 2-26 once more to construct a C∞ function f : U →
[0, 1] which is 1 on A and 0 outside of a closed setK ′ contained in U . Moreover, we can ensure
that K ′ is bounded since A is, so K ′ is compact. Then the collection Φ = {fφ1, . . . , fφk}
is still a partition of unity for A (since fφi = φi on A), but this time fφi is zero outside of
the compact set K ∩K ′ ⊆ Ui, so Φ is subordinate to O.

Case 2: A =
⋃∞
i=1Ai, where Ai is compact and Ai ⊆ intAi+1.

Define B1 = A1 and Bi = Ai \ intAi−1 for all i ≥ 2.

Claim

Suppose x ∈ Ai. Then x ∈ Bj for some j ≤ i.

Proof. We prove this by induction. In the base case, x ∈ A1 =⇒ x ∈ B1 since
A1 = B1.

For i ≥ 2, if x ∈ Ai then x ∈ Bi or x ∈ intAi−1. But intAi−1 ⊆ Ai−1, so x ∈ Ai−1.
By the inductive hypothesis x ∈ Bj for some j ≤ i− 1 < i.
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By the claim, we have A ⊆
⋃
Bi, and clearly

⋃
Bi ⊆ A, so

⋃
Bi = A.

Define the open cover Oi by

Oi =

{
{O ∩ intAi+1 : O ∈ O}, i = 1, 2

{O ∩ (intAi+1 \Ai−2) : O ∈ O}, i ≥ 3

We will construct a partition of unity for each Bi subordinate to Oi.

Note that each Bi is compact, and that Oi covers Bi. So by Case 1 there exists a partition
of unity Φi for Bi subordinate to Oi, where the functions are defined on some open set Ui
containing Bi. Now let x ∈ A. Then x ∈ Bi for some i. Thus x ∈ Ai. Moreover, for any
j ≥ i + 2, x ∈ Ai ⊆ Aj−2 so x /∈ O ∩ (intAj+1 \ Aj) for any O ∈ O, and thus x /∈ O′ for
any O′ ∈ Oj . Since Φj is subordinate to Oj , φ(x) = 0 for any φ ∈ Φj with j ≥ i+ 2. As a
result, the sum

σ(x) =

∞∑
j=1

∑
φ∈Φj

φ(x) =

i+2∑
j=1

∑
φ∈Φj

φ(x) ≥ 1

is a finite sum. Now for any φ ∈ Φj for any j, define φ
′ : Ui → R by

φ′(x) =
φ(x)

σ(x)

Moreover, the domain may be extended to
⋃
Ui by simply setting φ′ = 0 outside of Ui.

1

Then the collection Φ = {φ′ : φ ∈ Φj , j ∈ N} satisfies conditions 1 and 3 for being a
partition of unity. For condition 2, suppose x ∈ Ai. Then for each j ≤ i + 2, there exists
an open set Vj containing x such that all but finitely many φ ∈ Φj are zero on Vj . Let
V = V1∪ . . .∪Vi+2, which is open. By the argument above, φ(x) = 0 if φ ∈ Φj for j > i+2,
so there are only finitely many nonzero φ at x, and thus only finitely many φ′ are nonzero
at x.

So Φ is a partition of unity. Let φ′ ∈ Φ. Then φ ∈ Φj for some j. Φj is subordinate to Oj ,
so there exists O′ = O ∩ (intAj+1 \Aj−2) ∈ Oj such that φ is zero outside of a compact set
contained in O′ ⊆ O. Then φ′ is also zero outside this set (assured since U ⊆ intAj+1 ⊆ A,
and φ′ is defined on A ⊆ U). So Φ′ is subordinate to O.

Case 3: A is open.

Let d(x, ∂A) be the distance from x to ∂A as defined in Exercise 1-21 part a). Define

Ai : {x : |x| ≤ i, d(x, ∂A) ≥ 1

i
}

For any x ∈ A, |x| < M for some M ∈ N, and d(x, ∂A) ≥ 1
N for some other N ∈ N since

A is open. So x ∈ Ai for some i and thus A =
⋃∞
i=1Ai. So A is of the type considered in

Case 2.

Case 4: A is arbitrary.

Let B =
⋃
O∈O O. Then apply Case 3 to get a partition of unity Φ for B subordinate to O.

Then this is also a partition of unity for A.

1For details, see my answer here
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Remark 3.1

For any C ⊆ A, if Φ is a partition of unity for A, then for x ∈ C, there exists Vx
open containing x such that only finitely many φ are nonzero on Vx. Then these Vx
are an open cover of C, so by compactness we only need finitely many and thus only
finitely many φ are nonzero on C. In particular, if A is compact then we only need
finitely many φ (this was already proved in Case 1).

Remark 3.2

Note that our proof shows that we may demand that our partition of unity is count-
able.

Similarly to compactness, partitions of unity will allow us to make local constructions
and combine them into a global result. We will demonstrate this by extending our definition
of the integral to general open sets.

Definition 3.15

Let A ⊆ Rn be open and let O be an open cover of A. O is said to be admissible
if O ⊆ A for each O ∈ O (equivalently, if

⋃
O∈O O = A).

Let Φ be a partition of unity for an open set A ⊆ Rn (not necessarily bounded) subor-
dinate to an admissible open cover O. Suppose also that f : A→ R is bounded in an open
set around each point of A, and that its set of discontinuities has measure zero. Since φ has
compact support, let Cφ ⊆ A be a closed rectangle such that φ = 0 outside of Cφ (Cφ ⊆ A is
guaranteed since Φ is subordinate to O, which is admissible). Since f is bounded in an open
neighborhood around each point, we apply compactness to pick a finite number of them and
conclude f is boudned on Cφ. |f | is continuous whenever f is, so it is discontinuous on a set
of measure zero and thus |f | is integrable on Cφ. φ is also continuous, so

∫
Cφ
φ|f | exists.

Now, by Remark 3.2, Φ is countable. So we may consider the series∑
φ∈Φ

∫
Cφ

φ|f |

Suppose this series converges. Since 0 ≤ φ ≤ 1, φ|f | = |φf |, and thus by Exercise 3-6,∣∣∣∣∣
∫
Cφ

φf

∣∣∣∣∣ ≤
∫
Cφ

|φf | =
∫
Cφ

φ|f |

so the series ∑
φ∈Φ

∣∣∣∣∣
∫
Cφ

φf

∣∣∣∣∣
converges absolutely. This means it is independent of our ordering of Φ. Moreover, we will
show that this value is also independent of our choices of Φ and O, allowing us to define
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this value without reference to any specific cover or partition of unity. Noe that this is only
the case if the series

∑
φ∈Φ

∫
Cφ
φ|f | converges; the convergence of

∑
φ∈Φ |

∫
Cφ
φf | is not a

sufficient condition.

Definition 3.16

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Let Φ be a partition of
unity for A subordinate to an admissible open cover O of A. For each φ ∈ Φ, let
Cφ ⊆ A be a closed rectangle such that φ = 0 outside of Cφ. Then if the series∑

φ∈ϕ

∫
Cφ

φ|f |

converges, then we say that f is extended integrable relative to Φ. Moreover, we
define the extended integral of f on A relative to Φ to be

ext
Φ

∫
A

f =
∑
φ∈ϕ

∫
Cφ

φf

Theorem 3.14

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Let Φ be a partition
of unity for A subordinate to an admissible open cover O of A. Let Ψ be another
partition of unity for A subordinate to another admissible open cover O′ of A. If f
is extended integrable relative to Φ, then it is extended integrable relative to Ψ, and

ext
Φ

∫
A

f =
∑
φ∈Φ

∫
Cφ

φf =
∑
ψ∈Ψ

∫
Cψ

ψf = ext
Ψ

∫
A

f

Proof. For each φ ∈ Φ, Cφ is compact, so by Remark 3.1, only finitely many ψ ∈ Ψ are
nonzero on Cφ. Moreover, the finite sum

∑
ψ∈Ψ ψ = 1 on Cφ ⊆ A (the subset follows since

O is admissible), so we have

∑
φ∈Φ

∫
Cφ

φ|f | =
∑
φ∈Φ

∫
Cφ

φ|f |

∑
ψ∈Ψ

ψ

 =
∑
φ∈Φ

∫
Cφ

∑
ψ∈Ψ

φψ|f | =
∑
φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f |

Now, since the left sides series converges by assumption, the right side series does as well.
Since |φψ|f || = φψ|f |, ∑

φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f |
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converges absolutely and thus we may switch the order of the sums:∑
φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f | =
∑
ψ∈Ψ

∑
φ∈Φ

∫
Cφ

φψ|f |

Now, since ψ and φ are both zero outside of a compact set, if we let R be a rectangle
containing both Cφ and Cψ, we have∫

Cφ

φψ|f | =
∫
R

φψ|f | =
∫
Cψ

φψ|f |

So ∑
ψ∈Ψ

∑
φ∈Φ

∫
Cφ

φψ|f | =
∑
ψ∈Ψ

∑
φ∈Φ

∫
Cψ

φψ|f |

By the argument we made at the beginning, the sum
∑
φ∈Φ is finite and equal to 1 on Cψ,

so we have ∑
ψ∈Ψ

∑
φ∈Φ

∫
Cψ

φψ|f | =
∑
ψ∈Ψ

∫
Cψ

ψ|f |

So we have shown that ∑
φ∈Φ

∫
Cφ

φ|f | =
∑
ψ∈Ψ

∫
Cψ

ψ|f |

so the right side converges, and thus f is extended integrable relative to Ψ. Repeating this
argument with f substituted for |f | shows that

ext
Φ

∫
A

f =
∑
φ∈Φ

∫
Cφ

φf =
∑
ψ∈Ψ

∫
Cψ

ψf = ext
Ψ

∫
A

f

By Theorem 3.14, our choice of partition is irrelevant when considering extended inte-
grability and the value of the integral, so long as f is extended integrable with respect to
some partition. Thus we may define this without reference to a particular partition.

Definition 3.17

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Then f is extended
integrable if it is extended integrable relative to some partition of unity Φ, and the
extended integral of f on A is

ext

∫
A

f = ext
Φ

∫
A

f

Theorem 3.15

If A ⊆ Rn is open and bounded, f : A→ R is bounded, and its set of discontinuities
is a set of measure zero, then f is extended integrable.
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Proof. Let Φ = {φ1, φ2, . . .} be a countable (by Remark 3.2) partition of unity subordinate
to some admissible cover O. Suppose |f | ≤M on A. Then let

Sk =

k∑
i=1

∫
Cφi

φi|f |

be the kth partial sum of the corresponding infinite series. Since φi|f | ≥ 0,∫
Cφi

φi|f | ≥ 0

for each i, and thus (Sk) is increasing. Let B be some rectangle containing A. Since Φ is
subordinate to an admissible cover, Cφ ⊆ A ⊆ B, and thus∫

B

φ =

∫
Cφ

φ

and thus

Sk =

k∑
i=1

∫
Cφi

φi|f | ≤
k∑
i=1

M

∫
Cφi

φ =M

∫
B

k∑
i=1

φ ≤M

∫
B

1 =Mv(B)

which is constant. So (Sk) is increasing and bounded above, so it is convergent and thus f
is extended integrable.

Theorem 3.16

Let A ⊆ Rn be open and Jordan-measurable. Let f : A → R be bounded, and
suppose its set of discontinuities has measure zero. Then∫

A

f = ext

∫
A

f

Proof. Note that since A is Jordan-measurable, it is bounded and thus f is extended inte-
grable by Theorem 3.15.

Let ε > 0, and let Φ be an arbitrary partition of unity subordinate to an admissible open
cover O. Let M be such that |f | ≤ M . Then by Exercise 3-22, there exists a compact
Jordan-measurable set C ⊆ A such that∫

A\C
1 <

ε

M

By Remark 3.1, the subpartition Φ′ of those φ ∈ Φ which are nonzero on C is finite. Then
we have ∣∣∣∣∫

A

f − ext

∫
A

f

∣∣∣∣ =
∣∣∣∣∣∣
∫
A

f −
∑
φ∈Φ′

∫
Cφ

φf

∣∣∣∣∣∣
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Since O is admissible, Cφ ⊆ A for each φ ∈ Φ′ and thus∫
A

φf =

∫
Cφ

φf

so that ∣∣∣∣∣∣
∫
A

f −
∑
φ∈Φ′

∫
Cφ

φf

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
A

f −
∫
A

∑
φ∈Φ′

φf

∣∣∣∣∣∣ ≤
∫
A

|f |

1−
∑
φ∈Φ′

φ


Now, we have ∑

φ∈Φ

φ = 1

on A, so we may write

∫
A

|f |

1−
∑
φ∈Φ′

φ

 =

∫
A

|f |

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′

 ≤M

∫
A

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′


Let Ψ be the collection of φ ∈ Φ such that φ /∈ Φ′. In other words, Ψ is the collection of φ
which are zero on C. Then

M

∫
A

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′

 =M

∫
A

∑
ψ∈Ψ

ψ

Since the ψ ∈ Ψ are zero on C, they are only nonzero on A \ C. Thus

M

∫
A

∑
ψ∈Ψ

ψ ≤M

∫
A\C

∑
ψ∈Ψ

ψ ≤M

∫
A\C

1 < ε

So ∫
A

f = ext

∫
A

f

3.6 Change of Variables

Consider the ”u-substitution” strategy employed in single variable calculus. If u : [a, b] → R
is a continuously differentiable function and f : R → R is continuous, then let F be such
that F ′ = f . By the chain rule, (F ◦ u)′ = (f ◦ u)u′. Thus∫ u(b)

u(a)

f =

∫ u(b)

u(a)

F ′ = F (u(b))− F (u(a)) =

∫ b

a

(F ◦ u)′ =
∫ b

a

(f ◦ u)u′

For instance, this strategy could be used computationally as follows:∫ 3

0

2x sin(x2) dx =

∫ 9

0

sinudu = cos 0− cos 9 = 1− cos 9
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Claim

Let u : [a, b] → R be continuously differentiable and injective. Let f : R → R be
continuous. Then ∫

u(a,b)

f =

∫
(a,b)

(f ◦ u)|u′|

Proof. Since u is continuous and injective, it is strictly monotone. Suppose it is
strictly increasing. Then |u′| = u′ and u(b) > u(a), so u(a, b) = (u(a), u(b)) and the
claim follows directly from the equality above.

If u is decreasing, then |u′| = −u′, and u(b) < u(a), so that u(a, b) = (u(b), u(a)).
Thus ∫

u(a,b)

f =

∫ u(a)

u(b)

f = −
∫ u(b)

u(a)

f =

∫ b

a

−(f ◦ u)u′ =
∫ b

a

(f ◦ u)|u′|

This method is invaluable for computational calculus, which motivates the development
of an equivalent technique in multiple dimensions. We will do so by first proving it for linear
transformations.

Lemma 3.17

Let A ⊆ Rn be open and let u : A→ Rn be injective and continuously differentiable
with detu′(x) ̸= 0 on A. Suppose there exists an admissible cover O for A such that
for all U ∈ O and f : U → R integrable it is the case that

ext

∫
u(U)

f = ext

∫
U

(f ◦ u)|detu′|

Then

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu′|

Proof. The collection U = {u(O)}O∈O is an open cover for u(A), so we may pick a partition
of unity Φ for u(A) subordinate to U . Suppose that Uφ ∈ U contains Cφ for each φ. Then
we have

ext

∫
u(A)

f =
∑
φ∈Φ

∫
Uφ

φf

=
∑
φ∈Φ

∫
u−1(Uφ)

(φ ◦ u)(f ◦ u)|detu′|

=
∑
φ∈Φ

∫
A

(φ ◦ u)(f ◦ u)|detu′|
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Let Ψ be the partition of unity for A given by {φ ◦ u}φ∈Φ. Then Ψ is thus subordinate to
O. Then∑

φ∈Φ

∫
A

(φ ◦ u)(f ◦ u)|detu| =
∑
ψ∈Ψ

∫
A

ψ(f ◦ u)|detu′| = ext

∫
A

(f ◦ u)|detu|

Lemma 3.18

Let A ⊆ Rn be open and let u : A → Rn be linear, with detu(x) ̸= 0 on A. Then if
f : u(A) → R is integrable, we have

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu|

Proof. First note that by Exercise 3-35, if f is the constant function 1 and U is an open
rectangle, then ∫

u(U)

1 = v(u(U)) = |detu|v(U) = |detu|
∫
U

1 =

∫
U

|detu|

We can make an analogous argument for u−1, so for any open rectangle U we have∫
u−1(U)

1 =

∫
U

|detu−1| =⇒
∫
U

1 =

∫
u−1(U)

|detu|

Now suppose f is arbitrary. Let V ⊆ u(A) be a rectangle, and let P be a partition of V .

L(f,P) =
∑
S∈P

v(S)mS(f)

=
∑
S∈P

mS(f)

∫
S

1

=
∑
S∈P

mS(f)

∫
u−1(intS)

|detu|

=
∑
S∈P

∫
u−1(intS)

mS(f)|detu|

For each S ∈ P, define f |S : S → R to be the constant function f |S(x) = mS(f). Then we
have ∑

S∈P

∫
u−1(intS)

mS(f)|detu| =
∑
S∈P

∫
u−1(intV )

(f |S ◦ u)|detu|

≤
∑
S∈P

∫
u−1(intS)

(f ◦ u)|detu|

≤
∫
u−1(V )

(f ◦ u)|detu|
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So
∫
u−1(V )

(f ◦ u)|detu| is an upper bound for all L(f,P), but
∫
V
f is the least such upper

bound, so we have ∫
V

f ≤
∫
u−1(V )

(f ◦ u)|detu|

An analogous argument shows the reverse inequality, so we conclude that∫
V

f =

∫
u−1(V )

(f ◦ u)|detu|

for every V ⊆ u(A) and any f .

Since A is open, and u is a continuous injection, u(A) is open. So for each α ∈ u(A), we
may pick Vα ⊆ u(A) containing u(A). Then the collection V = {Vα}α∈u(A) is an admissible
open cover for u(A), and the hypothesis of Lemma 3.17 applies. So we conclude that

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu|

We now progress to the general case. To do so, we will need to replace u with u′ (which
are equal in the linear case).

Theorem 3.19

Let A ⊆ Rn be open and let u : A → Rn be one-to-one and continuously dif-
ferentiable. Moreover, suppose that detu′(x) ̸= 0 on A. Then for any integrable
f : u(A) → R, we have

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu′|

We first prove one simplifying lemma.

Lemma 3.20

Suppose that the conclusion of Theorem 3.19 holds for two change-of-variable func-
tions g : A → Rn and h : B → Rn. Moreover, assume that g(A) ⊆ B. Then the
theorem holds for h ◦ g.

Proof. We have

ext

∫
(h◦g)(A)

f = ext

∫
g(A)

(f ◦ h)|deth′|

= ext

∫
A

(f ◦ h ◦ g)[|deth′| ◦ g]|det g′|

= ext

∫
A

(f ◦ (h ◦ g))|det(h ◦ g)′|

Returning to the main proof,
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Proof of Theorem 3.19. We induct on n. For the base case n = 1, we can form an admissible
open cover of A by open intervals, and the result follows from the discussion beginning this
section combined with Lemma 3.17.

Suppose the theorem is proved for n − 1. Then for n, we will attempt to find an open set
Uα ⊆ A containing α for each α ∈ A such that∫

u(Uα)

f =

∫
Uα

(f ◦ u)|detu′|

Then the theorem follows from Lemma 3.17. Thus, fix some α ∈ A. Then

(Du(α)−1 ◦ u)′(α) = u(α)−1

′ u′(α) = I

Note that Lemma 3.18 implies that the theorem is true for Du(α)−1. If the theorem is true
for (Du(α)−1 ◦ u), then it follows from Lemma 3.20 that it is true for u. So we may assume
that Du(α) = id.

Define the function h : A→ Rn by

h(x) = (u1(x), . . . , un−1(x), xn)

Then h′(α) = I. h is continuously differentiable, so there exists an open set U ′ ⊆ A
containing α where h is injective and invertible. Then define k : h(U ′) → R by

k(x) = (x1, . . . , xn−1, un(h
−1(x)))

so that u = k ◦ h. Both of these functions only change at most n − 1 variables, so we will
be able to apply the inductive hypothesis. Afterward, we would now like to apply Lemma
3.20; however, we cannot be assured that k is injective with k′ invertible.

To remedy this, note that

(gn ◦ h−1)′(α) = (gn)′(h−1(h(α))) [h′(h−1(h(α)))]−1︸ ︷︷ ︸
Inverse Function Thm

= (gn)′(α)[h′(α)]−1 = (gn)′(α)

So Dn(g
n ◦ h−1)(h(α)) = Dng

n(α) = 1, and thus k′(h(α)) = I. So we can find an open set
V ⊆ h(U) containing h(α) where k is injective and k′ is invertible. We can then restrict h
to U = k−1(V ), and then h, k satisfy the hypotheses of Lemma 3.20.

We now prove that the theorem applies to h. The proof for k is easier. Pick an open
rectangle W ⊆ U , and suppose W = D × [an, bn], with D ⊆ Rn−1. Because h does not
change the n-th coordinate, Fubini’s Theorem gives∫

h(W )

1 =

∫
[an,bn]

(∫
h(D×{xn})

1 dx1 . . . dxn−1

)
dxn

For each xn, define hxn : D → Rn−1 by

hxn(x1, . . . , xn−1) = h(u1(x1, . . . , xn), . . . , un−1(x1, . . . , xn))
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so that
deth′xn(x1, . . . , xn−1) = deth′(x1, . . . , xn) ̸= 0

Moreover, hxn is injective, so the inductive hypothesis applies. We also have∫
h(D×{xn})

1 dx1 . . . dxn−1 =

∫
hxn (D)

1

Then using the inductive hypothesis, we have∫
h(W )

1 =

∫
[an,bn]

(∫
h(D×{xn})

1 dx1 . . . dxn−1

)
dxn

=

∫
[an,bn]

(∫
hxn (D)

1

)
dxn

=

∫
[an,bn]

(∫
D

|deth′xn |
)
dxn

=

∫
[an,bn]

(∫
D

|deth′(x1, . . . , xn)|
)
dxn

=

∫
W

|deth′|

From the proof for Lemma 3.18, it is sufficient to prove the theorem for the constant function
1. So we conclude that the theorem holds for h. A similar argument holds for k. By Lemma
3.20, it holds for u.

We will now prove a simple version of an important theorem.

Theorem 3.21: Sard’s Theorem

Suppose g : A→ Rn is continuously differentiable, with A ⊆ Rn open. Let B = {x ∈
A : det g′(x) = 0} be the set of critical values of g. Then g(B) has measure zero.

Proof. Suppose that U ⊆ A is a closed n-cube with side length ℓ. Since U is compact, each
Djg

i is uniformly continuous on U . Thus there exists N large enough such that when U is
divided into Nn subcubes, then for any x, y which are both in the same subcube and any
i, j we have

|Djg
i(y)−Djg

i(x)| < ε

n2

Fix some subcube S and some x ∈ S. Define f(z) = Dg(x)(z) − g(z), so that its partial
derivatives are bounded:

|Djf
i(z)| = |Djg

i(x)−Djg
i(z)| < ε

n2

Then by Lemma 2.10, for any y ∈ S we have

|Dg(x)(y − x)− g(y) + g(x)| = |f(y)− f(x)| < ε|y − x| ≤ ε
√
n
ℓ

N
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We can repeat this for each x, so this holds whenever x, y are in the same subcube. If
S∩B ̸= ∅, then fix x ∈ S∩B. Then we have det g′(x) = 0, soDg(x)(S) is a subset of an n−1
dimensional subspace V of Rn. Then every point {g(y)− g(x) : y ∈ S} is contained within
ε
√
n(ℓ/N) of V , meaning that g(S) is contained within ε

√
nℓ/N of V + g(x). Moreover,

each Djg
i is uniformly continuous on S, so they are boudned by some M . Then by Lemma

2.10, we have

|g(x)− g(y)| < n2M |x− y| ≤ n2M
√
n
ℓ

N

Thus g(S) lies within a cylinder with height 2ε
√
nℓ/N and base given by a n−1-sphere with

radius n2M
√
nℓ/N , which has volume bounded by C(ℓ/N)nε for an appropriate constant

C. Then the total volume of these cylinders (which covers g(U ∩ B) for each S is Cℓnε.
So g(U ∩ B) has measure zero. Now, we can produce a cover of A (countable by Exercise
3-13) and repeat this process, so g(B) is the countable union of measure zero sets, and thus
measure zero.

Sard’s Theorem, among many other applications, allows us prove Theorem 3.19 without
the assumption detu′(x) ̸= 0. This is the content of Exercise 3-39.
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Chapter 4

Integration on Chains

4.1 Algebraic Preliminaries

In this chapter, we will begin to develop our theory of integration over objects with richer
structure than pure subsets of Rn. This will allow us to define integrals over parameterized
objects, such as line integrals and surface integrals, and we will prove a version of Stokes’
Theorem for this setting. We will also set th egroundwork for the development of a similar
theory for manifolds in Chapter 5.

Definition 4.1

Let V be a real vector space, and let V k = V × . . . × V k times. A multilinear
function T : V k → R is a function such that, for each 1 ≤ i ≤ k and each v =
(v1, . . . , vk) ∈ V k the function T iv : V → R defined by

T iv(y) = T (v1, . . . , y︸︷︷︸
i

, . . . , vk)

is linear. Such a function is also called a k-tensor on V .

Definition 4.2

The set of all k-tensors on a fixed vector space V is denoted Jk(V ). Jk(V ) is a real
vector space if the operations are defined as

(S + T )(v1, . . . , vk) = S(v1, . . . , vk) + T (v1, . . . , vk)

(aS)(v1, . . . , vk) = a(S(v1, . . . , vk))
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Definition 4.3

Suppose S ∈ Jk(V ) and T ∈ Jk(V ). Then the tensor product of S and T is a
k + l-tensor S ⊗ T defined by

(S ⊗ T )(v1, . . . , vk, vk+1, . . . , vk+l) = S(v1, . . . , vk) · T (vk+1, . . . , vk+l)

Note that the tensor product is clearly not commutative. Because tensors are maps into
R, we may use properties of R to derive similar properties for tensors.

Proposition 4.1

The following are properties of the tensor product:

1. (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T

2. S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2

3. (aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T )

4. S ⊗ (T ⊗ U) = (S ⊗ T )⊗ U

Proof. 1. Let S1, S2 ∈ Jk(V ) and T ∈ Jl(V ). Let v = (v1, . . . , vk+l) ∈ V k+l. Let
vk = (v1, . . . , vk) and v

l = (vk+1, . . . , vk+l). Then

((S1 + S2)⊗ T )(v) = (S1 + S2)(v
k) · T (vl)

= (S1(v
k) + S2(v

k)) · T (vl)
= S1(v

k) · T (vl) + S2(v
k) · T (vl)

= (S1 ⊗ T )(v) + (S2 ⊗ T )(v)

= (S1 ⊗ T + S2 ⊗ T )(v)

2. Let S ∈ Jk(V ) and T1, T2 ∈ Jl(V ). Using the same notation,

(S ⊗ (T1 + T2))(v) = S(vk) · (T1 + T2)(v
l)

= S(vk) · (T1(vl) + T2(v
l))

= S(vk) · T1(vl) + S(vk) · T2(vl)
= (S ⊗ T1)(v) + (S ⊗ T2)(v)

= (S ⊗ T1 + S ⊗ T2)(v)

3. Let a ∈ R, S ∈ Jk(V ), and T ∈ Jl(V ). Then

((aS)⊗ T )(v) = (aS)(vk) · T (vl)
= a(S(vk) · T (vl))
= a(S ⊗ T (v))

= S(vk) · a(T (vl))
= (S ⊗ (aT ))(v)
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4. Let S ∈ Jk(V ), T ∈ Jl(V ), and U ∈ Jm(V ). Let v = (v1, . . . , vk+l+m), and let
vk = (v1, . . . , vk), v

l = (vk+1, . . . , vk+l), and v
m = (vk+l+1, . . . , vk+l+m). Then

(S ⊗ (T ⊗ U))(v) = S(vk) · (T ⊗ U)(vl, vm)

= S(vk) · (T (vl) · U(vm))

= (S(vk) · T (vl)) · U(vm)

= (S ⊗ T )(vk, vl) · U(vm)

= ((S ⊗ T )⊗ U)(v)

Since the tensor product is associative, we will drop the parentheses in general. Note
that we already know how to describe J1(V ): since it is the set of all linear maps from
V → R, it is precisely the dual space V ∗. We can use this to help us understand higher
order Jk(V ).

Theorem 4.2

Let v1, . . . , vn be a basis for V . Let φ1, . . . , φn be the natural dual basis given by
φi(vj) = δij . Then the set of k-tensors of the form

φi1 ⊗ . . .⊗ φik

where 1 ≤ ij ≤ n for each index, is a basis of Jk(V ).

Proof. We first show that this collection spans Jk(V ).

Let T ∈ Jk(V ). Suppose that w1, . . . , wk ∈ V , and wi =
∑n
j=1 ai,jvj . Then

T (w1, . . . , wk) = T (

n∑
j1=1

a1,j1vj1 , w2, . . . , wk)

=

n∑
j1=1

a1,j1T (vj1 , w2, . . . , wk)

...

=

n∑
j1=1

. . .

n∑
jk=1

a1,j1 · . . . · ak,jkT (vj1 , . . . , vjk) (∗)

Now, we have

φi1 ⊗ . . .⊗ φik(vj1 , . . . , vjk) = δi1,j1 · . . . · δik,jk =

{
1, i1 = j1, . . . , ik = jk

0
(∗∗)
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Since φi1 ⊗ . . .⊗ φik ∈ Jk(V ), we can use (∗) and (∗∗) to conclude that

φi1 ⊗ . . .⊗ φik(w1, . . . , wk) =

n∑
j1=1

. . .

n∑
jk=1

a1,j1 · . . . · ak,jk(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vjk)

=

n∑
j1=1

. . .

n∑
jk−1=1

a1,j1 · . . . · ak−1,jk−1
ak,ik(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vik)

=
...

= a1,i1 · . . . · ak,ik

Substituting into (∗), we have

T (w1, . . . , wk) =

n∑
j1=1

. . .

n∑
jk=1

T (vj1 , . . . , vjk)(φj1 ⊗ . . .⊗ φjk)(w1, . . . , wk)

So

T =

n∑
j1=1

. . .

n∑
jk=1

T (vj1 , . . . , vjk)(φj1 ⊗ . . .⊗ φjk)

so T is a linear combination of the φj1 ⊗ . . .⊗ φjk .

To show that the φi1 ⊗ . . .⊗ φik are linearly independent, suppose that

n∑
i1=1

. . .

n∑
ik=1

ai1,...,ik(φi1 ⊗ . . .⊗ φik) = 0

Then plugging in some combination of basis vectors (vj1 , . . . , vjk), by (∗∗) we have

0 =

n∑
i1=1

. . .

n∑
ik=1

ai1,...,ik(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vjk) = aj1,...,jk

Repeating this with each combination of basis vectors shows that the linear combination is
trivial. So the φi1 ⊗ . . .⊗ φik are linearly independent and thus a basis.

Recall that if T : V → W is a linear transformation, then its adjoint T ∗ : W ∗ → V ∗ is
the linear operator defined such that for any Φ ∈ W ∗ it is the case that T ∗(Φ) = Φ ◦ T .
Then we can extend this notion to arbitrary Jk(V ).

Definition 4.4

Let f : V →W be linear. Then define the (k-tensor) pullback of f to be the linear
transformation f∗ : Jk(W ) → Jk(V ) by

(f∗(T ))(v1, . . . , vk) = T (f(v1), . . . , f(vk))

where T ∈ Jk(W ) and v1, . . . , vk ∈ V .
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Proposition 4.3

If S ∈ Jk(V ) and T ∈ Jl(V ), and f : V →W , then

f∗(S ⊗ T ) = f∗S ⊗ f∗T

Proof. Let vk = (v1, . . . , vk) ∈ V k and vl = (vk+1, . . . , vk+l) ∈ V l. Then

f∗(S ⊗ T )(vk, vl) = (S ⊗ T )(f(v1), . . . , f(vk), f(vk+1), . . . , f(vk+l))

= S(f(v1), . . . , f(vk)) · T (f(vk+1), . . . , f(vk+l))

= f∗S(vk) · f∗T (vl)
= (f∗S ⊗ f∗T )(vk, vl)

An example of a k-tensor which is not a linear functional is the dot product on Rn, which
is a 2-tensor. We can use this language to make an equivalent definition for arbitrary real
inner products.

Definition 4.5

An inner product on a real vector space V is a 2-tensor T ∈ J2(V ) which satisfies
the following:

• T (v, w) = T (w, v) (symmetric)

• T (v, v) > 0 if v ̸= 0 (positive definite)

We can similarly reproduce some theorems from linear algebra.

Definition 4.6

A basis v1, . . . , vn for a real vector space V is orthonormal with respect to an inner
product T ∈ J2(V ) if T (vi, vj) = δij .

Theorem 4.4

For any inner product T on V , there is an orthonormal basis with respect to T .

Proof. Pick a basis and apply Gram-Schmidt.

Corollary 4.5

If T is an inner product on V , then there exists an isomorphism f : Rn → V such
that T (f(x), f(y)) = x · y, or equivalently so that f∗T is the dot product on Rn.
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Proof. Let v1, . . . , vk be an orthonormal basis for T . Define f by f(ei) = vi. Then if
x = (a1, . . . , an) and y = (b1, . . . , bn), we have

T (f(x), f(y)) = T (

n∑
i=1

aivi,

n∑
j=1

bjvj)

=

n∑
i=1

n∑
j=1

aibjT (vi, vj)

=

n∑
i=1

n∑
j=1

aibjδij

=

n∑
i=1

aibi

= x · y

Suppose we consider a square n × n matrix as a vector whose entries are column vec-
tors. That is, we will associate Mn×n(R) with (Rn)n. Then det : Mn×n(R) → R may be
considered as a k-tensor for Rn. Recall that one definition of the determinant defines it as
the unique alternating multilinear map with det I = 1. Let us attempt to generalize this
notion.

Definition 4.7

A k-tensor T ∈ Jk(V ) is alternating if, for every pair i < j, we have

T (v1, . . . , vk) = −T (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

In other words, switching the role of two entries also switches the sign of T .

Definition 4.8

The set of all alternating k-tensors on V is denoted Ak(V ).a

aSpivak uses the notation Λk(V ), but writes in the Addenda that Ωk(V ) should be used instead.
This definition, if V is finite dimensional, is naturally isomorphic to

∧
(V ∗). See here for why neither

of these are quite accurate.

One can quickly verify that Ak(V ) is a subspace of Jk(V ). The close relationship of
alternating tensors with signed quantities will help us to define oriented objects. Due to
this, it is of interest to us to investigate how to consistently represent elements of Ak(V ).

Recall that the sign of a permutation σ, denoted sgnσ, is +1 if σ is even (that is, it is
composed of an even number of transpositions), and −1 if it is odd.
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Definition 4.9

Let T ∈ Jk(V ). Then Alt(T ) ∈ Jk(V ) is defined by

Alt(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k))

We can see Alt as a kind of projection from Jk(V ) into Ak(V ):

Theorem 4.6

Let V be a real vector space.

1. If T ∈ Jk(V ), then Alt(T ) ∈ Ak(V ).

2. If ω ∈ Ak(V ), then Alt(ω) = ω.

3. If T ∈ Jk(V ), then Alt(Alt(T )) = Alt(T ).

Proof. 1. Fix i, j, and let (i, j) be the transposition of i and j. For each σ ∈ Sk, write
σ′ = σ · (i, j). We have Sk(i, j) = Sk. So

Alt(T )(v1, . . . , vj , . . . , vi, . . . , vk) = Alt(T )(v(i,j)(1), . . . , v(i,j)(k))

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ((i,j)(1)), . . . , vσ((i,j)(k)))

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ′(1), . . . , vσ′(k))

=
1

k!

∑
σ′∈Sk·(i,j)

− sgnσ′ · T (vσ′(1), . . . , vσ′(k))

= − 1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k))

= −Alt(T )(v1, . . . , vk)

2. Let ω be alternating. For a transposition σ = (i, j), we have

ω(vσ(1), . . . , vσ(k)) = −ω(v1, . . . , vk) = sgnσ · ω(v1, . . . , vk) (∗)

For arbitrary permutations σ, σ can be decomposed into a product of transpositions
σ1, . . . , σm. Since sgn(σ1 ◦ . . .◦σm) = sgnσ1 · . . . · sgnσm, we simply apply (∗) m times
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to see that (∗) holds when σ is arbitrary. Now,

Alt(ω)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

ω(vσ(1), . . . , vσ(k))

=
1

k!

∑
σ∈Sk

sgnσ · sgnσ · ω(v1, . . . , vk)

=
1

k!

∑
σ∈Sk

ω(v1, . . . , vk)

= ω(v1, . . . , vk)

3. Follows from 1) and 2).

One way of describing alternating tensors would be to produce a basis of Ak(V ). Note
that we cannot necessarily apply Theorem 4.2. This is because if ω ∈ Ak(V ) and η ∈ Ak(V ),
it is not necessarily the case that ω⊗ η is alternating (consider a transposition which swaps
entries in the ω and η domains). Thus, we will need to define an analogous product which
takes alternating tensors to alternating tensors.

Definition 4.10

Let ω ∈ Ak(V ) and η ∈ Al(V ). Then the wedge product of ω and η, denoted
ω ∧ η ∈ Ak(V ), is defined by

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η)

We can prove properties of ∧ using similar methods as we did for ⊗.

Proposition 4.7

Let ω, ω1, ω2 ∈ Ak(V ), η, η1, η2 ∈ Al(V ), and a ∈ R. Then

1. (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η

2. ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2

3. (aω) ∧ η = ω ∧ (aη) = a(ω ∧ η)

Proof. 1. Let vk = (v1, . . . , vk) ∈ V k and vl = (vk+1, . . . , vk+l) ∈ V l. Write σ(vk, vl) =
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(vσ(1), . . . , vσ(k+l)). Then

[(ω1 + ω2) ∧ η](vk, vl) =
(k + l)!

k!l!
Alt((ω1 + ω2)⊗ η)(vk, vl)

=
(k + l)!

k!l!
Alt(ω1 ⊗ η + ω2 ⊗ η)(vk, vl)

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω1 ⊗ η + ω2 ⊗ η)(σ(vk, vl))

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω1 ⊗ η(σ(vk, vl)) + ω2 ⊗ η(σ(vk, vl)))

=
(k + l)!

k!l!
(Alt(ω1 ⊗ η) + Alt(ω2 ⊗ η))

= ω1 ∧ η + ω2 ∧ η

2. Analogous.

3. We prove the first and third expressions are equal. The other equality is proved
analogously. Then

((aω) ∧ η)(vk, vl) = (k + l)!

k!l!
Alt((aω)⊗ η)(vk, vl)

=
(k + l)!

k!l!
Alt(a(ω ⊗ η))(vk, vl)

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · a(ω ⊗ η)(σ(vk, vl))

= a
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω ⊗ η)(σ(vk, vl))

= a
(k + l)!

k!l!
Alt(ω ⊗ η)(vk, vl)

= a(ω ∧ η)(vk, vl)

We can also take advantage of the alternating nature of these tensors to prove additional
properties.

Proposition 4.8

Let ω ∈ Ak(V ) and η ∈ Al(V ). Let f : V → V be linear. Then

1. ω ∧ η = (−1)kl(η ∧ ω)

2. f∗(ω ∧ η) = f∗(ω) ∧ f∗(η).

Proof. 1. Let v = (v1, . . . , vk+l) ∈ V k+l. Let σ∗ ∈ Sk+l be a permutation which sends
{1, 2, . . . , k + l} to {k + l, 1, 2, . . . , k + l − 1}. Note that this can be achieved using
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k+ l−1 permutations (as (k+ l, k+ l−1) · (k+ l, k+ l−2) · . . . · (k+ l, 1)). Then (σ∗)l

is the permutation which takes {1, 2, . . . , k + l} to {k + 1, . . . , k + l, 1, . . . , k}, and

sgn(σ∗)l = (sgn(σ∗))l = ((−1)k+l−1)l = (−1)kl+l
2−l = (−1)kl

Then we have

(ω ∧ η)(v) = (k + l)!

k!l!
Alt(ω ⊗ η)(v)

=
(k + l)!

k!l!

1

(k + l)!

∑
σ∈Sk+l

sgnσ · (ω ⊗ η)(vσ(1), . . . , vσ(k), vσ(k+1), . . . , vσ(k+l))

= (−1)kl
(k + l)!

k!l!

1

(k + l)!

∑
σ·(σ∗)l

sgn(σ) · (ω ⊗ η)(vσ(k+1), . . . , vσ(k+l), vσ(1), . . . , vσ(k))

= (−1)kl
(k + l)!

k!l!

1

(k + l)!

∑
σ

sgn(σ) · (η ⊗ ω)(vσ(1), . . . , vσ(k), vσ(k+1), . . . , vσ(k+l))

= (−1)kl
(k + l)!

k!l!
Alt(η ⊗ ω)(v)

= (−1)kl(η ∧ ω)(v)

2. This follows from Proposition 4.3:

f∗(ω ∧ η) = (k + l)!

k!l!
Alt(f∗(ω ⊗ η))

=
(k + l)!

k!l!
Alt(f∗ω ∧ f∗η)

= f∗ω ∧ f∗η

We can also prove associativity of the wedge product:

Theorem 4.9

1. Let S ∈ Jk(V ), T ∈ Jl(V ), and suppose Alt(S) = 0. Then

Alt(S ⊗ T ) = Alt(T ⊗ S) = 0

2. Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗Alt(η ⊗ θ))

3. If ω ∈ Ak(V ), η ∈ Al(V ), and θ ∈ Am(V ), then

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) = (k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

Proof. 1. Let G < Sk+l be the set of all permutations which fix the k-th through k+ l-th
elements. This is a subgroup of Sk+l, so we may consider the set of right cosets Gσ′
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for σ′ ∈ Sk+l. Let vk = (v1, . . . , vk) ∈ V k, vl = (vk+1, . . . , vk+l), and let σ(v) =
(vσ(1), . . . , vσ(k+l)). Then

Alt(S ⊗ T )(vk, vl) =
1

(k + l)!

∑
σ∈Sk+l

sgnσ · (S ⊗ T )(σ(vk, vl))

=
1

(k + l)!

∑
Gσ′

∑
σ∈G

sgn(σσ′) · S(σσ′(vk)) · T (σσ′(vl))

=
1

(k + l)!

∑
Gσ′

sgn(σ′)T (σ′(vl))
∑
σ∈G

sgn(σ) · S(σσ′(vk))

Write σ′(vk) = wk. Noting that G ∼= Sk, we have∑
σ∈G

sgn(σ) · S(σσ′(vk)) =
∑
σ∈Sk

sgn(σ) · S(σ(wk)) = k! Alt(S)(wk) = 0

So Alt(S ⊗ T ) = 0 and similarly Alt(T ⊗ S) = 0.

2. Noting that Alt is linear, we know that

Alt(Alt(ω⊗ η)−ω⊗ η) = Alt(Alt(ω⊗ η))−Alt(ω⊗ η) = Alt(ω⊗ η)−Alt(ω⊗ η) = 0

Applying part 1),

0 = Alt((Alt(ω ⊗ η)− ω ⊗ η)⊗ θ) = Alt(Alt(ω ⊗ η)⊗ θ)−Alt(ω ⊗ η ⊗ θ)

so
(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ θ ⊗ η)

and the other equality is similar.

3. We have

(ω ∧ η) ∧ θ = (k + l +m)!

(k + l)!m!
Alt((ω ∧ η)⊗ θ)

=
(k + l +m)!

(k + l)!m!
Alt(

(k + l)!

k!l!
Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

As a result, we will also drop the parentheses when discussing wedge products.

Theorem 4.10

Let V be a real vector space with basis v1, . . . , vn, and let φ1, . . . , φn be the induced
dual basis. Then the collection of all k-tensors of the form

φi1 ∧ . . . ∧ φik

where 1 ≤ i1 < . . . < ik ≤ n, is a basis for Ak(V ).
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Proof. Let ω ∈ Ak(V ). Then ω ∈ Jk(V ). By Theorem 4.2, the collection of φj1 ⊗ . . .⊗ φjk
is a basis for Jk(V ) and we have

ω =
∑

aj1,...,jkφj1 ⊗ . . .⊗ φjk

Since ω is alternating, we have

ω = Alt(ω) =
∑

aj1,...,jk Alt(φj1 ⊗ . . .⊗ φjk) =
∑

aj1,...,jk
(nk)!

(k!)n
φj1 ∧ . . . ∧ φjk

Let j′1, . . . , j
′
k be a reordering of j1, . . . , jk such that j′1 ≤ . . . ≤ j′k. This may be accomplished

by a series of transpositions, each of which changes only the sign of the wedge product by
Proposition 4.8. Moreover, if any two of the φj′1 are equal, then the entire wedge product is
zero. So we may assume j′1 < . . . < j′k, and we have∑

aj1,...,jk
(nk)!

(k!)n
(−1)Mj1,...,jkφj′1 ∧ . . . ∧ φj′k

So the φj′1 ∧ . . . ∧ φj′k span Ak(V ).

To show linear independence, suppose we have some linear combination

ω =
∑

aj1,...,jkφj1 ∧ . . . ∧ φjk
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Appendix A

Solutions to Selected Exercises

A.1 Chapter 1 Exercises

Exercise 1-1 Prove that |x| ≤
∑n
i=1 |xi| for any x ∈ Rn.

Proof. Let x = (x1, . . . , xn) ∈ Rn be arbitrary. For each 1 ≤ i ≤ n, let us denote by (xi)

the vector
[
0 . . . xi . . . 0

]T
, with the xi term in the ith coordinate. Then for each i,

we have the following:
|(xi)| =

√
(xi)2 = |xi|

Moreover, by construction we have x = (x1) + . . . + (xn). By repeated application of the
triangle inequality, we have

|x| = |
n∑
i=1

(xi)| ≤
n∑
i=1

|(xi)| =
n∑
i=1

|xi|

Exercise 1-2 When does equality hold for the triangle inequality?

I claim that |x+ y| = |x|+ |y| if and only if y = λx for some λ ≥ 0, or x = 0.

Proof. x = 0 clearly satisfies the triangle inequality, so assume x ̸= 0. Following the proof
of the triangle inequality given by Spivak, we already see that x, y being linearly dependent
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is certainly a necessary condition. Thus, assume that y = λx for some λ ∈ R. Then

|x+ y|2 =

n∑
i=1

(xi + yi)
2

=

n∑
i=1

(xi + λxi)
2

=

n∑
i=1

x2i + λ2x2i + 2λ

n∑
i=1

x2i

= |x|2 + |λx|2 + 2λ|x|2

When λ ≥ 0 we have

|x|2 + |λx|2 + 2λ|x| = |x|2 + 2|x||λx|+ |λx|2 = (|x|+ |λx|)2 = (|x|+ |y|)2

where equality follows by taking the square root on both sides.

When λ < 0 this becomes

|x|2 + |λx|2 + 2λ|x| = |x|2 +−2|x||λx|+ |λx|2 = (|x| − |λx|)2 = (|x| − |y|)2

By taking square roots on both sides, we have |x + y| = |x| − |y| ̸= |x| + |y| where the
inequality holds since x ̸= 0, λ ̸= 0 means that |y| ̸= 0. Thus y = λx for λ ≥ 0, or x = 0 is
a necessary and sufficient condition.

Exercise 1-3 Prove that |x− y| ≤ |x|+ |y| for any x, y ∈ Rn.

Proof. Let x, y ∈ Rn be arbitrary. Then

|x− y| = |x+ (−1 ∗ y)| ≤ |x|+ |(−1) ∗ y| = |x|+ | − 1||y| = |x|+ |y|

Exercise 1-4 Prove that ||x| − |y|| ≤ |x− y|.

Proof. We expand:

|x− y|2 =

n∑
i=1

(xi − yi)
2

=

n∑
i=1

x2i +

n∑
i=1

y2i − 2

n∑
i=1

xiyi

≥ |x|2 + |y|2 − 2|x||y|(by Cauchy-Schwarz)

= (|x| − |y|)2

Taking square roots on both sides (using the fact that it is order-preserving), we get

|x− y| ≥ ||x| − |y||

73



Exercise 1-5 The quantity |y − x| is called the distance between x and y. Prove
and interpret geometrically the inequality |z − x| ≤ |z − y|+ |y − x|.

Proof. Noting that |z − x| = |(z − y) + (y − x)|, this is a simple application of the triangle
inequality. This says that the sum of the lengths of any two sides of a triangle must be
greater than the length of the third.

Exercise 1-6 Let f, g be integrable on [a, b].

(a) Prove that |
∫ b
a
fg| ≤ (

∫ b
a
f2)

1
2 (
∫ b
a
g2)

1
2 .

(b) If equality holds, must it be true that f = λg for some λ ∈ R? What if f, g are
required to be continuous?

(c) Show that the Cauchy-Schwarz inequality is a special case of (a).

(a) Proof. We consider the cases 0 =
∫ b
a
(f − λg)2 for some λ ∈ R, and 0 <

∫ b
a
(f − λg)2

for all λ.

Case 1: Here, we have

0 =

∫ b

a

(f − λg)2 =

∫ b

a

f2 − 2λfg + λ2g2 =

∫ b

a

f2 − 2λ

∫ b

a

fg + λ2
∫ b

a

g2

if λ = 0, then f (and thus fg) is zero on a set of measure 1, immediately making both
sides of the inequality 0. Thus assume that λ ̸= 0, which implies∫ b

a

fg =
1

2λ

∫ b

a

f2 +
λ

2

∫ b

a

g2

so (∫ b

a

fg

)2

=

(
1

2λ

∫ b

a

f2

)2

+

(
λ

2

∫ b

a

g2

)2

+
1

2

(∫ b

a

f2

)(∫ b

a

g2

)

≤ 1

2

(∫ b

a

f2

)(∫ b

a

g2

)

≤

(∫ b

a

f2

)(∫ b

a

g2

)

Taking the square root on both sides gives |
∫ b
a
fg| ≤ (

∫ b
a
f2)

1
2 (
∫ b
a
g2)

1
2 , as desired.

Case 2: Here, we have∫ b

a

(f − g)2 > 0 =⇒
∫ b

a

f2 +

∫ b

a

g2 > 2

∫ b

a

fg
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Squaring both sides,(∫ b

a

fg

)2

<

(
1

2

∫ b

a

f2

)
+

(
1

2

∫ b

a

g2

)
+

1

2

(∫ b

a

f2

)(∫ b

a

g2

)
and the rest of the proof is identical to the first case.

(b) Proof. Examining the proof of part (a), we must have 0 =
∫ b
a
(f − λg)2 for equality

to hold. This implies f − λg is 0 almost everywhere, so f = λg almost everywhere.
However, it may not be the case that f = λg everywhere (consider f = 0 and g = 0
except at countably many points). When f, g are required to be continuous, then they
cannot differ on a set of measure zero, so equality implies f = λg for some λ ∈ R.

(c) Proof. Let x, y ∈ Rn be arbitrary. Define f : [0, n) → R such that f = xi on the
interval [i− 1, i) and define g similarly for y. Then∫ n

0

f2 =
n∑
i=1

x2i = |x|2,
∫ n

0

g2 =
n∑
i=1

y2i = |y|2,
∫ n

0

fg =

n∑
i=1

xiyi

Then by part a,∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ =
∣∣∣∣∫ n

0

fg

∣∣∣∣ ≤
(∫ b

a

f2

) 1
2
(∫ b

a

g2

) 1
2

= |x||y|

Exercise 1-7 A linear transformation T : Rn → Rn is norm preserving if |T (x)| =
|x| for all x ∈ Rn, and inner product preserving if ⟨Tx, Ty⟩ = ⟨x, y⟩ for all
x, y ∈ Rn.

(a) Prove that T is norm preserving if and only if T is inner product preserving.

(b) Prove that such a linear transformation T is one-to-one and T−1 is of the same
sort.

(a) Proof. ( =⇒ ) Suppose T is norm preserving. Then for any x, y ∈ Rn, we use bilin-
earity of the inner product:

⟨Tx, Ty⟩ = ⟨Tx− Ty + Ty, Ty⟩
= ⟨Tx− Ty, Ty⟩+ ⟨Ty, Ty⟩
= ⟨Tx− Ty, Ty − Tx+ Tx⟩+ |Ty|
= ⟨Tx− Ty, Ty − Tx⟩+ ⟨Tx− Ty, Tx⟩+ |Ty|
= |Tx| − ⟨Ty, Tx⟩+ |Ty| − |Tx− Ty|

which gives

⟨Tx, Ty⟩ = 1

2
(|Tx|+ |Ty| − |T (x− y)|) (by linearity of T )

=
1

2
(|x|+ |y| − |x− y|) (by norm preserving)

= ⟨x, y⟩
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where the last line follows through a similar calculation as the first part.

( ⇐= ) Suppose T is inner product preserving. Then for any x ∈ Rn,

|Tx| = ⟨Tx, Tx⟩ = ⟨x, x⟩ = |x|

where the second equality follows since T preserves inner products.

(b) Proof. Suppose T is inner product/norm preserving. Suppose Tx = Ty. Since T is
linear, we have T (x − y) = 0. So |T (x − y)| = 0. But T is norm preserving, so
|x−y| = 0, which occurs only when x−y = 0, showing that x = y. So T is one-to-one.

Let T−1 denote the inverse of T (which exists since T is an injective endomorphism
on finite dimensional vector spaces). Then let x ∈ Rn be arbitrary. Since T is norm
preserving, we have

|T−1x| = |TT−1x| = |x|

so T−1 is norm preserving as well.

Exercise 1-8 If x, y ∈ Rn are nonzero, then the angle between x and y is denoted

∠(x, y), which is defined as arccos
(

⟨x,y⟩
|x|·|y|

)
. This is well-defined since

∣∣∣ ⟨x,y⟩|x|·|y|

∣∣∣ ≤ 1 by

Cauchy-Schwarz. The linear transformation T is angle preserving if T is one-to-one
and for any x, y ̸= 0 we have ∠(Tx, Ty) = ∠(x, y).

(a) Prove that if T is norm preserving, then T is angle preserving.

(b) If there is a basis x1, . . . , xn of Rn and numbers λ1, . . . , λn such that Txi = λixi,
prove that T is angle preserving only if all |λi| are equal. (Note: Spivak’s
original exercise has an if and only if here, but this is false.)

(c) What are all angle preserving T : Rn → Rn?

(a) Proof. Since T is both norm preserving and inner product preserving by Exercise 1-7,
we have

⟨Tx, Ty⟩
|Tx| · |Ty|

=
⟨x, y⟩
|x| · |y|

so

∠(Tx, Ty) = arccos

(
⟨Tx, Ty⟩
|Tx| · |Ty|

)
= arccos

(
⟨x, y⟩
|x| · |y|

)
= ∠(x, y)

(b) Proof. Proof by contrapositive. Suppose |λi| ≠ |λj | for some i ̸= j. Then consider the
vectors

v1 = xi + xj , v2 = xi −
|xi|
|xj |

xj
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Since xi, xj are linearly independent, neither v1 or v2 is the zero vector. Then we have

cos∠(v1, v2) = cos arccos


〈
xi + xj , xi − |xi|

|xj |xj

〉
|xi + xj ||xi − |xi|

|xj |xj |


=

|xi|2 − |xi|2
|xj |2 |xj |

2

|xi + xj ||xi − |xi|
|xj |xj |

= 0

On the other hand,

cos∠(T (v1), T (v2)) = cos∠(λixi + λjxj , λixi − λj
|xi|
|xj |

xj)

=
λ2i |xi|2 − λ2j |xi|2

|λixi + λjxj ||λixi − λj
|xi|
|xj |xj |

̸= 0

where the last inequality holds since |λi| ̸= |λj | =⇒ λ2i ̸= λ2j . So if |λi| ̸= |λj |, then
T is not angle preserving. So T is angle preserving only if |λi| = |λj | for all i, j.

(c) Intuitively, the answer is that T must consist of only rotation and scaling by a constant
factor. More rigorously, the singular values of T must all be σ1 = . . . = σn = k for
some k > 0. We do not provide a full proof here.

Exercise 1-9 If 0 ≤ θ < π, then let T : R2 → R2 have the matrix in the standard
basis given by [

cos θ sin θ
− sin θ cos θ

]
Show that T is angle preserving, and that for any x ̸= 0, ∠(x, Tx) = θ.

Proof. To show that T is one-to-one, we instead prove that T is invertible. Consider the
matrix

T ′ =

[
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

]
Then

TT ′ =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ − cos θ sin θ + cos θ sin θ

− cos θ sin θ + cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
Since T is square and TT ′ = I, we have T ′T = I so T is invertible and thus must be
one-to-one.
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Let x, y ̸= 0 ∈ R2 be arbitrary. Suppose x = (x1, x2), y = (y1, y2). Then

cos∠(x, y) =
x1y1 + x2y2√
x21 + x22

√
y21 + y22

Moreover, Tx = (x1 cos θ+x2 sin θ, x2 cos θ−x1 sin θ) and Ty = (y1 cos θ+y2 sin θ, y2 cos θ−
y1 sin θ. Then we have

⟨Tx, Ty⟩ = (x1 cos θ + x2 sin θ)(y1 cos θ + y2 sin θ) + (x2 cos θ − x1 sin θ)(y2 cos θ − y1 sin θ)

= x1y1 (cos
2 θ + sin2 θ)︸ ︷︷ ︸

=1

+x1y2 (cos θ sin θ − sin θ cos θ)︸ ︷︷ ︸
=0

+ x2y1(sin θ cos θ − sin θ cos θ)︸ ︷︷ ︸
=0

+x2y2 (sin
2 θ + cos2 θ)︸ ︷︷ ︸

=1

= x1y1 + x2y2 = ⟨x, y⟩

and

|Tx| =
√

(x1 cos θ + x2 sin θ)2 + (x2 cos θ − x1 sin θ)2

=

√
x21(cos

2 θ + sin2 θ) + x22(sin
2 θ + cos2 θ)

=
√
x21 + x22

= |x|

Similarly,
|Ty| = |y|

Then

∠(Tx, Ty) = arccos

(
⟨Tx, Ty⟩
|Tx||Ty|

)
= arccos

(
⟨x, y⟩
|x||y|

)
= ∠(x, y)

Lastly, using the fact that |x| = |Tx|,

∠(x, Tx) = arccos

(
⟨x, Tx⟩
|x||Tx|

)
= arccos

(
x21 cos θ + x1x2 sin θ + x22 cos θ − x1x2 sin θ

|x|2

)
= arccos

(
cos θ

x21 + x22
|x|2

)
= arccos cos θ

= θ

78



Exercise 1-10 If T : Rm → Rn is a linear transformation, show that there is a
number M such that |T (h)| ≤M |h| for h ∈ Rm.

Proof. By singular value decomposition, there are orthonormal bases B = {u1, . . . , um} ⊆
Rm and C = {v1, . . . , vn} ⊆ Rn as well as scalars σ1 ≥ . . . ≥ σm ≥ 0 such that Tui = σivi
for all i (with Tuj = 0 for any j ≥ n). Then for any h ∈ Rm, if we suppose that h =
a1u1 + . . .+ amum, then we have

|Th| = |T (a1u1 + . . .+ amum)|
= |a1Tu1 + . . .+ amTum|
= |a1σ1v1 + . . .+ amσmvm|

(where the indices only run to n if n < m). Now since C is orthonormal, the Pythagorean
identity gives

|a1σ1v1 + . . .+ amσmvm|2 = a21σ
2
1 + . . .+ a2mσ

2
m ≤ (σm)2(a21 + . . .+ a2m)

But since B is also orthonormal, we have (a21 + . . .+ a2m) = |h|2. So

|Th|2 ≤ σ2
1 |h|2 =⇒ |Th| ≤ σ1|h|

so our choice of M = σ1 works.

Exercise 1-11 If x, y ∈ Rn and z, w ∈ Rm, show that ⟨(x, z), (y, w)⟩ = ⟨x, y⟩+⟨z, w⟩,
and that |(x, z)| =

√
|x|2 + |z|2. Recall that (x, z) ∈ Rn+m is the concatenation of x

and z.

Proof. For the first statement,

⟨(x, z)(y, w)⟩ =
n+m∑
i=1

(x, z)i(y, w)i

=

n∑
i=1

(x, z)i(y, w)i +

m∑
j=1

(x, z)n+j(y, w)n+j

=

n∑
1=1

xiyi +

m∑
j=1

zjwj

= ⟨x, y⟩+ ⟨z, w⟩

For the second statement,

|(x, z)|2 = ⟨(x, z), (x, z)⟩ = ⟨x, x⟩+ ⟨z, z⟩ = |x|2 + |z|2

where the second equality is by the first statement. Taking square roots on both sides
recovers |(x, z)| =

√
|x|2 + |z|2.
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Exercise 1-12 Let (Rn)∗ denote the dual space of Rn, which is the space of all linear
functions f : Rn → R. If x ∈ Rn, then define ϕx ∈ (Rn)∗ such that ϕx(y) := ⟨x, y⟩.
Define T : Rn → (Rn)∗ such that T (x) = ϕx. Show that T is one-to-one and conclude
that each ϕ ∈ (Rn)∗ is ϕx for a unique x ∈ Rn.

Proof. Suppose ϕx = ϕy. Then ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ Rn. Choosing z = x− y, this gives

0 = ⟨x, z⟩ − ⟨y, z⟩ = ⟨x− y, z⟩ = ⟨x− y, x− y⟩ = |x− y|

which implies that |x − y| is the zero vector. So x = y. The rest of the proof follows since
dimRn = dim(Rn)∗, so T is injective between vector spaces of the same dimension and is
thus surjective and bijective.

Exercise 1-13 (Pythagorean Identity) If x, y ∈ Rn, then x and y are called
orthogonal if ⟨x, y⟩ = 0. If x and y are orthogonal, prove that |x+ y|2 = |x|2 + |y|2.

Proof. By the definition of the norm and bilinearity of the inner product,

|x+ y|2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨y, y⟩+ 2 ⟨x, y⟩︸ ︷︷ ︸

=0

= |x|2 + |y|2

Exercise 1-14 Prove that the arbitrary union of open sets is open. Prove that the
finite intersection of open sets is open. Show that an infinite union of open sets need
not be open.

Proof. Let U =
⋃
i∈I Ui be the union of some open sets over an arbitrary indexing set I.

Then for any x ∈ U , x ∈ Ui for some i. Then x ∈ B ⊆ Ui for some open rectangle B. Since
B ⊆ Ui, B ⊆ U , so x ∈ B ⊆ U . So U is open.

Let U = U1 ∩U2 for some open sets U1, U2. Let x ∈ U be arbitrary. Then x ∈ Br1(x) ⊆ U1

and x ∈ Br2(x) ⊆ U2 for some radii r1, r2. Taking r = min{r1, r2} > 0, we have x ∈
Br(x) ⊆ Br1 ⊆ U1 and Br(x) ⊆ Br2 ⊆ U2, so x ∈ Br(x) ⊆ U . By induction, this extends to
any finite intersection.

The intersection of the sets (−1/n, 1/n) for n ∈ N is the singleton {0}, which is not open.

Exercise 1-15 Prove that the open ball Br(a) := {x ∈ Rn : |x − a| < r} is indeed
open.

Proof. When r = 0, Br(a) = ∅ which is vacuously open. If r > 0, then pick some x ∈
Br(a). Let r′ = r − |x − a|. Then if x = (x1, . . . , xn), consider the box B with sides
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(x1−r′/n, x1+r′/n)×. . .×(xn−r′/n, xn+r′/n). For any other y ∈ B, we have |xi−yi| ≤ r′/n
by construction, so

|x− y| ≤ |x1 − y1|+ . . .+ |xn − yn| ≤ r′

By the triangle inequality,

|y − a| = |y − x− (a− x)| ≤ |y − x|+ |a− x| ≤ r′ + |a− x| = r − |x− a|+ |x− a| = r

So y ∈ Br(a), and thus B ⊆ Br(a). So Br(a) is open.

Exercise 1-16 Find the interior, exterior, and boundary of the following sets:

1. A := {x ∈ Rn : |x| ≤ 1}

2. B := {x ∈ Rn : |x| = 1}

3. C := {x ∈ Rn : each coordinate xi ∈ Q}

1. We proved in Exercise 1-15 that B1(0) ⊆ A is open. So B1(0) ⊆ intA.

I claim that Rn \A = extA. Let x ∈ Rn \A. Then take the open ball B|x|−1(x). For
any y ∈ B|x|−1(x), the reverse triangle inequality tells us

|y| ≥ ||y − x| − |x||

Since y ∈ B|x|−1(x), |y − x| ≤ |x| − 1. So |y − x| − |x| ≤ −1, and thus

|y| ≥ ||y − x| − |x|| ≥ 1

so y ∈ Rn \A. Thus Rn \A ⊆ extA, but extA ⊆ Rn \A (this is easy to see based on
the definition of extA), so Rn \A = extA.

Lastly, for any x with |x| = 1, pick any open ball Br(x). Then the point y = x+ r
2x

has
|y − x| =

∣∣∣r
2
x
∣∣∣ = r

2
|x|︸︷︷︸
=1

< r

So y ∈ Br(x). Moreover,

|y| =
(
1 +

r

2

)
|x|︸︷︷︸
=1

> 1

so y ∈ Rn \A. On the other hand, a similar calculation shows that z = x− r
2x ∈ Br(x)

is in A. So the set of points with |x| = 1 is a subset of ∂A. But intA⊔∂A⊔extA = Rn,
and we have already partitioned Rn, so our subsets must be equalities and we must
have intA = {x : |x| < 1}, ∂A = {x : |x| = 1}, extA = {x : |x| > 1.

2. By the same argument as before, the set of |x| > 1 is a subset of extB. By a similar
argument, the set of |x| < 1 is also a subset of extB. Lastly, the same argument
shows that B itself is not a subset of intB. But B cannot be in extB, so we must
have intB = ∅, ∂B = {x : |x| = 1}, extB = {x : |x| ≠ 1}.
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3. Let x ∈ Rn be arbitrary. Then let D = (y1, z1) × . . . × (yn, zn) be an arbitrary
open rectangle containing x. By the density of Q in R, we can pick rational numbers
qi ∈ (yi, zi). Then the point q = (q1, . . . , qn) ∈ C and q ∈ D, soD contains points of C.
Similarly, we can construct a point with all irrational coordinates p = (p1, . . . , pn) /∈ C
and p ∈ D, so D contains points of Rn \C. Thus x ∈ ∂C. x was arbitrary, so ∂C = Rn
and intC = extC = ∅.

Exercise 1-17 Construct a set A ⊆ [0, 1] × [0, 1] such that A contains at most one
point on each horizontal and each vertical line but has extA = [0, 1]× [0, 1].

We construct sets recursively as follows: for A1, pick a point in each quadrant of [0, 1]×[0, 1],
such that none lie on the same horizontal or vertical line. For A2, pick a point in each
sixteenth of [0, 1]× [0, 1] such that none lie on the same horizontal or vertical line, and none
lie on the same horizontal or vertical line as the points in A1. Continue doing this, picking
4i points for Ai such that no point x ∈ Ai shares a vertical or horizontal line with a point
y ∈

⋃i
k=1Ak. This is possible because each choice of point removes only a single vertical

line and horizontal line from our possible choices, which is a set of measure zero, so we
always have a set of measure one to choose from. Then take our set to be A =

⋃∞
i=1Ai. By

construction, this set satisfies the vertical/horizontal line property. This set has no interior,
since a nontrivial open rectangle being a subset of A would violate the vertical/horizontal
line condition. Moreover, for any point x ∈ [0, 1]×[0, 1] and any radius r, we simply look in a
(4i)-ant of length r/2 or less in order to find a point y that is close to x. So ∂A = [0, 1]×[0, 1].

Exercise 1-18 If A ⊆ [0, 1] is the union of open intervals (ai, bi) such that any
rational number in (0, 1) is in (ai, bi) for some i, prove that ∂A = [0, 1] \A.

Proof. Since A is the union of open intervals, A is open and thus intA = A. I claim that
extA = Rn \ [0, 1]. Clearly Rn \ [0, 1] ⊆ extA. Then take some point x ∈ [0, 1]. For any
open interval (a, b) containing x, the density of Q tells us that there is a rational number in
(a, b)∩ [0, 1], so x /∈ extA. So ext = Rn \ [0, 1], intA = A, and this forces ∂A = [0, 1]\A.

Exercise 1-19 If A is a closed set that contains every rational r ∈ [0, 1], show that
[0, 1] ⊆ A.

Proof. Suppose not. Then there is some x ∈ [0, 1] with x ∈ Rn \ A. x must be in (0, 1),
which is open. Moreover, x ∈ Rn \A, which is open since A is closed, so x ∈ (Rn \A)∩ (0, 1)
which is open (since the finite intersection of open sets is open). Take some open interval
x ∈ (a, b) ⊆ (Rn \A) ∩ (0, 1). By the density of Q, there is a rational r in (a, b). But r ∈ A
by definition, so (a, b) ̸⊆ Rn \ A, so Rn \ A isn’t open, which contradicts the assumption
that A is closed. So we must have [0, 1] ⊆ A.

Exercise 1-20 Prove that a compact subset of Rn is closed and bounded.
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Proof. Suppose K ⊆ Rn is compact. The collection of open rectangles (i− 1, i+ 1)× (j −
1, j+1) . . .× (k− 1, k+1) for i, j, . . . , k ∈ Z covers R, so it covers K. Then a finite number
of these boxes covers K, so it is bounded.

We wish to show that Rn \K is open. Suppose it is not. Then there is some x ∈ Rn \K
such that for all open balls Br(x), Br(x) ∩K ̸= ∅. We can construct a sequence of points
y1, y2, . . . ∈ K as follows: Pick some r1, say r1 = 1. ThenBr1(x) contains some point y1 ∈ K.
Let r2 = |y1 − x| (note this is strictly less than r1 since y1 ∈ Br1(x) =⇒ |y1 − x| < r1).
Next, Br2(x) contains some other point y2 ∈ K, and |y2 − x| < r2 = |y1 − x|. Continue this
to construct a sequence of points y1, y2, . . . ∈ K such that |y1 − x| > |y2 − x| > . . ..

We use this sequence to create an open cover of K. Let ri = |yi − x|. Let C be the closed
ball with radius r2 and center x. The set Rn \ C is open, since its complement C is closed.
Now let Ri := {y : ri+2 < |y−x| < ri} be the open ring with outer radius ri and inner radius
ri+2. Then

⋃
Ri = {y : |y−x| < r1} = Br1(x) contains all points with distance |y−x| < r1.

Rn \C contains all points with distance |y− x| > r2. But r2 < r1, so Rn \C ∪
⋃
Ri = Rn.

Thus the collection O = {Rn \ C,R1, R2, . . .} covers Rn and thus K. But if we pick only a
finite number of these, then there is some Ri in the finite subcover such that i is maximal
in the subcover, so the points yi+2, yi+3, . . . are not contained in the subcover, and thus K
is not compact. So if K is compact, then it is closed.

Exercise 1-21

1. If A is closed and x /∈ A prove that there is a number d > 0 such that y−x ≥ d
for all y ∈ A.

2. If A is closed, B is compact, and A ∩ B = ∅, prove that there is d > 0 such
that |y − x| ≥ d for all y ∈ A and x ∈ B.

3. Give a counterexample in R2 if A and B are closed but neither is compact.

1. Proof. Since A is closed, Rn\A is open. Let x /∈ A. Then x ∈ Rn\A, so there is an open
ball Br(x) ⊆ Rn \A. Then we have |x− y| < r =⇒ y ∈ Br(x) ⊆ Rn \A =⇒ y /∈ A,
and thus for any y ∈ A we must have |x− y| ≥ r.

2. Proof. For each point b ∈ B, part (a) tells us there is a distance rb such that |b−y| ≥ rb
for any y ∈ A. Consider the collection of open balls (Brb/2(b))b∈B . This collection
covers B, so we pick a finite subcover {Brb1/2(b1), Brb2/2(b2), . . . , Brbn/2(bn)}. For
any x ∈ B, x ∈ Brbi/2(bi) for some i. Then by the reverse triangle inequality, for any
y ∈ A, we have

|y − x| = |y − bi − (x− bi)| ≥ ||y − bi| − |x− bi||

Since y ∈ A, |y − bi| ≥ rbi . Since x ∈ Brbi/2(bi), |x − bi| ≤ rbi/2 ≤ rbi ≤ |y − bi|. So
the quantity |y − bi| − |x− bi| is positive, so

|y − x| ≥ |y − bi| − |x− bi| ≥ rbi −
rbi
2

=
rbi
2

≥ min1≤i≤n rbi
2
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Since rbi ≥ 0 for all i and there are finite i, min rbi is well defined and positive. Thus
for arbitrary y ∈ A, x ∈ B, we have |y − x| ≥ min rbi/2 = d > 0.

3. We define two sets as follows: first, pick A = N. Next, pick B = {x1, x2, . . .}, where
xi = i+ 1

i+1 . Since xi is never an integer, A∩B = ∅. However, let r > 0 be arbitrary.

Then pick i large enough that 1
i+1 < r. Choosing x = xi, y = i, we have

|x− y| = |xi − i| =
∣∣∣∣ 1

i+ 1

∣∣∣∣ = 1

i+ 1
< r

Exercise 1-22 If U is open and C ⊆ U is compact, show that there is a compact
set D such that C ⊆ intD and D ⊆ U .

Proof. Since U is open, Rn \U is closed. Thus by Exercise 1-21 part (b), there is a distance
d such that |y − x| < d for any x ∈ C and y ∈ Rn \ U . Let Bx = Bd(x) be the open ball
of radius d and center x. Let Bx = Bd(x) = {y : |y − x| ≤ d} be the closed ball of radius d
and center x.

The collection (Bx)x∈C is an open cover of C compact, so we pick a finite subcollection
Bx1

, . . . , Bxn . Then let D = Bx1
∪ . . . ∪Bxn . We have Bxi ⊇ Bxi for all i, so

D =

n⋃
i=1

Bxi ⊇
n⋃
i=1

Bxi ⊇ C

so C ⊆ D. Moreover, for any point y ∈ Rn \ U and x ∈ D, x ∈ Bxi for some i. Then
|x− xi| ≤ d/2, and |y − xi| ≥ d, so

|y − x| ≥ ||y − xi| − |x− xi|| ≥ d− d

2
=
d

2
> 0

so D ∩ Rn \ U = ∅ and thus D ⊆ U .

Exercise 1-23 If f : A→ Rm and a ∈ A, show that limx→a f(x) = b = (b1, . . . , bm)
if and only if limx→a f

i(x) = bi for each i (recall f
i is the ith component function).

Proof. ( =⇒ ) Suppose limx→a f(x) = b. Then for any ε > 0, there is δ > 0 such that
|x− a| < δ and x ∈ A implies |f(x)− b| < ε. Then for any such x, we have |f i(x)− bi|2 ≤∑m
j=1 |f j(x)− bj |2 = |f(x)− b|2 < ε2 so |f i(x)− bi| < ε. So limx→a f

i(x) = bi.

Suppose limx→a f
i(x) = bi for each i. Then for any ε > 0, pick δi > 0 for each i such that

|x− a| < δi =⇒ |f i(x)− bi| < ε/
√
m. Let δ = min δi. Then for any x with |x− a| < δ,

|f(x)− b|2 =

m∑
i=1

|f i(x)− bi|2 < ε2/m = ε2

so |f(x)− b| < ε and thus limx→a f(x) = b.
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Exercise 1-24 Prove that f : A→ Rm is continuous at a if and only if each f i is.

Proof. Immediate from Exercise 1-23.

Exercise 1-25 Prove that a linear transformation T : Rn → Rm is continuous.

Proof. From Exercise 1-10, we know that there exists M > 0 such that |T (h)| ≤ M |h| for
all h. Then at any point a ∈ Rn, let ε > 0 be arbitrary. Set δ = ε/M . Then for any x ∈ Rn
with |x− a| < δ, we have

|T (x)− T (a)| = |T (x− a)| ≤M |x− a| < M
ε

M
= ε

Exercise 1-26 Let A = {(x, y) ∈ R2 : x > 0 and 0 < y < x2}.

(a) Show that every straight line through (0, 0) contains an interval around (0, 0)
which is in R2 \A.

(b) Define f : R2 → R by f(x) = 0 if x /∈ A and f(x) = 1 if x ∈ A. For h ∈ R2

define gh : R → R by gh(t) = f(th). Show that each gh is continuous at 0, but
f is not continuous at (0, 0). (This problem shows that f is continuous in any
direction, but not continuous as a two-variable function).

(a) Proof. Suppose y = mx defines a straight line through (0, 0). When m = 0 one can
verify that that the entire line is in Rn \A since y = 0. (For a vertical line we similarly
have x = 0 so the line is in Rn \ A). Then consider the interval [−|m|, |m|]. The
portion of the line with x ≤ 0 is automatically in R2 \A, but for any x ∈ (0, |m|],

x2 ≤ |m|x = y

so the entire interval [−|m|, |m|] is in R2 \A.

(b) Proof. Pick some gh. By part (a), there is an interval about 0 such that th ∈ R2 \A,
so gh(t) = 0. So gh(t) = 0 on an interval about 0, so limt→0 gh(t) = 0 = gh(0). Thus
each gh is continuous at 0.

To show f is not continuous at 0, pick ε = 1/2. Let δ > 0 be arbitrary. Assume δ < 1
since this will automatically prove larger δ. Then the point x = (δ/2, δ2/5) is in A, so
f(x) = 1. Moreover,

|x− 0| = |x| ≤ δ

2
+
δ2

5
≤ δ

2
+
δ

5
< δ

But |f(x)− f(0)| = |1| = 1 > ε, so f is not continuous at 0.

Exercise 1-27 Prove that {x ∈ Rn : |x − a| < r} is open using the topological
condition.

85



Proof. Consider the function f : Rn → R with f(x) = |x − a|. To prove f is continuous,
pick some point y. Then let ε > 0 and set δ = ε. Then we have

|x− y| < δ =⇒ |f(x)− f(y)| = ||x− a| − |y − a|| ≤ |x− a− (y − a)| = |x− y| < δ = ε

so f is continuous. Thus the preimage of the open ball Br(0) under f is open, but this is
precisely the set {x ∈ Rn : f(x) = |x− a| < r}.t

Exercise 1-28 Suppose A ⊆ Rn is not closed. Show that there exists an unbounded
continuous function f : A→ R.

Proof. Let A ⊆ Rn be not closed. Then Rn\A is not open, so there exists a point x ∈ Rn\A
such that every Br(x) contains a point in A. Then define f : A→ R by

f(y) =
1

|y − x|

To verify that this function is continuous, first consider the function |y − x|. Letting a ∈ A
be arbitrary, for any ε > 0 set δ = ε. Then for any b ∈ A with |b− a| < δ,

|f(b)− f(a)| = ||b− x| − |a− x|| ≤ |b− a| < δ = ε

So y 7→ |y − x| is continuous. Then since |y − x| ̸= 0 for y ∈ A, and f is the quotient of
nonzero continuous functions, f is continuous.

To show that f is unbounded, pick M > 0. Then by our choice of x, the ball B1/M (x)
contains a point y ∈ A. Then

f(y) =
1

|y − x|
≥ 1

1
M

=M

Exercise 1-29 Let K ⊆ Rn be compact, and let f : K → R be continuous. Show
that f attains a maximum and minimum value.

Proof. Since K is compact and f is continuous, f(K) is compact. Specifically, it is bounded,
so let α = sup f(K). We want to show α ∈ f(K). By way of contradiction, suppose
α /∈ f(K). Then since f(K) is closed, R \ f(K) is open, so there is an interval (α− ε, α+ ε)
that doesn’t intersect f(K). But then α− ε is also an upper bound for f(K), contradicting
that fact that α = sup f(K). So we must have sup f(K) = max f(K) ∈ f(K), and thus
there is a y ∈ K such that f(y) = max f(K). The proof for the minimum is similar.

Exercise 1-30 Let f : [a, b] → R be increasing. Let x1, . . . , xn ∈ [a, b] be distinct.
Show that

n∑
i=1

o(f, xi) ≤ f(b)− f(a)
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Proof. Note that since f is increasing, for any [c, d] ⊆ [a, b], we have

max
[c,d]

f(x) = f(d),min
[c,d]

f(x) = f(c)

In particular,M(f, x, δ) = f(x+δ) andm(f, x, δ) = f(x−δ), so f(x+δ)−f(x−δ) ≥ o(f, x).

We may suppose that the xi are ordered, so that x1 < . . . < xn. Pick δ small enough that
|xi+1 − xi| < δ for all δ. This gives us disjoint intervals [x1 − δ, x1 + δ], . . . , [xn − δ, xn + δ].
Then we have

n∑
i=1

o(f, xi) ≤
n∑
i=1

f(xi + δ)− f(xi − δ)

= f(xn + δ)− f(xn − δ) + . . .+ f(x1 + δ)− f(x1 − δ)

≤ f(b)− f(xn + δ)︸ ︷︷ ︸
≥0

+f(xn + δ)− f(xn − δ) + f(xn − δ)− f(xn−1 + δ)︸ ︷︷ ︸
≥0

+ f(xn−1 + δ)− . . .− f(x1 − δ) + f(x1 − δ)− f(a)︸ ︷︷ ︸
≥0

= f(b)− f(a)

The first and last intervals may be adjusted slightly for the case where x1 = a or xn = b.

A.2 Chapter 2 Exercises

Exercise 2-1 Prove that if a function f : Rn → Rm is differentiable at a ∈ Rn, then
it is continuous at a.

Proof. Suppose f : Rn → Rm is differentiable at a ∈ Rn. Then Df(a) is linear transforma-
tion. By Exercise 1-10, there exists a number M > 0 such that

|Df(a)(h)|
|h|

≥M, ∀h ∈ Rn

Then since f is differentiable at a, there exists δ > 0 such that for any |h| < δ,

|f(a+ h)− f(a)−Df(a)(h)|
|h|

< 1

Now let ε > 0 be arbitrary, and pick δ′ = min
{
δ, ε
M+1

}
. Then for any x with |x− a| < δ′

we have

|f(x)− f(a)| = |f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)|
≤ |f(x)− f(a)−Df(a)(x− a)|+ |Df(a)(x− a)|
< |x− a|+M |x− a|

< (M + 1)
ε

M + 1
= ε
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Exercise 2-2 A function f : R2 → R is independent of the second variable
if for any x ∈ R and y1, y2 ∈ R we have f(x, y1) = f(x, y2). Show that f is
independent of the second variable if and only if there is a function g : R → R such
that f(x, y) = g(x). What is f ′(a, b) in terms of g′?

Proof. ( =⇒ ) Suppose f is independent of the second variable. Then define g(x) = f(x, 0).
For any x, y we have

f(x, y) = f(x, 0) = g(x)

( ⇐= ) Suppose g(x) = f(x, y). Then let x, y1, y2 ∈ R be arbitrary. We have

f(x, y1) = g(x) = f(x, y2)

Claim: f ′(a, b) =
[
g′(a) 0

]
.

Proof. Fix (a, b) ∈ R2. Then let ε > 0. Since g is differentiable at a, there exists δ > 0 such
that for any |h| < δ,

|g(a+ h)− g(a)− g′(a)(h)|
|h|

< ε

Then if h = (h1, h2) satisfies |h| < δ, it must also be the case that |h1| ≤ |(h1, h2)| < δ.
Thus for any |(h1, h2)| = |h| < δ, we have∣∣∣∣f(a+ h1, b+ h2)− f(a, b)−

[
g′(a) 0

] [h1
h2

]∣∣∣∣
|h|

=
|g(a+ h1)− g(a)− g′(a)(h1)|

|h|

≤ |g(a+ h1)− g(a)− g′(a)(h1)|
|h1|

< ε

Thus we have f ′(a, b) =
[
g′(a) 0

]
.

Exercise 2-3 Define when a function f : R2 → R is independent of the first variable,
and find f ′(a, b) for such f . Which functions are independent of both the first and
second variables?

A function f ;R2 → R is independent of the first variable if for any x1, x2, y ∈ R we
have f(x1, y) = f(x2, y), or equivalently if there exists h : R → R such that f(x, y) = h(y).
In this case, f ′(a, b) =

[
0 h′(b)

]
. If a function is independent of both variables, then

f(a1, b1) = f(a2, b1) = f(a2, b2) for any (a1, b1), (a2, b2) ∈ R2 so f is constant.
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Exercise 2-4 Let g be a continuous real-valued function on the unit circle such that
g(0, 1) = g(1, 0) = 0 and g(−x) = −g(x). Define f : R2 → R by

f(x) =

{
|x|g

(
x
|x|

)
, x ̸= 0

0, x = 0

(a) If x ∈ R2 and hx : R → R is defined by hx(t) = f(tx), show that hx is
differentiable.

(b) Show that f is not differentiable at (0, 0) unless g = 0 everywhere.

(a) Proof. If x = 0 then h is identically 0 and is differentiable. If x ̸= 0, then for t ̸= 0 we
have

h(t) = |tx|g
(
tx

|tx|

)
= |t||x|g

(
sign(t)

x

|x|

)
= |t|sign(t)|x|g

(
x

|x|

)
︸ ︷︷ ︸

g(−x)=−g(x)

= t

[
|x|g

(
x

|x|

)]

We also have h(0) = f(0) = 0 = 0|x|g
(
x
|x|

)
so h is a linear function of t. Thus it is

differentiable from single-variable analysis.

(b) Proof. Suppose that f can be differentiated. Then since Df(0, 0) is linear, it is
uniquely determined by its behavior on the basis {e1, e2}. In particular, pick ε > 0.
Then there exists a δ > 0 such that whenever 0 < |h| < δ we have

|f(h)− f(0, 0)−Df(0, 0)(h)|
|h|

< ε

Then picking some h1 ∈ R with 0 < |h1| < δ,

|Df(0, 0)(e1)| =
|h1Df(0, 0)(e1)|

|h1|
=

| f(h1e1)− f(0, 0)︸ ︷︷ ︸
=0

−Df(0, 0)(h1e1)|

|h1e1|
< ε

This works for all epsilon, so Df(0, 0)(e1) = 0. Similarly, Df(0, 0)(e2) = 0, so Df(0, 0)
is the zero transformation. Now suppose g(x) ̸= 0 for some x. Then for ε = g(x) and
arbitrary, δ,

|f
(
δx
2

)
− f(0, 0)−Df(0, 0)

(
δx

2

)
|︸ ︷︷ ︸

=0∣∣ δx
2

∣∣ =

δ
2g
(
δx/2
δ/2

)
δ
2

= g(x) ≥ ε

so f is not differentiable. Thus f is only differentiable when g(x) = 0 everywhere.
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Exercise 2-5 Let f : R2 → R be defined by

f(x, y) =

{ x|y|√
x2+y2

, (x, y) ̸= 0

0 (x, y) = 0

Show that f is a function of the kind considered in Exercise 2-4, so that f is not
differentiable at (0, 0).

Proof. Let

g(x, y) =

{
x|y|
x2+y2 , (x, y) ̸= 0

0, (x, y) = 0

Then for (x, y) ̸= 0 we have

|(x, y)|g
(
(x, y)

|(x, y)

)
=
√
x2 + y2g

(
x√

x2 + y2
,

y√
x2 + y2

)

=
√
x2 + y2

x|y|
x2 + y2

=
x|y|√
x2 + y2

= f(x, y)

Moreover,

g(1, 0) =
0√
1
= 0 =

|0|√
1
= g(0, 1)

and

g(−x,−y) = −x| − y|
(−x)2 + (−y)2

= − x|y|
x2 + y2

= −g(x, y)

so f is of the form in Exercise 2-4. However,

g

(
1√
2
,
1√
2

)
=

(
1√
2

)2

=
1

2
̸= 0

so g is not 0 everywhere and thus f is not differentiable at (0, 0).

Exercise 2-6 Let f : R2 → R be defined by f(x, y) =
√
|xy|. Show that f is not

differentiable at (0, 0).

Proof. Following the proof of Exercise 2-4 part (a), first suppose f is differentiable at (0, 0).
Then Df(0, 0) exists, and it is determined by its behavior on the basis {e1, e2}. Letting
ε > 0 be arbitrary, there must exist δ > 0 such that for any 0 < |h| < δ,

|f(h)− f(0, 0)−Df(0, 0)(h)|
|h|

< ε
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Pick some h1 ∈ R with 0 < |h1| < δ. Then

|Df(0, 0)(e1)| =
|h1Df(0, 0)(e1)|

|h1|
=

|f(h1e1)− f(0, 0)−Df(0, 0)(h1e1)|
|h1e1|

< ε

So |Df(0, 0)(e1)| < ε for all ε, and thus Df(0, 0)(e1) = 0. Similarly, Df(0, 0)(e2) = 0, so
Df(0, 0) is the zero transformation. However, let ε = 1√

2
, and let δ > 0 be arbitrary. Then

the point (x, y) = ( δ√
3
, δ√

3
) satisfies 0 < |(x, y)| < δ, but

|f(x, y)− f(0, 0)−Df(0, 0)(x, y)|
|(x, y)|

=

√
δ2

3√
2δ2

3

=
1√
2
≥ ε

so no δ works and f is not differentiable.

Exercise 2-7 Let f : Rn → R be a function such that |f(x)| ≤ |x|2. Show that f is
differentiable at 0.

Proof. Let λ : Rn → R be the zero transformation. Then let ε > 0 be arbitrary, and set
δ = ε. Whenever 0 < |x| < δ, by assumption we have

|f(x)|
|x|

≤ |x|

In particular, |f(0)| ≤ |0|2 = 0 so f(0) = 0. Thus

|f(x)− f(0)− λ(x)|
|x|

=
|f(x)|
|x|

≤ |x| < δ = ε

so f is differentiable at 0 with derivative Df(0) = λ the zero transformation.

Exercise 2-8 Let f : R → R2. Prove that f is differentiable at a ∈ R if and only if
f1 and f2 are, and that in this case

f ′(a) =

[
(f1)′(a)
(f2)′(a)

]

Proof. ( =⇒ ) Suppose f is differentiable at a ∈ R. Then let ε > 0 be arbitrary. Since f is
differentiable, there exists δ > 0 such that whenever 0 < |h| < δ we have

|f(a+ h)− f(a)−Df(a)(h)|
|h|

< ε

If we suppose that Df(a)(h) has matrix representation given by

f ′(a) =

[
b
c

]
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then it is the case that

Df(a)(h) =

[
bh
ch

]
Now if we write for convenience (x, y) = f(a + h) − f(a) − Df(a)(h), then we know that
|x| ≤ |(x, y)|, so whenever 0 < |h| < δ

|f1(a+ h)− f(a)− bh|
|h|

=
|x|
|h|

≤ |(x, y)|
|h|

=
|f(a+ h)− f(a)−Df(a)(h)|

|h|
< ε

so f1 is differentiable at a. The proof for f2 is similar. Moreover, this proves that in this
case bh = (f1)′(a) and ch = (f2)′(a), so that

f ′(a) =

[
(f1)′(a)
(f2)′(a)

]
( ⇐= ) Now suppose that f1 and f2 are differentiable at a. Let ε > 0 be arbitrary. Then
there exist δ1, δ2 > 0 such that whenever 0 < |h| < δ1 we have

|f1(a+ h)− f1(a) + (f1)′(a)(h)|
|h|

<
ε

2

and whenever 0 < |h| < δ2 we have

|f2(a+ h)− f2(a) + (f2)′(a)(h)|
|h|

<
ε

2

Let δ = min{δ1, δ2}. Let λ : R → R2 have the matrix

[λ] =

[
(f1)′(a)
(f2)′(a)

]
Then whenever 0 < |h| < δ,

|f(a+ h)− f(a)− λ(h)|
|h|

=

∣∣∣∣[xy
]∣∣∣∣

|h|

where [
x
y

]
=

[
f1(a+ h)− f1(a)− (f1)′(a)(h)
f2(a+ h)− f2(a)− (f2)′(a)(h)

]
Then

|f(a+ h)− f(a)− λ(h)|
|h|

=

∣∣∣∣[xy
]∣∣∣∣

|h|
≤ |x|

|h|
+

|y|
|h|

<
ε

2
+
ε

2
= ε

so f is differentiable at a, and once again we have

f ′(a) = [λ] =

[
(f1)′(a)
(f2)′(a)

]
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Exercise 2-9 Two functions f, g : R → R are equal up to nth order at a ∈ R if

lim
h→0

f(a+ h)− g(a+ h)

hn
= 0

(a) Show that a continuous function f is differentiable at a if and only if there is
a function g of the form g(x) = a0 + a1(x− a) such that f and g are equal up
to first order at a. (Note: Spivak did not assume continuity in the original
exercise, but it is required in the if direction, and continuity in the only if
direction follows from differentiability).

(b) If f ′(a), . . . , f (n)(a) exist, show that f and the function g defined by

g(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i

are equal up to nth order at a. (This is the nth degree Taylor polynomial of f
expanded about a).

(a) Proof. ( =⇒ ) Suppose f is differentiable at a. Then define

g(x) = f(a) + f ′(a)(x− a)

We have

lim
h→0

f(a+ h)− f(a+ h)

h
= lim
h→0

f(a+ h)− f(a)− f ′(a)(h)

h
= 0

since f is differentiable, so f and g are equal up to first order.

( ⇐= ) Now suppose g(x) = a0 + a1(x − a) is equal to f up to first order. Since f
(and g) are continuous,

lim
h→0

f(a+ h)− g(a+ h) = f(a)− g(a) = 0

so f(a) = g(a) = a0. Thus we have

lim
h→0

f(a+ h)− f(a)− a1h

h
= lim
h→0

f(a+ h)− g(a+ h)

h
= 0

so f is differentiable at a.

(b) Proof. We induct on n. Suppose that for any function f , whenever f ′(a), . . . , f (n−1)(a)
exist, then

f(x)
n−1∼

n∑
i=0

f (i)(a)

i!
(x− a)i
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where
n−1∼ represents equality up to order n− 1. Now suppose that f ′(a), . . . , f (n)(a)

all exist. Then we have

lim
h→0

f(a+ h)− g(a+ h)

hn
= lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! (a+ h− a)i

hn

= lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! hi

hn

Note that since f and g are continuous (where f is continuous since it is differentiable),
we have

lim
h→0

f(a+ h)−
n∑
i=0

f (i)

i!
hi = f(a)− f (0)(a)

0!
−

n∑
i=1

f (i)

i!
0i = f(a)− f(a) = 0

Clearly g is differentiable and so is f , so f(a+h)− g(a+h) is differentiable, and thus
L’Hopital’s Rule applies. So

lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! hi

hn
LH
= lim

h→0

f ′(a+ h)−
∑n
i=1

f(i)(a)
(i−1)! h

i−1

nhn−1

= lim
h→0

f ′(a+ h)−
∑n−1
i=0

f(i+1)(a)
i! hi

hn−1

= lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1

Since f ′′(a), . . . , f (n)(a) all exist, (f ′)′(a), . . . , (f ′)(n−1)(a) all exist, so the inductive
hypothesis applies and

f ′(x)
n−1∼

n−1∑
i=0

(f ′)(i)(a)

i!
(x− a)i

so

lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1
= 0

Thus

lim
h→0

f(a+ h)− g(a+ h)

hn
= lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1
= 0

so f and g are equal up to nth order.
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Exercise 2-10 Use the theorems of this section [Section 2.2] to find f ′ for the
following:

(a) f(x, y, z) = xy.

(b) f(x, y, z) = (xy, z).

(c) f(x, y) = sin(x sin y).

(d) f(x, y, z) = sin(x sin(y sin z)).

(e) f(x, y, z) = xy
z

.

(f) f(x, y, z) = xy+z.

(g) f(x, y, z) = (x+ y)z.

(h) f(x, y) = sin(xy).

(i) f(x, y) = [sin(xy)]cos 3.

(j) f(x, y) = (sin(xy), sin(x sin y), xy).

(a) We write

f = [π1][π
2] = (eln ◦[π1])[π

2] = eπ
2·ln ◦π1

. Then

f ′(a, b, c) = (eπ
2·ln ◦π1

)′(a, b, c)

= eb ln a(π2 · ln ◦π1)′(a, b, c)

= ab(ln a(π2)′(a, b, c) + b(ln ◦π1)′(a, b, c)

= ab(ln aπ2 + b
1

a
(π1)′(a, b, c)

= ab(ln aπ2 +
b

a
π1)

= (bab−1, ab ln a, 0)

(b) Following easily from part (a) we have:

f ′(a, b, c) =

[
− (xy)′(a, b, c) −
− (π3)′(a, b, c) −

]
=

[
bab−1 ab ln a 0
0 0 1

]
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(c) Similarly to the example, we have f = sin ◦(π1 · sin ◦π2). Thus,

f ′(a, b) = (sin ◦(π1 · sin ◦π2))′(a, b)

= cos(a sin b)(π1 · sin ◦π2)′(a, b)

= cos(a sin b)(sin b(π1)′(a, b) + a(sin ◦π2)′(a, b))

= cos(a sin b) sin bπ1 + a cos(a sin b) cos bπ2

= (cos(a sin b) sin b, a cos(a sin b) cos b)

(d) As above, we have
f = sin ◦(π1 · (sin ◦(π2 · (sin ◦π3))))

so

f ′(a, b, c) = (sin ◦(π1 · (sin ◦(π2 · (sin ◦π3)))))′(a, b, c)

= cos(a sin(b sin c))(π1 · (sin ◦(π2 · (sin ◦π3))))′(a, b, c)

= cos(a sin(b sin c))(sin(b sin c)π1 + a cos(b sin c)(π2 · (sin ◦π3))′(a, b, c))

= cos(a sin(b sin c))(sin(b sin c)π1 + a cos(b sin c)(sin cπ2 + b cos cπ3))

= cos(a sin(b sin c)) ∗ (sin(b sin c), a cos(b sin c) sin c, ab cos(b sin c) cos c)

(e) Let g(x, y) = xy. Then we have

f(x, y, z) = g(x, g(y, z))

so that
f = g ◦ (π1, g ◦ (π2, π3))

Using our result from part (a),

f ′(a, b, c) = g′(a, g(b, c))

[
− (π1)′(a, b, c) −
− (g ◦ (π2, π3))′(a, b, c) −

]
=
[
bcab

c−1 ab
c

ln a
] [1 0 0

0 cbc−1 bc ln b

]
=
[
bcab

c−1 ab
c

cbc−1 ln a ab
c

bc ln a ln b
]

(f) Letting g be as defined in part (e), we have

f = g ◦ (π1, π2 + π3)

Thus

f ′(a, b, c) = (g ◦ (π1, π2 + π3))′(a, b, c)

= g′(a, b+ c)

[
− (π1)′(a, b, c) −
− (π2 + π3)′(a, b, c) −

]
=
[
(b+ c)ab+c−1 ab+c ln a

] [1 0 0
0 1 1

]
=
[
(b+ c)ab+c−1 ab+c ln a ab+c ln a

]
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(g) Again letting g be as in part (e), we have

f = g ◦ (π1 + π2, π3)

so that

f ′(a, b, c) = (g ◦ (π1 + π2, π3))′(a, b, c)

= g′(a+ b, c)

[
− (π1 + π2)′(a, b, c) −
− (π3)′(a, b, c)

]
=
[
c(a+ b)c−1 (a+ b)c ln(a+ b)

] [1 1 0
0 0 1

]
=
[
c(a+ b)c−1 c(a+ b)c−1 (a+ b)c ln(a+ b)

]
(h) We can straightforwardly write this as

f = sin ◦(π1 · π2)

Then

f ′(a, b) = (sin ◦(π1 · π2))′(a, b)

= cos(ab)(bπ1 + aπ2)

= (b cos(ab), a cos(ab))

(i) Using the same definition of g,

f = g ◦ (sin ◦(π1 · π2), cos 3)

Since cos 3 is constant,

f ′(a, b) = (g ◦ (sin ◦(π1 · π2), cos 3))′(a, b)

= g′(sin(ab), cos 3)

[
− (π1 · π2)′(a, b) −
− (cos 3)′(a, b) −

]
=
[
cos 3[sin(ab)]cos 3 [sin(ab)]cos 3 ln sin(ab)

] [b a
0 0

]
=
[
b cos 3[sin(ab)]cos 3 a cos 3[sin(ab)]cos 3

]
(j) From parts (h), (c), and (a), respectively, we already know that

(sin(xy))′(a, b) =
[
b cos(ab) a cos(ab)

]
(sin(x sin y))′(a, b) =

[
cos(a sin b) sin b a cos(a sin b) cos b

]
(xy)′(a, b) =

[
bab−1 ab ln a

]
Then f ′ is simply given by putting each of these matrices in as row vectors, such that

f ′(a, b, c) =

− (sin(xy))′(a, b) −
− (sin(x sin y))′(a, b) −
− (xy)′(a, b) −

 =

 b cos(ab) a cos(ab)
cos(a sin b) sin b a cos(a sin b) cos b

bab−1 ab ln a
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Exercise 2-11 Find f ′ for the following (where g : R → R is continuous, and s ∈ R
is fixed):

(a) f(x, y) =
∫ x+y
s

g.

(b) f(x, y) =
∫ xy
s
g.

(c) f(x, y, z) =
∫ sin(x sin(y sin z))

xy
g.

(a) Define F : R → R by

F (x) =

∫ x

s

g(t) dt

Since g is continuous, the fundamental theorem of calculus tells us that

F ′(x) = g(x)

Then we can here write f as
f = F ◦ (π1 + π2)

so that

f ′(a, b) = (F ◦ (π1 + π2))′(a, b)

= F ′(a+ b)(π1 + π2)′(a, b)

= g(a+ b)(π1 + π2)

= (g(a+ b), g(a+ b))

(b) Similarly, write
f = F ◦ (π1 · π2)

Then

f ′(a, b) = (F ◦ (π1 · π2))′(a, b)

= (bg(ab), ag(ab))

(c) First note that we can pick any s ∈ R and separate this integral:

f(x, y, z) =

∫ sin(x sin(y sin z))

xy
g =

∫ sin(x sin(y sin z))

s

g+

∫ s

xy
g =

∫ sin(x sin(y sin z))

s

g−
∫ xy

s

g

Then using the same method as parts (a) and (b) of this problem, and using the results
from parts (d) and (a) of Exercise 2-10, the Jacobian of the first term, evaluated at
(a, b, c), is given by g(sin(a sin(b sin c))) cos(a sin(b sin c)) sin(b sin c)

ag(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) sin c
abg(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) cos c

T
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and the Jacobian of the second by g(ab)bab−1

g(ab)ab ln a
0


Thus we have

f ′(a, b, c) =

 g(sin(a sin(b sin c))) cos(a sin(b sin c)) sin(b sin c)− g(ab)bab−1

ag(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) sin c− g(ab)ab ln a
abg(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) cos c

T

Exercise 2-12 A function f : Rn × Rm → Rp is bilinear if for x, x1, x2 ∈ Rn,
y, y1, y2 ∈ Rm and a ∈ R we have

f(ax, y) = af(x, y) = f(x, ay)

f(x1 + x2, y) = f(x1, y) + f(x2, y)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

(a) Prove that if f is bilinear, then

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= 0

(b) Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).

(c) Show that the formula for Dp(a, b) in Section 2.2 is a special case of (b).

(a) Proof. Suppose f is bilinear, and suppose h = (h1, . . . , hn), k = (k1, . . . , km). Then
we can write

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= lim
(h,k)→0

|f(
∑n
i=1 hi,

∑m
j=1 kj)

|(h, k)|

= lim
(h,k)→0

|
∑n
i=1

∑m
j=1 hikjf(ei, ej)|
|(h, k)|

≤
n∑
i=1

m∑
j=1

f(ei, ej) lim
(hi,kj)→0

|hikj |
|(h, k)|

≤
n∑
i=1

m∑
j=1

f(ei, ej) lim
(hi,kj)→0

|hikj |
|(hi, kj)|

Now we proved in the proof of Dp(a, b) that

lim
(hi,kj)→0

|hikj |
|(hi, kj)|

= 0
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so we have

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= 0

(b) Proof. Note that

f(a+ x, b+ y)− f(a, b)− f(a, y)− f(x, b) = f(a+ x, b+ y)− f(a, b+ y)− f(x, b)

= f(a+ x, b+ y)− f(a, b+ y)− f(x, b)− f(x, y) + f(x, y)

= f(a+ x, b+ y)− f(a, b+ y)− f(x, b+ y) + f(x, y)

= f(a+ x, b+ y)− f(a+ x, b+ y) + f(x, y)

= f(x, y)

Then we have

lim
(x,y)→0

|f(a+ x, b+ y)− f(a, b)− f(a, y)− f(x, b)|
|(x, y)|

= lim
(x,y)→0

|f(x, y)|
|(x, y)|

and by part (a) we know this limit is 0.

(c) Proof. Note that our work in part (a) implies that f is completely determined by its
values on the various pairs (ei, ej). So Dp(a, b) is simply the case where n = m = 1
and f(1, 1) = 1.

Exercise 2-13 Define IP : Rn × Rn → R by IP (x, y) = ⟨x, y⟩.

(a) Find D(IP )(a, b) and (IP )′(a, b).

(b) If f, g : R → Rn are differentiable and h : R → R is defined by h(t) =
⟨f(t), g(t)⟩, show that

h′(a) =
〈
f ′(a)T , g(a)

〉
+
〈
f(a), g′(a)T

〉
(Note that f ′(a) is an n × 1 matrix; its transpose f ′(a)T is a 1 × n matrix,
which we consider as a member of Rn.)

(c) If f : R → Rn is differentiable and |f(t)| = 1 for all t, show that
〈
f ′(t)T , f(t)

〉
=

0.

(d) Exhibit a differentiable function f : R → R such that the function |f | defined
by |f |(t) = |f(t)| is not differentiable.

(a) Since the (real) inner product is bilinear by definition, we can apply Exercise 2-12 to
conclude that

D(IP )(a, b)(x, y) = IP (a, y)+IP (x, b) = ⟨a, y⟩+⟨x, b⟩ = ⟨a, y⟩+⟨b, x⟩ = ⟨(b, a), (x, y)⟩

Moreover, we can rewrite this to be

D(IP )(a, b)(x, y) = (b, a)(x, y)T
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from which we can conclude that

(IP )′(a, b) = (b, a)

where (b, a) is the 1× 2n matrix given by concatenating the row vectors b and a.

(b) Proof. Directly from the definition of h, we have

h = IP ◦ (f, g)

so the chain rule says that

h′(a) = IP ′(f(a), g(a))



|
f ′(a)
|

|
g′(a)
|



=
[
−g(a)− −f(a)−

]


|
f ′(a)
|

|
g′(a)
|


=
[
−g(a)−

]  |
f ′(a)
|

+
[
−f(a)−

]  |
g′(a)
|


=
〈
g(a), f ′(a)T

〉
+
〈
f(a), g′(a)T

〉
=
〈
f ′(a)T , g(a)

〉
+
〈
f(a), g′(a)T

〉
(c) Proof. Define

h(t) := ⟨f(t), f(t)⟩ =
√

|f(t)|

Then by part (b),
h′(t) = 2

〈
f ′(t)T , f(t)

〉
But the assumption that |f(t)| is identically 1 means that h is constant, and thus

〈
f ′(t)T , f(t)

〉
=
h′(t)

2
= 0

(d) The identity function satisfies this, since x 7→ |x| is not differentiable at x = 0.
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Exercise 2-14 Let Ei, i = 1, . . . , k be Euclidean spaces of various dimensions. A
function f : E1 × . . .× Ek → Rp is called multilinear if for each choice of xj ∈ Ej ,
j ̸= i, the function g : Ei → Rp defined by g(x) = f(x1, . . . , xi−1, x, xi+1, . . . , xk) is
a linear transformation.

(a) If f is multilinear and i ̸= j, show that for h = (h1, . . . , hk) with hl ∈ El, we
have

lim
h→0

|f(a1, . . . , hi, . . . , hj , . . . , ak)|
|h|

= 0

(b) Prove that

Df(a1, . . . , ak)(x1, . . . , xk) =

k∑
i=1

f(a1, . . . , ai−1, xi, ai+1, . . . , ak)

(a) Proof. Suppose that dimEi = k1 and dimEj = k2. Then define the function g :
Rk1 × Rk2 → Rp by

g(x, y) = f(a1, . . . , x, . . . , y, . . . , ak)

Then we need to prove that

lim
(hi,hj)→0

|g(hi, hj)|
|(hi, hj)|

= 0

To do this, we first prove that g is bilinear. Using multilinearity, we have that

g(ax, y) = f(a1, . . . , ax, . . . , y, . . . , ak) = af(a1, . . . , x, . . . , y, . . . , ak) = ag(x, y)

and

g(x1 + x2, y) = f(a1, . . . , x1 + x2, . . . , y, . . . , ak)

= f(a1, . . . , x1, . . . , y, . . . , ak) + f(a1, . . . , x2, . . . , y, . . . , ak)

= g(x1, y) + g(x2, y)

The last property is similar. So g is bilinear, and Exercise 2-12 part (a) tells us that

lim
h→0

|f(a1, . . . , hi, . . . , hj)|
|h|

= lim
(hi,hj)→0

|g(hi, hj)|
|(hi, hj)|

= 0

(b) Proof. For notational convenience, we define the following. Given a set of distinct

indices i1, . . . , in ∈ [1, k], and vectors −→a = (a1, . . . , ak),
−→
h = (h1, . . . , hk), we write

f{i1,...,in}(
−→a ,

−→
h ) = f(a1, . . . , hi1 , . . . , hi2 , . . . , hin , . . . , ak)

In other words, if S ⊆ [1, k], then fS(
−→a ,

−→
h ) passes in hi if i ∈ S and ai otherwise.
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Now, we prove an extension of part (a), namely, that for any k-linear function f , if we
pick n ≤ k indices i1, . . . , 1n, then

lim−→
h→0

|f{i1,...,in}(
−→a ,

−→
h )|

|
−→
h |

= 0

We skip the proof that f{i1,...,in} is n-linear, so this reduces to simply showing that
for any multilinear function (n > 1) we have

lim−→
h→0

|f(
−→
h )|

|
−→
h |

= 0

Let di = dimEi for each i. Suppose also that hi = (hi,1, . . . , hi,di). Then

lim−→
h→0

|f(h1, . . . , hk)|∣∣∣−→h ∣∣∣ = lim−→
h→0

∣∣∣f(∑d1
j1=1 hi,j1 , . . . ,

∑dk
jk=1 hi,jk)

∣∣∣∣∣∣−→h ∣∣∣
= lim−→

h→0

∣∣∣∑d1
j1=1 . . .

∑dk
jk=1 h1,j1 . . . hk,jkf(ej1 , . . . , ejk)

∣∣∣∣∣∣−→h ∣∣∣
≤

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| lim
(h1,j1

,...,hk,jk )→0

|h1,j1 . . . hk,jk |∣∣∣−→h ∣∣∣
≤

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| lim
(h1,j1

,...,hk,jk )→0

|h1,j1 . . . hk,jk |
|(h1,j1 , . . . , hk,jk)|

=

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| · 0

= 0

Thus we have shown that any multilinear function satisfies

lim−→
h→0

|f(
−→
h )|

|
−→
h |

= 0

Now, I claim that

f(a1 + x1, . . . , ak + xk) = f(−→a +−→x ) =
∑

S∈P([1,k])

fS(
−→a ,−→x )

where P([1, k]) represents the set of all subsets of [1, k]. We prove this by induction.
Supposing it is true for k − 1, we can then partition P([1, k]) into X, consisting of
those subsets which contain k, and A, consisting of those subsets which do not. Then∑

S∈P([1,k])

fS(
−→a ,−→x ) =

∑
S∈X

fS(
−→a ,−→x ) +

∑
S∈A

fS(
−→a ,−→x )
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Now, the inductive hypothesis applies, and we have∑
S∈X

fS(
−→a ,−→x ) = f(a1 + x1, . . . , ak−1 + xk−1, xk)

and ∑
S∈A

fS(
−→a ,−→x ) = f(a1 + x1, . . . , ak−1 + xk−1, ak)

and by applying multilinearity, we conclude that∑
S∈P([1,k])

fS(
−→a ,−→x ) =

∑
S∈X

fS(
−→a ,−→x ) +

∑
S∈A

fS(
−→a ,−→x )

= f(a1 + x1, . . . , ak−1 + xk−1, xk) + f(a1 + x1, . . . , ak−1 + xk−1, ak)

= f(−→a +−→x )

Lastly, we have

lim−→
h→0

∣∣∣f(−→a +
−→
h )− f(−→a )−

∑k
i=1 f{i}(

−→a ,
−→
h )
∣∣∣∣∣∣−→h ∣∣∣

= lim−→
h→0

∣∣∣∑S∈P([1,k]) fS(
−→a ,

−→
h )− f(−→a )−

∑k
i=1 f{i}(

−→a ,
−→
h )
∣∣∣

|
−→
h |

Now, after cancelling, the numerator will be left only with terms of the form fS(
−→a ,

−→
h )

where S contains at least two elements, and fS is therefore n-linear for n > 1. Thus
the first part of this proof shows that the quotient goes to 0.
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Exercise 2-15 Regard an n×n matrix as a point in the n-fold product Rn× . . .×Rn
by considering each column as a member of Rn. (Note: Spivak considers the rows
as elements of Rn, but we use columns here for convention.)

(a) Prove that det : Rn × . . .× Rn → R is differentiable and

D(det)(a1, . . . , an)(x1, . . . , xn) =

n∑
i=1

det

 | | |
a1 . . . xi . . . an
| | |


(b) If aij : R → R are differentiable, let A(t) be the matrix such that A(t)ij =

aij(t). If f(t) = det(A(t)), show that

f ′(t) =

n∑
j=1

det

a11(t) . . . a′1j(t) . . . a1n(t)
...

...
...

an1(t) . . . a′nj(t) . . . ann(t)


(c) If det(A(t)) ̸= 0 for all t and b1, . . . , bn : R → R are differentiable, let s1, . . . , sn :

R → R be the functions such that s1(t), . . . , sn(t) are solutions of the equations

n∑
j=1

aij(t)sj(t) = bi(t)

Show si is differentiable and find s′i(t).

(a) Proof. We take it for granted that det is multilinear, as this is one possible definition of
the determinant, and otherwise can easily be concluded from Laplace expansion along
various columns. Then det is differentiable by Exercise 2-14 part (b), and moreover
the result from that problem shows that

D(det)(a1, . . . , an)(x1, . . . , xn) =

n∑
i=1

det

 | | |
a1 . . . xi . . . an
| | |


(b) Proof. Note that f ′(t) is just a number, so we ignore the distinction between Df(t)
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and f ′(t). By the chain rule, and using the result from part (a),

Df(t) = D

det ◦


a11...
an1

 , . . . ,
a1n...
ann



 (t)

= D(det)


a11(t)...
an1(t)

 , . . . ,
a1n(t)...
ann(t)




a

′
11(t)
...

a′n1(t)

 , . . . ,
a

′
1n(t)
...

a′nn(t)




=

n∑
i=1

det

 | | |
a1(t) . . . a′i(t) . . . an(t)
| | |


(c) For any fixed t, we essentially have the condition thata11(t) . . . a1n(t)

...
. . .

...
an1(t) . . . ann(t)


s1(t)...
sn(t)

 =

b1(t)...
bn(t)


or more concisely, we can write

A(t)−→s (t) =
−→
b (t)

Since we are given that detA(t) ̸= 0, we know that A(t) is invertible. Then by
Cramer’s Rule,

si(t) =
det(Ai(t))

det(A(t))

where

Ai(t) =

a11(t) . . . b1(t) . . . a1n(t)
...

...
...

an1(t) . . . bn(t) . . . a1n(t)


Then si(t) is differentiable as the quotient of differentiable functions. To calculate
s′i(t), we have

s′i(t) =
det(A(t))D(det ◦Ai)(t)− det(Ai(t))D(det ◦A)(t)

[det(A(t))]2
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Define the following matrices for convenience:

Aj(t) =

 | | |
a1(t) . . . a′j(t) . . . an(t)
| | |



Aji (t) =



 | | | |
a1(t) . . . a′j(t) . . . bi(t) . . . an(t)

| | | |

 , i ̸= j

 | | |
a1(t) . . . b′i(t) . . . an(t)

| | |

 , i = j

Then the results from part (b), and the quotient rule,

s′i(t) =
det(A(t))

∑n
j=1 detA

j
i (t)− det(Ai(t))

∑n
j=1 detA

j(t)

[det(A(t))]2

Exercise 2-16 Suppose f : Rn → Rn is differentiable and has a differentiable inverse
f−1 : Rn → Rn. Show that

(f−1)′(a) = [f ′(f−1(a))]−1

Proof. By definition,
f ◦ f−1 = Id

Since both f and f−1 are differentiable, we can apply the chain rule in matrix form:

In = f ′(f−1(a)) · (f−1)′(a)

Since both f ′(f−1(a)) and (f−1)′(a) are n×n matrices, being single sided inverses is equiv-
alent to being inverses, so we conclude that

(f−1)′(a) = [f ′(f−1(a))]−1
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Exercise 2-17 Find the partial derivatives of the following functions:

(a) f(x, y, z) = xy

(b) f(x, y, z) = z

(c) f(x, y) = sin(x sin y)

(d) f(x, y, z) = sin(x sin(y sin z))

(e) f(x, y, z) = xy
z

(f) f(x, y, z) = xy+z

(g) f(x, y, z) = (x+ y)z

(h) f(x, y) = sin(xy)

(i) f(x, y) = [sin(xy)]cos 3

(a)

D1f(x, y, z) = yxy−1

D2f(x, y, z) = xy lnx

D3f(x, y, z) = 0

(b)

D1f(x, y, z) = 0

D2f(x, y, z) = 0

D3f(x, y, z) = 1

(c)

D1f(x, y) = sin y cos(x sin y)

D2f(x, y) = x cos y cos(x sin y)

(d)

D1f(x, y, z) = sin(y sin z) cos(x sin(y sin z))

D2f(x, y, z) = x sin z cos(y sin z) cos(x sin(y sin z))

D3f(x, y, z) = xy cos z cos(y sin z) cos(x sin(y sin z))

(e)

D1f(x, y, z) = yzxy
z−1

D2f(x, y, z) = zyz−1xy
z

lnx

D3f(x, y, z) = yzxy
z

lnx ln y
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(f)

D1f(x, y, z) = (y + z)xy+z−1

D2f(x, y, z) = xzxy lnxy+z lnx

D3f(x, y, z) = xy+z lnx

(g)

D1f(x, y, z) = z(x+ y)z−1

D2f(x, y, z) = z(x+ y)z−1

D3f(x, y, z) = (x+ y)z ln(x+ y)

(h)

D1f(x, y) = y cos(xy)

D2f(x, y) = y cos(xy)

(i)

D1f(x, y) = y cos 3[sin(xy)]cos 3−1 cos(xy)

D2f(x, y) = x cos 3[sin(xy)]cos 3−1 cos(xy)

Exercise 2-18 If g : R → R is continuous, find the partial derivatives of each of the
following functions:

(a) f(x, y) =
∫ x+y
a

g

(b) f(x, y) =
∫ x
y
g

(c) f(x, y) =
∫ xy
a
g

(d) f(x, y) =
∫ (

∫ y
b
g)

a
g

(a) By the fundamental theorem of calculus,

D1f(x, y) = g(x+ y)

D2f(x, y) = g(x+ y)

(b) Let a ∈ R. Then ∫ x

y

g =

∫ x

a

g −
∫ y

a

g

so

D1f(x, y) = g(x)

D2f(x, y) = −g(y)
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(c)

D1f(x, y) = yg(xy)

D2f(x, y) = xg(xy)

(d)

D1f(x, y) = 0

D2f(x, y) = g

(∫ y

b

g

)
g(y)

Exercise 2-19 If

f(x, y) = xx
xx
y

+ (lnx)(arctan(arctan(arctan(sin(cosxy)− ln(x+ y)))))

Find D2f(1, y).

Since we are calculating D2, we treat x as constant, and in particular, we can substitute in
x = 1. So we have

g2(y) = f(1, y) = 11
11
y︸ ︷︷ ︸

=1

+(ln 1)︸ ︷︷ ︸
=0

(arctan(arctan(arctan(sin(cos y)− ln(1 + y)))))

So g2(y) = 1 for all y, and thus g′2(y) = D2f(1, y) = 0.

Exercise 2-20 Find the partial derivatives of f in terms of g, h, g′, h′.

(a) f(x, y) = g(x)h(y)

(b) f(x, y) = g(x)h(y)

(c) f(x, y) = g(x)

(d) f(x, y) = g(y)

(e) f(x, y) = g(x+ y)

(a)

D1f(x, y) = h(y)g′(x)

D2f(x, y) = g(x)h′(y)

(b)

D1f(x, y) = h(y)g(x)h(y)−1

D2f(x, y) = g(x)h(y) ln(g(x))
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(c)

D1f(x, y) = g′(x)

D2f(x, y) = 0

(d)

D1f(x, y) = 0

D2f(x, y) = g′(y)

(e)

D1f(x, y) = g′(x+ y)

D2f(x, y) = g′(x+ y)

Exercise 2-21 Let g1, g2 : R2 → R be continuous. Define f : R2 → R by

f(x, y) =

∫ x

0

g1(t, 0)dt+

∫ y

0

g2(x, t)dt

(a) Show that D2f(x, y) = g2(x, y).

(b) How should f be defined such that D1f(x, y) = g1(x, y)?

(c) Find a function f : R2 → R such that D1f(x, y) = x and D2f(x, y) = y. Find
one such that D1f(x, y) = y and D2f(x, y) = x.

(a) Proof. Define
h2(y) := f(x, y)

Then

D2f(x, y) = h′2(y) =
d

dy

∫ x

0

g1(t, 0)dt+
d

dy

∫ y

0

g2(x, t)dt

Since the first integral is constant with respect to y,

d

dy

∫ x

0

g1(t, 0)dt = 0

By the fundamental theorem of calculus,

d

dy

∫ y

0

g2(x, t)dt = g2(x, y)

Thus
D2f(x, y) = h′2(y) = g2(x, y)
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(b) Define

f(x, y) =

∫ x

0

g1(t, y)dt+

∫ y

0

g2(0, t)dt

Then by a similar argument as above, D1f(x, y) = g1(x, y).

(c) The function f(x, y) = x2

2 + y2

2 satisfies

D1f(x, y) = x,D2f(x, y) = y

The function f(x, y) = xy satisfies

D1f(x, y) = y,D2f(x, y) = x

Exercise 2-22 If f : R2 → R and D2f = 0, show that f is independent of the second
variable. If D1f = D2f = 0, show that f is constant.

Proof. Fix some x ∈ R, and define hx(y) = f(x, y). Since D2f = 0, h′x(y) = 0 everywhere,
so hx is constant. Thus for any y1, y2 ∈ R,

f(x, y1) = hx(y1) = hx(y2) = f(x, y2)

and thus f is independent of the second variable.

When D1f = 0, f is independent of the first variable as well. Moreover, we showed in
Exercise 2-3 that functions which are independent of both variables are constant, so f is
constant.

Exercise 2-23 Let A = {(x, y) ∈ R2 : x < 0, or x ≥ 0 and y ̸= 0}.

(a) If f : A→ R and D1f = D2f = 0, show that f is constant.

(b) Find a function f : A→ R such that D2f = 0 but f is not independent of the
second variable.

Note: The set A as defined here is the plane excluding the nonnegative x-axis.

(a) Proof. Let (x1, y1), (x2, y2) ∈ R2 be arbitrary. Suppose y1 ̸= 0 and y2 ̸= 0. Define
gx(y) = f(x, y) and hy(x) = f(x, y). Pick some a < 0. Then

f(x1, y1)− f(x2, y2) = f(x1, y1)− f(a, y1) + f(a, y1)− f(a, y2) + f(a, y2)− f(x2, y2)

= hy1(x1)− hy1(a) + ga(y1)− ga(y2) + hy2(a)− hy2(x2)

Since y1 ̸= 0, hy1 is defined on all of R and h′y1 is identically, hy1 is constant. Similarly,
hy2 is constant, and ga is also constant since a < 0. Thus

f(x1, y1)− f(x2, y2) = hy1(x1)− hy1(a)︸ ︷︷ ︸
=0

+ ga(y1)− ga(y2)︸ ︷︷ ︸
=0

+hy2(a)− hy2(x2)︸ ︷︷ ︸
=0

= 0
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The case where y1 = 0 or y2 = 0 is proved similarly. (Geometrically, we have connected
the points (x1, y1) and (x2, y2) using three segments, but this can be adjusted to use
only two or one if either y-coordinate is 0.) Thus f(x1, y1) = f(x2, y2) for all points,
and thus f is constant.

(b) Define f : A→ R by

f(x, y) =

{
1, x = 0, y > 0

0, otherwise

Pick some point (x, y). Then there exists an interval (y − ε, y + ε) ⊆ A. Moreover, f
is constant on this interval. Thus D2f(x, y) = 0 everywhere, but f is not constant.

Exercise 2-24 Define f : R2 → R by

f(x, y) =

{
xy x

2−y2
x2+y2 , (x, y) ̸= 0

0, (x, y) = 0

(a) Show that D2f(x, 0) = x for all x and D1f(0, y) = −y for all y.

(b) Show that D1,2f(0, 0) ̸= D2,1f(0, 0).

(a) Proof. Define gx(y) = g(x, y) and hy(x) = f(x, y). Then

D2f(x, 0) = g′x(0)

=
d

dy

(
xy
x2 − y2

x2 + y2

)∣∣∣∣
y=0

=

(
x
x2 − y2

x2 + y2
+ xy

−2x2y − 2y3 − 2x2y + 2y3

(x2 + y2)2

)∣∣∣∣
y=0

= x
x2

x2

And

D1f(0, y) = h′y(0)

=
d

dx

(
xy
x2 − y2

x2 + y2

)∣∣∣∣
x=0

=

(
y
x2 − y2

x2 + y2
+ xy

2x3 + 2xy2 − 2x3 + 2xy2

(x2 + y2)2

)∣∣∣∣
x=0

= y
−y2

y2

= −y
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(b) Taking the derivative of the functions we computed in part (a),

D1,2f(0, 0) =
d

dy
D1f(0, y) =

d

dy
(−y) = −1

D2,1f(0, 0) =
d

dx
D2f(x, 0) =

d

dx
x = 1

so
D1,2f(0, 0) = −1 ̸= 1 = D2,1f(0, 0)

Exercise 2-25 Define f : R → R by

f(x) =

{
e−x

−2

, x ̸= 0

0, x = 0

Show that f is C∞, and f (i)(0) = 0 for all i.

Proof. For points x ̸= 0, we have

f ′(x) =
2

x3
e−x

−2

and

f ′′(x) =
−6

x4
e−x

−2

+
4

x6
e−x

−2

Claim: In general, for any i > 0 and x ̸= 0, f (i)(x) is composed of terms of the form

a

xb
e−x

−2

, a ∈ Z, b ∈ Z≥0

We prove this by induction. As shown, we already know this is true for i = 1, 2. Now
suppose it is true for i = k. Then for k + 1, it is sufficient to show that each term of the
above form differentiates into further terms of that form. Differentiating,

d

dx

a

xb
e−x

−2

=
−ab
xb+1

e−x
−2

+
2a

xb+3
e−x

−2

and the two terms are also of the form requested. Thus the claim is proved. This shows
that f (i)(x) exists for all i when x ̸= 0.

For x = 0, we use L’Hopital’s rule:

f ′(0) = lim
h→0

e−h
−2

h

= lim
h→0

1
h

eh−2

(LH) = lim
h→0

− 1
h2

−2h−3eh−2

= lim
h→0

h

2eh−2

= 0
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Similarly, for higher derivatives, we can apply the claim proved above to write

f (i)(x) =

n∑
j=1

aj
xbj

e−x
−2

, aj ∈ Z, bj ∈ Z≥0

for some finite n. Then

f (i+1)(0) = lim
h→0

f (i)(h)

h

= lim
h→0

∑n
j=1

aj

hbj
e−h

−2

h

=

n∑
j=1

(
lim
h→0

aj
hbj+1

e−h
−2

)

=

n∑
j=1

(
aj lim

h→0

1

hbj+1

eh−2

)

(LH) =

n∑
j=1

(
aj lim

h→0

−(bj+1)

hbj+2

−2
h3 eh

−2

)

=

n∑
j=1

(
aj
bj + 1

2
lim
h→0

ex
−2

hbj−1

)
...

= 0

Thus f (i)(x) exists for all i, x, so f is C∞, and f (i)(0) = 0 for all i.
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Exercise 2-26 Let

f(x) =

{
e−(x−1)−2

e−(x+1)−2

, x ∈ (−1, 1)

0, x /∈ (−1, 1)

(a) Show that f : R → R is a C∞ function which is positive on (−1, 1) and 0
elsewhere.

(b) Show that there is a C∞ function s : R → [0, 1] such that s(x) = 0 for x ≤ 0
and s(x) = 1 for x ≥ ε.

(c) If a = (a1, . . . , an) ∈ Rn, define ga : Rn → R by

ga(x) = ga(x1, . . . , xn) = f(
x1 − a1

ε
) · . . . · f(xn − an

ε
)

Show that ga is a C∞ function which is positive on

(a1 − ε, a1 + ε)× . . .× (an − ε, an + ε)

(d) If A ⊆ Rn is open and C ⊆ A is compact, show that there is a nonnegative C∞

function h : A → R such that f(x) > 0 for x ∈ C and f = 0 outside of some
closed set contained in A.

(e) Show that we can choose such an h so that h : A → [0, 1] and h(x) = 1 for
x ∈ C.

(a) Proof. By definition, f is 0 outside of (−1, 1), and it must be positive on (−1, 1) since
each of the exponential factors are positive.

To show that f is C∞, define f1, f2 : (−1, 1) → R by

f1(x) = e−(x−1)−2

f2(x) = e−(x+1)−2

We proved in Exercise 2-25 that both f1, f2 are C∞, so

f ′(x) = f1(x)f
′
2(x) + f ′1(x)f2(x)

and higher order derivatives will in general be sums of products of f
(i)
1 (x) and f

(j)
2 (x),

which all exist and are continuous. Thus f is C∞.

(b) Proof. Fix ε > 0. Then define

s(x) =


1, x ≥ 2ε

f(1− x
ε )

f( xε )+f(1−
x
ε )
, −ε < x < 2ε

0, x ≤ −ε
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By definition, s(x) = 0 for x ≤ −ε and s(x) = 1 for x ≥ 2ε.

On the interval (−ε, 0], 1− x
ε ≥ 1, so f(1− x

ε ) = 0 and thus s = 0. So s = 0 for any
x ≤ 0.

Similarly, for the interval [ε, 2ε), xε ≥ 1, so f(xε ) = 0 and

s(x) =
f(1− x

ε )

f(1− x
ε )

= 1

So s = 1 for any x ≥ ε.

To prove that s is C∞, we can obvioulsy ignore the constant regions.

On (0, ε), at least one of f(xε ), f(1−
x
ε ) will be positive, so the quotient rule says that

s′(x) exists. In general, we can continue to apply the quotient rule, since the quotient
will never be zero, and f is smooth. Thus s(i)(x) exists and is continuous for all i and
x ∈ (0, ε), and we conclude that s is C∞.

(c) Proof. The fact that ga is positive follows from the fact that for each i,∣∣∣∣xi − ai
ε

∣∣∣∣ < 1

so f(xi−aiε ) > 0. Thus their product ga is positive.

To show that ga is C∞, we need to prove that the mixed partials of all orders exist.
Here, we can actually prove a more general result:

Lemma

If f1, . . . , fn : R → R are C∞, then f : Rn → R defined by

f(x1, . . . , xn) := f1(x1) · . . . · fn(xn)

is C∞.

Proof. To prove that derivatives of all orders exist and are continuous, pick any index
i. Then define

gi(xi) = fi(xi)

∏
j ̸=i

fj(xj)


Then gi(xi) is just a constant multiple of fi(xi), so g

′
i(xi) exists. Moreover, f ′i is also

C∞, so the function

Dif(x1, . . . , xn) = f1(x1) . . . f
′
i(xi) . . . fn(xn)

satisfies the hypotheses of this lemma and we can differentiate it again using the above
method. So derivatives of all orders exist and are continuous. Thus f is C∞.

We can then apply the above lemma to conclude that ga is C∞.
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(d) Proof. For each x = (x1, . . . , xn) ∈ C, there exists εx such that the rectangle

Rx = (x1 − εx, x1 + εx)× . . .× (xn − εx, xn + εx) ⊆ A

In fact, we may choose εx small enough such that the closed rectangle is contained in
A as well. Let O be the collection of Rx for x ∈ C. Since C is compact, we pick a
finite subcover O′ = {Rxi}

m
i=1. Then define h : A→ R by

h(x1, . . . , xn) =

m∑
i=1

gxi(x1, . . . , xn)

h is C∞ since it is the product of C∞ functions (by the lemma in part (d)). For any
y ∈ C, O′ covers C, so y ∈ Rxi for some xi. Then gxi > 0, and each other gxj is at
least nonnegative, so h(y) > 0.

Now let Rxi be the closed rectangle about xi.

B =

m⋃
i=1

Rxi

We showed that we can pick ε small enough that Rxi ⊆ A. Thus B is a closed set
contained in A. Moreover, if y /∈ B, then y /∈ Rxi for any i, and hence h(y) = 0. So h
is 0 on outside of a closed set contained in A.

(e) Proof. Since h is C∞, it is continuous, and hence achieves a minimum value on C.
Since h is positive on C, this minimum value ε = minx∈C h(x) is positive. Let sε :
R → [0, 1] be as defined in part (b). Then the function

sε ◦ h : Rn → [0, 1]

is still C∞ (since the composition of C∞ functions is C∞ using repeated applications of
the chain rule, similarly to the lemma in part (c)). Letting B be as defined previously,
if y /∈ B then h(y) = 0, so sε(h(y)) = sε(0) = 0. Thus sε ◦h is still of the form in part
(d).

Moreover, whenever x ∈ C, h(x) ≥ ε so sε(h(x)) = 1.

Exercise 2-27 Define g, h : {x ∈ R2 : |x| ≤ 1} → R3 by

g(x, y) = (x, y,
√
1− x2 − y2)

h(x, y) = (x, y,−
√
1− x2 − y2)

Let f : {x ∈ R3 : |x| = 1} : R. Show that the maximum of f is either the maximum
of f ◦ g or the maximum of f ◦ h on {x ∈ R2 : |x| ≤ 1}.

Proof. Let D2 = {x ∈ R2 : |x| ≤ 1} and C3 = {x ∈ R3 : |x| = 1}. Then supposing that
f has a maximum m = maxx∈D2

f(x), then there exists at least one point x = (x1, x2, x3)
such that f(x) = m. Then we have the cases x3 ≥ 0 and x3 < 0.
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Case 1: Since |x| = 1, x21 + x22 + x23 = 1, and hence

x3 =
√

1− x21 − x22

Thus we have g(x1, x2) = x, so (f ◦ g)(x1, x2) = m. (f ◦ g) certainly cannot achieve a
higher value, or else it would contradict m being the maximum of f , so m is also the
maximum of g.

Case 2: Similar to Case 1, but we use h(x1, x2) instead, and we find that (f ◦ h) achieves the
maximum m.

Thus we see that m is the maximum of at least one of f ◦ g or f ◦ h on D2.

Exercise 2-28 Find expressions for the partial derivatives of the following functions:

(a) F (x, y) = f(g(x)k(y), g(x) + h(y))

(b) F (x, y, z) = f(g(x+ y), h(y + z))

(c) F (x, y, z) = f(xy, yz, zx)

(d) F (x, y) = f(x, g(x), h(x, y))

(a) Let f(∗) = f(g(x)k(y), g(x) + h(y)). Using the chain rule for partial derivatives,

D1F (x, y) = D1f(∗)Dx[g(x)k(y)] +D2f(∗)Dx[g(x) + h(y)]

= k(y)g′(x)D1f(∗) + g′(y)D2f(∗)
D2F (x, y) = D1f(∗)Dy[g(x)k(y)] +D2f(∗)Dy[g(x) + h(y)]

= g(x)k′(y)D1f(∗) + h′(y)D2f(∗)

(b) Let f(∗) = f(g(x+ y), h(y + z)). Then

D1F (x, y, z) = D1f(∗)Dxg(x+ y) +D2f(∗)Dxh(y + z)

= g′(x+ y)D1f(∗)
D2F (x, y, z) = D1f(∗)Dyg(x+ y) +D2f(∗)Dyh(y + z)

= g′(x+ y)D1f(∗) + h′(y + z)D2f(∗)
D3F (x, y, z) = D1f(∗)Dzg(x+ y) +D2f(∗)Dzh(y + z)

= h′(y + z)D2f(∗)

(c) Let f(∗) = f(xy, yz, zx). Omitting zero terms,

D1F (x, y, z) = yxy−1D1f(∗) + zx ln zD3f(∗)
D2F (x, y, z) = xy lnxD1f(∗) + zyz−1D2f(∗)
D3F (x, y, z) = yz ln yD2f(∗) + xzx−1D3f(∗)
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(c) Let f(∗) = f(x, g(x), h(x, y)). Then

D1F (x, y) = D1f(∗) + g′(x)D2f(∗) +D1h(x, y)D3f(∗)
D2F (x, y) = D2h(x, y)D3f(∗)

Exercise 2-29 Let f : Rn → R. For −→x ∈ Rn, if the limit

lim
t→0

f(a+ t−→x )− f(a)

t

exists, it is called the directional derivative of f at a in the direction −→x , denoted
D−→x (a).

(a) Show that Deif(a) = Dif(a).

(b) Show that Dt−→x f(a) = tD−→x f(a).

(c) If f is differentiable at a, show that D−→x f(a) = Df(a)(−→x ) and therefore
D−→x+−→y f(a) = D−→x f(a) +D−→y f(a).

(a) Proof. Immediate from the definitions.

(b) Proof. Fix t ∈ R. Then

lim
s→0

f(a+ s(t−→x ))− f(a)

s
= t lim

s→0

f(a+ st−→x )− f(a)

st

= t lim
st→0

f(a+ (st)−→x )− f(a)

(st)

= tD−→x (a)

(c) Proof. Since the derivative exists, we know that

lim
t−→x→0

f(a+ t−→x )− f(a)−Df(a)(t−→x )
t|−→x |

= 0

We can multiply both sides by |−→x | to clear the denominator, and apply linearity of
Df(a) to see that

lim
t→0

f(a+ t−→x )− f(a)− tDf(a)(−→x )
t

= 0

=⇒ lim
t→0

f(a+ t−→x )− f(a)

t
= Df(a)(−→x )

and thus Df(a)(−→x ) = D−→x f(a). Since Df(a) is linear,

D−→x+−→y f(a) = Df(a)(−→x +−→y )
= Df(a)(−→x ) +Df(a)(−→y )
= D−→x f(a) +D−→y f(a)
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Exercise 2-30 Let f be defined as in Exercise 2-4. Show that D−→x f(0, 0) exists for
all x, but if g ̸= 0, then D−→x+−→y f(0, 0) = D−→x f(0, 0) + D−→y f(0, 0) is not true for all
x, y.

Proof. The result of Exercise 2-4 part (a) says that for x ∈ R2, defining hx(t) = f(tx) means
that hx is differentiable at (0, 0). This means that D−→x f(0, 0) exists for all

−→x . Similarly, as
the result in part (b) shows, De1f(0) = De2f(0) = 0. However, if g is nonzero, then we can
take a directional derivative in some direction which is a linear combination of e1 and e2,
so the linearity condition fails.

Exercise 2-31 Let f : R2 → R be defined as in Exercise 1-26. Show that Dxf(0, 0)
exists for all x, even though f is not continuous at (0, 0).

Proof. As we showed in the proof of Exercise 1-26 part (b), f is 0 in an interval about (0, 0)
in each direction, and is thus differentiable.

Exercise 2-32

(a) Let f : R → R be defined by

f(x) =

{
x2 sin 1

x , x ̸= 0

0, x = 0

Show that f is differentiable at 0 but f ′ is not continuous at 0.

(b) Let f : R2 → R be defined by

f(x, y) =

{
(x2 + y2) sin 1√

x2+y2
, (x, y) ̸= 0

0, (x, y) = 0

Show that f is differentiable at (0, 0) but Dif is not continuous at (0, 0).

(a) Proof. Let ε > 0. Then whenver |x− 0| < δ = ε, we have∣∣∣∣f(x)− f(0)

x
− 0

∣∣∣∣ = ∣∣∣∣f(x)x
∣∣∣∣ = ∣∣∣∣x sin 1

x

∣∣∣∣ < ε

Thus f is differentiable at 0 with f ′(0) = 0.

If we differentiate f elsewhere, we find that

f ′(x) =

{
2x sin 1

x − cos 1
x , x ̸= 0

0, x = 0
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But

lim
x→0

2x sin
1

x
− cos

1

x
= − lim

x→0
cos

1

x

which doesn’t exist. Thus f ′ is not continuous at 0 (it has an oscillating discontinuity).

(b) Proof. Let ε > 0. Then whenever |(x, y)| =
√
x2 + y2 < δ = ε, we have∣∣∣∣f(x, y)− f(0, 0)

|(x, y)|

∣∣∣∣ =
∣∣∣∣∣ f(x, y)√

x2 + y2

∣∣∣∣∣ =
∣∣∣∣∣√x2 + y2 sin

1√
x2 + y2

∣∣∣∣∣ ≤√x2 + y2 < ε

Thus

lim
(x,y)→(0,0)

|f(x, y)− f(0, 0)− 0(x, y)|
|(x, y)|

= 0

so Df(0, 0) exists and is the zero transformation. But in the directions e1, e2, f is
simply the single variable case considered in part (a), so we knowDif is not continuous
at (0, 0).

Exercise 2-33 Show that the continuity of D1f
j at a may be eliminated from the

hypothesis of Theorem 2-8.

Proof. In the proof of Theorem 2-8, we attempted to prove that

lim−→
h→0

∣∣∣f (−→a + [
−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = 0

for all j. We did this by using the continuity ofDjf at a to extend its differentiability nearby.
However, in the case of the first partial derivative D1f , the continuous differentiability
condition already shows us that

lim−→
h→0

|f(−→a + h1e1)− f(−→a )−D1f(
−→a )h1|∣∣∣−→h ∣∣∣ = 0

so we can omit continuity. (Obviously, any other direction would also work.)

Exercise 2-34 A function f : Rn → R is homogeneous of degree m if f(tx) =
tmf(x) for all x. If f is also differentiable, show that

n∑
i=1

xiDif(x) = mf(x)
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Proof. Define g(t) = f(tx). Then Dxf(x) = g′(1). Moreover, we showed in Exercise 2-30
that D∗ is linear, so

Dxf(x) =

n∑
i=1

xiDif(x)

At the same time, we know that g(t) = f(tx) = tmf(x). Differentiating with respect to t,

g′(x) = mtm−1f(x)

so
n∑
i=1

xiDif(x) = Dxf(x) = g′(1) = mf(x)

Exercise 2-35 If f : Rn → R is diferentiable and f(0) = 0, prove that there exist
gi : Rn → R such that

f(x) =

n∑
i=1

xigi(x)

Proof. Since f is differentiable, the directional derivative Dxf(tx) exists for all t, x. Define
hx(t) = f(tx). Then h′x(t) = Dxf(tx). Thus hx is differentiable. Then by the fundamental
theorem of calculus,

f(x) = f(1x) =

∫ 1

0

h′x(t)dt =

∫ 1

0

Dxf(tx)dt

Since D∗ is linear with respect to direction, we then have

f(x) =

∫ 1

0

n∑
i=1

xiD1f(tx)dt =

n∑
i=1

xi

∫ 1

0

D1f(tx)dt

Then defining gi(x) =
∫ 1

0
D1f(tx)dt, we have found gi satisfying

f(x) =

n∑
i=1

xigi(x)

Exercise 2-36 Let A ⊆ Rn be an open set and f : A → Rn a continuously differ-
entiable one-to-one function such that det f ′(x) ̸= 0 for all x. Show that f(A) is an
open set and f−1 : f(A) → A is differentiable. Show also that f(B) is open for any
open set B ⊆ A.

Proof. Let y ∈ f(A). Then since f is one-to-one, there exists a unique x ∈ A such that
f(x) = y. Since f is continuously differentiable at x and det f ′(x) ̸= 0, the Inverse Function
Theorem tells us there exist open sets V ⊆ A containing x andW ⊆ Rn such that f : V →W
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has an inverse. ThusW ⊆ f(A) and y ∈W , so f(A) is open. Moreover, the Inverse Function
Theorem also says f−1 is differentiable at y. But this is true for every y ∈ f(A), so f−1

is differentiable. Lastly, let B ⊆ A be open. Then the restriction f : B → Rn is also
continuously differentiable and one-to-one, so f(B) is open.

Exercise 2-37

(a) Let f : R2 → R be a continuously differentiable function. Show that f is not
one-to-one.

(b) Generalize this result to the case of a continuously differentiable function f :
Rn → Rm with m < n.

(a) Proof. If D1f(x, y) = 0 for all (x, y) ∈ R2, then f is independent of the first variable
and is not one-to-one. So suppose there exists some (x1, y1) ∈ R2 withD1f(x1, y1) ̸= 0.
Since f is continuously differentiable, there exists an open set A containing (x1, y1)
such that D1f(x, y) ̸= 0 for any (x, y) ∈ A. Then define g : A → R2 by g(x, y) =
(f(x, y), y). Then the derivative is given by

g′(x, y) =

[
D1f(x, y) D2f(x, y)

0 1

]
=⇒ det g′(x, y) = D1f(x, y) ̸= 0

In particular, det g′(x1, y1) ̸= 0. Then by the Inverse Function Theorem, there exists
an open set V containing (x1, y1) and an open set W containing (f(x1, y1), y1) such
that g : V → W has a continuous, differentiable inverse g−1 : W → V . Then pick
some y2 ̸= y1 such that (f(x1, y1), y2) ∈W . Then we have

g(g−1(f(x1, y1), y2)) = (f(x1, y1), y2)

but by definition,

g(g−1(f(x1, y1), y2)) = (f(g−1(f(x1, y1), y2)), g
−1
2 (f(x1, y1), y2))

So
f(x1, y1) = f(g−1(f(x1, y1), y2))

While the x coordinate of g−1(f(x1, y1), y2) is unknown, the y coordinate is certainly
y2. Thus we have

f(x1, y1) = f(∗, y2)
But we mandated that y1 ̸= y2, so (x1, y1) ̸= (∗, y2). So f is not one-to-one.

(b) Proof.

Exercise 2-38

(a) If f : R → R satisfies f ′(a) ̸= 0 for all a ∈ R, show that f is one-to-one (on all
of R).

(b) Define f : R2 → R2 by f(x, y) = (ex cos y, ex sin y). Show that det f ′(x, y) ̸= 0
for all (x, y) but f is not one-to-one.

124



(a) Proof. Suppose without loss of generality that f ′(a) > 0 for some a ∈ R. One can
prove in single variable analysis that if g = f ′ for some function f , then g satisfies the
intermediate value property. If f ′(b) < 0 for some b ∈ R, then there exists c between
a and b such that f ′(c) = 0, contradicting the assumption. So we must have f ′(x) > 0
for all x. Thus f is strictly increasing (or decreasing), so it is one-to-one.

(b) Proof. The Jacobian matrix is given by

f ′(x, y) =

[
ex cos y ex sin y
−ex sin y ex cos y

]
so

det f ′(x, y) = ex(sin2 y + cos2 y) = ex ̸= 0

But for any (x, y), we have
f(x, y) = f(x, y + 2π)

so f is not one-to-one.

Exercise 2-39 Use the function f : R → R defined by

f(x) =

{
x
2 + x2 sin 1

x , x ̸= 0

0, x = 0

To show that continuity of the derivative cannot be eliminated from the hypothesis
of the Inverse Function Theorem.

First, we verify that f is differentiable at 0. We have

lim
h→0

f(h)− f(0)

h
= lim
h→0

1

2
+ h sin

1

h
=

1

2
+ lim
h→0

h sin
1

h
=

1

2

and by the formula f is clearly differentiable everywhere else. So f is differentiable in an
open set around 0. However, I claim that for any open set V around 0, f is not injective
onto f(V ).

To see this, let V be an open set aroud 0. Then pick n large enough that

a =
1

2πn
∈ V

Now, we have

f ′(a) =
1

2
+ 2a sin

1

a
− cos

1

a
=

1

2
− 1 = −1

2
< 0

Thus there exists b < a with f(b) > f(a) and b > 0. Now, pick m large enough that

c =
1

2πm
< b

Then we have
f(c) =

c

2
<
a

2
= f(a)
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So f(c) < f(a) < f(b), and b ∈ [c, a]. Pick some y with f(a) < y < f(b). By the
Intermediate Value Theorem, there exists x1 ∈ (c, b) with f(x1) = y, and x2 ∈ (b, a) with
f(x2) = y, so f is not one-to-one onto f(V ). Thus the Inverse Function Theorem is false
for f .

Exercise 2-40 Use the implicit function theorem to redo Problem 2-15 (c). For
reference, this problem is reprinted here:

If aij : R → R are differentiable, let A(t) be the matrix such that A(t)ij = aij(t). If
det(A(t)) ̸= 0 for all t and b1, . . . , bn : R → R are differentiable, let s1, . . . , sn : R → R
be the functions such that s1(t), . . . , sn(t) are the solutions of the equations

n∑
j=1

aji(t)sj(t) = bi(t)

Show that si is differentiable and find s′i(t).

Proof. Define F : R× Rn → Rn such that the component functions are given by

F i(t, x) = −bi(t) +
n∑
j=1

aji(t)xj

Then F i can alternately be written as

F i = −bi ◦ (π2, . . . , πn) +

n∑
j=1

(aji ◦ π1)πj

which makes it clear that it can be written as sums, products, and compositions of differen-
tiable functions. If we assume that the aij and bi are additionally continuously differentiable,
then F is also continuously differentiable.

Now, fix t1. Let M(t, x) be the matrix with ijth entry given by Dj+1F
i(t, x). To calculate

the matrix of partial derivatives, for k ≥ 2 we have

DkF
i(t1, x) = Dk

 n∑
j=1

aji(t1)xj


=

n∑
j=1

aji(t1)ejδik

= aki(t1)ek

Thus M(t1, x) is simply the matrix [A(t1)]
T , where A(t1) has ij-th entry given by aij(t1).

By assumption, det[A(t1)]
T = detA(t1) ̸= 0, so detM(t1, x) ̸= 0 and the Implicit Function

Theorem applies. Then there exists an open set A ⊆ R containing t and a function g : A→
Rn such that

F (t, g(t)) = 0
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But this happens precisely when each component function is zero, so for each component
we have

−bi(t) +
n∑
j=1

aji(t)g
j(t) = 0 ⇐⇒

n∑
j=1

aji(t)g
j(t) = bi(t)

Thus we may let sj = gj . Since detA(t) ̸= 0 for all t we are able to ”patch” the local
definitions of gj into a global function without issue. Moreover, the Implicit Function
Theorem tells us that g is differentiable at t1, so each sj is everywhere.

To calculate s′i, we know that F i(t,−→s (t)) = 0. Taking partial derivatives on both sides, we
have

D1F
i(t,−→s (t)) = 0

D2F
i(t,−→s (t))s′1(t) = 0

D3F
i(t,−→s (t))s′2(t) = 0

...

Dn+1(t,
−→s (t))s′n(t) = 0

which we can combine as

D1F
i(t,−→s (t)) +

n∑
j=1

Dj+1F
i(t,−→s (t))s′j(t) = 0

Consider the system of equations this forms. We can rewrite it in matrix-vector multiplica-
tion using our definition of M(t, x) from above as

M(t,−→s (t))s′(t) = −(D1F
i(t,−→s (t)))

Moreover, the ith coordinate of the vector (D1F
i(t,−→s (t))) is given by

−b′i(t) +
n∑
j=1

a′ji(t)sj(t)

Since M(t,−→s (t)) is invertible by assumption, we find that

s′(t) = [M(t,−→s (t))]−1

b
′
1(t)−

∑n
j=1 a

′
j1(t)sj(t)

...
b′n(t)−

∑n
j=1 a

′
jn(t)sj(t)
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Exercise 2-41 Let f : R×R → R be differentiable. For each x ∈ R define gx : R → R
by gx(y) = f(x, y). Suppose that for each x there is a unique y with g′x(y). Then let
c(x) be this y.

(a) If D2,2f(x, y) ̸= 0 for all (x, y), show that c is differentiable and

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))

(b) Show that if c′(x) = 0, then for some y we have

D2,1f(x, y) = 0

D2f(x, y) = 0

(c) Let f(x, y) = x(y ln y − y)− y lnx. Find

max
1
2≤x≤2

(
min

1
3≤y≤1

f(x, y)

)

Note: Spivak does not include this, but we must assume that f is twice continuously
differentiable.

(a) Proof. Note that by our definition, D2f(x, y) = g′x(y). So y = c(x) precisely when
D2f(x, y) = 0. Note that D2f is a function R × R → R, and the matrix M =
(Dj+1(D2f)

i(x, y)) is simply the matrix with sole entry D2,2f(x, y). By assumption,
D2,2f(x, y) ̸= 0, so detM ̸= 0 and the Implicit Function Theorem applies to D2f , and
we conclude that c is differentiable.

Now, the function x 7→ D2f(x, c(x)) is a function R → R and is 0 everywhere, so we
can differentiate it:

D2,1f(x, c(x)) +D2,2f(x, c(x))c
′(x) = 0

which we can rearrange as

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))

(b) Proof. Pick y = c(x). Then by definition, g′x(c(x)) = 0, and D2f(x, c(x)) = g′x(c(x)),
so D2f(x, c(x)) = 0. Moreover, from part (a),

D2,1f(x, c(x)) = −c′(x)D2,2f(x, c(x)) = 0

so this choice of y works.

128



(c) For any fixed x,
min

1
3≤y≤1

f(x, y) = min
1
3≤y≤1

gx(y)

We already know that g′x(c(x)) = 0, so it is a critical point. If we calculate g′′x(y) =
D2,2f(x, y) for any y, we get

D2f(x, y) = x(ln y + 1− 1)− lnx = x ln y − lnx

D2,2f(x, y) =
x

y

which is strictly positive (as both x, y must be positive for this function to be defined).
Thus gx is concave upward, and the critical point at c(x) is in fact a global minimum.1

So if c(x) ∈ [ 13 , 1], then the minimum is at c(x). If c(x) < 1
3 , then the minimum is at

1
3 , and if c(x) > 1, then the minimum is at 1.

If we explicitly calculate c(x), we use the fact that D2f(x, c(x)) = 0 to find

ln c(x) =
lnx

x
=⇒ c(x) = e

ln x
x = x

√
x

and the derivative of this is positive, so c is strictly increasing. Thus there exists a
unique α with c(α) = 1

3 , and x < α =⇒ c(x) < 1
3 . Similarly, x > 1 =⇒ c(x) > 1.

So we can explicitly find the minimum of gx:

min
1
3≤y≤1

gx(y) =


f(x, 13 ), x < α

f(x, c(x)), α ≤ x ≤ 1

f(x, 1), x > 1

=


x(

ln 1
3

3 − 1
3 )−

ln x
3 , x < α

x( x
√
x ln x

x − x
√
x)− x

√
x lnx, α ≤ x ≤ 1

−x− lnx, x > 1

=


−x ln 3−x−ln x

3 , x < α

−x x
√
x, α ≤ x ≤ 1

−x− lnx, x > 1

Call the above function h(x). Then

h′(x) =


− ln 3−1

3 − 1
3x , x < α

d
dx (−xc(x)), α < x < 1

−1− 1
x , x > 1

=


− ln 3−1

3 − 1
3x , x < α

−c(x)− xc′(x), α < x < 1

−1− 1
x , x > 1

1Credit for work past this part to the solution presented here
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Now, since D2,2f(x, y) ̸= 0 for all x, y, part a) applies and

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))
= −

ln c(x)− 1
x

x
c(x)

= −
ln x−1
x
x
c(x)

= −c(x) lnx− 1

x2

Thus

h′(x) =


− ln 3−1

3 − 1
3x , x < α

−c(x)x+1−ln x
x , α < x < 1

−1− 1
x , x > 1

Note that x > lnx, so x+1−ln x
x > 0 and c(x) > 0, so h′(x) is negative everywhere

(except possibly the boundary points α, 1, but it is continuous there). Thus the
minimum of h on [ 12 , 2] is given when x = 1

2 . To check whether 1
2 < α, simply note

that c( 12 ) =
1
4 <

1
3 , so

1
2 < α. Thus

max
1
2≤x≤2

(
min

1
2≤y≤2

f(x, y)

)
= h

(
1

2

)
=

− ln 3− 1− 2 ln 1
2

6
=

ln 3
4 − 1

6

A.3 Chapter 3 Exercises

Exercise 3-1 Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x ∈ [0, 12 )

1, x ∈ [ 12 , 1]

Show that f is integrable and
∫
[0,1]×[0,1]

f = 1
2 .

Proof. Let ε > 0. Choose a partition P with subrectangles given by

A =

[
0,

1

2
− ε

2

]
× [0, 1]

B =

[
1

2
− ε

2
,
1

2
+
ε

2

]
× [0, 1]

C =

[
1

2
+
ε

2
, 1

]
× [0, 1]

Then

mA(f) =MA(f) = 0

mB(f) = 0,MB(f) = 1

mC(f) =MC(f) = 1

and

v(B) = ε
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So

U(f,P)− L(f,P) = v(B)(MB(f)−mB(f))

= v(B) = ε

So f is integrable by the alternate criterion for integrability. Moreover,

U(f,P) = v(A)MA(f) + v(B)MB(f) + v(C)MC(f) = v(B ⊔ C) = 1

2
+
ε

2

and similarly

L(f,P) =
1

2
− ε

2

So L ≥ 1
2 and U ≤ 1

2 , but we know that U = L so
∫
A
f = 1

2 .

Exercise 3-2 Let f : A → R be integrable and let g = f except at finitely many
points. Show that g is integrable and

∫
A
f =

∫
A
g.

Proof. Refer to Exercise 3-3. Its proof does not depend on this problem, and we will use
the fact that

∫
A
f + g =

∫
A
f +

∫
A
g when f, g are integrable.

Let ε > 0 be arbitrary. We aim to show that g − f is integrable with
∫
A
g − f = 0. Since

g ̸= f at only finitely many points, it is bounded. Let µ = max{|f − g|}. Let p1, . . . , pk be
those points where g − f ̸= 0. Let S1, . . . , Sk be the subrectangles they are in for a given
partition (pick them small enough that they are distinct). Then choose P such that

k∑
i=1

v(Si) < ε

Then

U(g − f,P)− L(g − f,P) =
∑
S∈P

[MS(g − f)−mS(g − f)]v(S)

=

k∑
i=1

[MSi(g − f)−mSi(g − f)]v(Si)

=

k∑
i=1

v(Si)

< ε

So g− f is integrable and a similar argument shows
∫
A
g− f = 0. So

∫
A
g =

∫
A
g− f + f =∫

A
g − f +

∫
A
f =

∫
Af .
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Exercise 3-3 Let f, g : A→ R be integrable.

(a) For any partition P of A and subrectangle S ∈ P, show that

mS(f) +mS(g) ≤ mS(f + g)

and
MS(f + g) ≤MS(f) +MS(g)

so that
L(f,P) + L(g,P) ≤ L(f + g,P)

and
U(f + g,P) ≤ U(f,P) + U(g,P)

(b) Show that f + g is integrable and
∫
A
f + g =

∫
A
f +

∫
A
g.

(c) For any constant c, show that
∫
A
cf = c

∫
A
f .

(a) Proof. Let S ∈ P. Then for any point x ∈ S, we have

(f + g)(x) = f(x) + g(x) ≥ mS(f) +mS(g)

Thus
mS(f) +mS(g) ≤ mS(f + g)

Similarly,
MS(f + g) ≤MS(f) +MS(g)

Thus we have

L(f,P) + L(g,P) =
∑
S∈P

v(S)[mS(f) +mS(g)]

≤
∑
S∈P

v(S)mS(f + g)

= L(f + g,P)

Similarly,
U(f + g,P) ≤ U(f,P) + U(g,P)

(b) Proof. Let ε > 0 be arbitrary. Pick P1,P2 such that

U(f1,P1)− L(f1,P1) <
ε

2

U(f2,P2)− L(f2,P2) <
ε

2
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Let Q be the common refinement of P1,P2. Then

U(f1 + f2,Q)− L(f1 + f2,Q) =
∑
S∈Q

v(S)[MS(f1 + f2)−mS(f1 + f2)]

≤
∑
S∈Q

v(S)[MS(f1) +MS(f2)−mS(f1)−mS(f2)]

= U(f1,Q) + U(f2,Q)− L(f1,Q)− L(f2,Q)

≤ U(f1,P1)− L(f1,P1) + U(f2,P2)− L(f2,P2)

< ε

So f1 + f2 is integrable and a similar argument shows
∫
A
f1 + f2 =

∫
A
f1 +

∫
A
f2.

(c) Proof. Let P be a partition and let S ∈ P. Since S is a closed rectangle, it is
compact, so there exists x ∈ S with f(x) = MS(f). Then (cf)(x) = cMS(f) so
MS(cf) ≥ cMS(f). But for any y ∈ S, we also have (cf)(y) = cf(y) ≤ cMS(f) so
MS(cf) = cMS(f). Similarly, mS(cf) = cmS(f).

Now, let ε > 0. Then there exists a partition P with

U(f,P)− L(f,P) <
ε

c

Then we have

U(cf,P)− L(cf,P) =
∑
S∈P

v(S)[MS(cf)−mS(cf)]

=
∑
S∈P

cv(S)[MS(f)−mS(f)]

= c[U(f,P)− L(f,P)]

< ε

So that cf is integrable. Now, let ε > 0 be arbitrary. Then there exists a partition P
such that

U(f,P) ≤
∫
A

f +
ε

c

Then we have

U(cf,P) ≤ c

∫
A

+ε

So
∫
A
cf = c

∫
A
f .

Exercise 3-4 Let f : A→ R and let P be a partition of A. Show that f is integrable
if and only if, for each subrectangle S ∈ P the restriction f |S of f to S is integrable,
and in this case

∫
A
f =

∑
S

∫
S
f |S .
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Proof. ( =⇒ ) Suppose that f is integrable on A, and let P be given. Let ε > 0. Then there
exists a partition P ′ of A with

U(f,P ′)− L(f,P ′) < ε

Now let Q be the common refinement of P and P ′. Then each subrectangle of Q is entirely
contained within a subrectangle of P. In other words, for any S ∈ P, we may enumerate
S1, . . . , Sk ∈ Q such that S1⊔ . . .⊔Sk = S, which means that S = {S1, . . . , Sk} is a partition
of S. Thus

U(f |S ,S)− L(f |S ,S) =
∑
S′∈S

v(S′)[MS′(f |S)−mS′(f |S)]

≤ v(S)[MS(f)−mS(f)]

≤
∑
S′′∈P

v(S′′)[MS′′(f)−mS′′(f)]

= U(f,P)− L(f,P)

< ε

So f |S is integrable on S.

( ⇐= ) Let P be given, and suppose each f |S is integrable on the resepctive S. Let ε > 0.
Then let N be the number of subrectangles in the partition P. For each S, pick a partition
PS such that

U(f |S ,PS)− L(f |S ,PS) <
ε

N

Now, suppose that PS = (PS1 , . . . ,PSn ). Then

Q1 :=
⋃
S∈P

PS1

is a partition of [a1, b1]. Let Q := (Q1, . . . ,Qn). Then Q is a refinement of P, and moreover,
for any S ∈ P, QS (which is the collection of subrectangles in Q which are contained in S)
is a refinement of PS . Thus

U(f,Q)− L(f,Q) =
∑
S′∈Q

v(S′)[MS′(f)−mS′(f)]

=
∑
S∈P

∑
S′′∈QS

v(S′′)[MS′′(f)−mS′′(f)]

≤
∑
S∈P

∑
S′′∈PS

v(S′′)[MS′′(f)−mS′′(f)]

=
∑
S∈P

[U(f |S ,PS)− L(f |S ,PS)]

<
∑
S∈P

ε

N

= ε

So f is integrable on A. A similar argument shows that
∫
A
f =

∑
S

∫
S
f |S .
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Exercise 3-5 Let f, g : A → R be integrable and suppose f ≤ g. Show that∫
A
f ≤

∫
A
g.

Proof. Let P be a partition of A. Then for any S ∈ P, MS(f) ≤MS(g). Thus

U(f,P) =
∑
S∈P

v(S)MS(f) ≤
∑
S∈P

v(S)MS(g) = U(g,P)

Since we know f and g are integrable, we conclude that∫
A

f = inf U(f,P) ≤ inf U(g,P) =

∫
A

g

Exercise 3-6 If f : A → R is integrable, show that |f | is integrable and |
∫
A
f | ≤∫

A
|f |.

Proof. Let ε > 0. Let P be a partition such that

U(f,P)− L(f,P) < ε

Let S ∈ P. If MS(f) ≥ mS(f) ≥ 0, then MS(|f |) = MS(f) and mS(|f |) = mS(f). If
mS(f) ≤ MS(f) ≤ 0, then MS(|f |) = −mS(f) and mS(|f |) = −MS(f). If MS(f) > 0 and
mS(f) < 0, then I claim that MS(|f |) ≤ max{|MS(f)|, |mS(f)|}.

To see this, note that for any x ∈ S, if f(x) < 0 then |f(x)| = −f(x) ≤ −mS(f) = |mS(f)|.
If f(x) > 0, then |f(x)| = f(x) ≤MS(f) = |MS(f)|. So MS(|f |) ≤ max{|MS(f)|, |mS(f)|}.
Using the fact that mS(|f |) ≥ 0, we have

MS(|f |)−mS(|f |) ≤MS(|f |)
≤ max{|MS(f)|, |mS(f)|}

=

{
MS(f), |MS(f)| ≥ |mS(f)|
−mS(f), |mS(f)| > |MS(f)|

≤MS(f)−mS(f)

As a result, we have the following:

MS(|f |)−mS(|f |) ≤


MS(f)−mS(f), MS(f) ≥ mS(f) ≥ 0

−mS(f)− (−MS(f)), mS(f) ≤MS(f) ≤ 0

MS(f)−mS(f), MS(f) > 0,mS(f) < 0

=MS(f)−mS(f)
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Thus, we have

U(|f |,P)− L(|f |,P) =
∑
S∈P

v(S)[MS(|f |)−mS(|f |)]

≤
∑
S∈P

v(S)[MS(f)−mS(f)]

= U(f,P)− L(f,P)

< ε

So |f | is integrable.

For any partition P, and any S ∈ P, we showed that MS(|f |) ≤ max{|Ms(f)|, |mS(f)|}.
However, we can make a stronger statement, that MS(|f |) = max{|MS(f)|, |mS(f)|}. In-
deed, since S is compact there exists x, y ∈ S with f(x) =MS(f) and f(y) = mS(f). Then
|f |(x) = |MS(f)| and |f |(y) = |mS(f)| so |f | attains the value of max{|MS(f)|, |mS(f)|}.
Thus |MS(f)| ≤MS(|f |). So∣∣∣∣∫

A

f

∣∣∣∣ ≤ |U(f,P)| =

∣∣∣∣∣∑
S∈P

v(S)MS(f)

∣∣∣∣∣ ≤ ∑
S∈P

v(S)|MS(f)| ≤
∑
S∈P

v(S)MS(|f |) = U(|f |,P)

So for any partition P, U(|f |,P) ≥ |
∫
A
f | so

∫
A
|f | ≥ |

∫
A
f |.

Exercise 3-7 Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x /∈ Q or y /∈ Q
1
q , x ∈ Q, y = p

q ∈ Q

where we assume that y = p
q is given in lowest terms. Show that f is integrable and∫

[0,1]×[0,1]
f = 0.

Proof. First, note that for any partition P the density of Q implies that L(f,P) = 0. So it
suffices to show that U = 0.

Let ε > 0. Pick a partition P as follows: Choose N large enough that

1

N
<
ε

2

Then there are finitely many y = p/q ∈ Q such that q < N . Denote them by y1, . . . , yk.
Then pick intervals I1, . . . , Ik about each such that the total length of the intervals is less
than ε/2 (and such that the Ii are disjoint). Let P2 be the partition of [0, 1] given by these
intervals, with the gaps filled in appropriately.

Let P1 be the single partition {0, 1}. Then P = (P1,P2) consists of subrectangles of the
form [0, 1]× I, where I is either one of the Ii we defined previously, or it is not (in this case,
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it is a gap between them). Let L denote the set of all subrectangles of the form [0, 1]× Ii,
and let R denote the set of all other subrectangles. Then

U(f,P) =
∑
S∈P

v(S)MS(f) =
∑
S∈L

v(S)MS(f) +
∑
S∈R

v(S)MS(f)

Now, if S ∈ L, then f attains a value of at most 1 on S, so MS(f) ≤ 1. But if MS(f) ∈ R,
then by construction there is no point (x, y) ∈ S with y = p/q and q < N . Thus

f(x, y) =
1

q
<

1

N
<
ε

2

so MS(f) ≤ ε
2 . Thus∑

S∈L
v(S)MS(f) +

∑
S∈R

v(S)MS(f) ≤
∑
S∈L

v(S) +
ε

2

∑
S∈R

v(S) <
ε

2
+
ε

2
= ε

Thus U = 0. So f is integrable and
∫
[0,1]×[0,1]

f = 0.

Exercise 3-8 Prove that A = [a1, b1] × . . . × [an, bn] does not have content zero if
ai < bi for each i.

Proof. Let O be a finite cover of A by closed rectangles. Without loss of generality we may
assume that each rectangle is contained within A. Then let Ti = {ti0, . . . , tiki} be the set of
endpoints of the rectangles in the ith direction (that is, if O = {[c1, d1]× . . .× [cn, dn]} ∈ O,
then c1, d1 ∈ T1 and ci, di ∈ Ti for any i). Without loss of generality we may order them so
that ai = ti0 ≤ . . . ≤ tiki = bi. Then each v(Oi) for Oi ∈ O is the sum of v(Ai) for Ai of the
form [t1j1−1, t

1
j1
] × . . . × [tnjn−1, t

n
jn
]. Moreover, each of those rectangles is contained within

some Oi. So
n∑
i=1

v(Oi) ≥
k1·×·kn∑
j=1

v(Ai) =

n∏
j=1

(bj − aj)

So A does not have content zero.

Exercise 3-9

(a) Show that an unbounded set cannot have content zero.

(b) Give an example of a closed set of measure zero which does not have content
zero.

(a) Proof. Let A be an unboudned set and O a finite cover of A by closed rectangles.
Then there exists a closed rectangle M such that⋃

O∈O
O ⊆M

But since A is unbounded it contains points outside M . So O cannot be a cover of
A, contradiction. Thus A is in fact not covered by any finite set of closed (or open)
rectangles, so it cannot have content zero.
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(b) Proof. Q is closed and has measure zero (this follows from the fact that it is countable).
However, it is unbounded, and thus does not have content zero by part a).

Exercise 3-10

(a) If C is a set of content zero, show that the boundary of C has content zero.

(b) Give an example of a bounded set C of measure zero such that the boundary
of C does not have measure zero.

(a) Proof. Let O be a finite cover of C by closed rectangles. I claim that O contains ∂C.
To see this, suppose that there exists a point x ∈ ∂C such that x /∈ O for each O ∈ O.
Then

x ∈
k⋂
i=1

Rn \Oi

But since each Oi is closed, Rn \ Oi is open, and this is a finite intersection of open
sets, which is open. Then since x ∈ ∂C, there exists a point y ∈ C with

y ∈
k⋂
i=1

Rn \Oi

But this contradicts the assumption that O is a cover of C. Thus O covers ∂C. So
any closed cover of C is a cover of ∂C. Then let ε > 0. We may produce a finite cover
of C by closed rectangles with total volume less than ε. This cover works for ∂C as
well. Thus ∂C has content zero.

(b) Pick Q∩ [0, 1]. This is a bounded set of measure zero. But ∂(Q∩ [0, 1]) = [0, 1], which
does not have measure zero.

Exercise 3-11 Let A be the union of open intervals (ai, bi) such that each rational
number in (0, 1) is contained in some (ai, bi), as in Exercise 1-18. If

∞∑
i=1

bi − ai < 1

show that ∂A does not have measure zero.

Proof. Suppose that ∂A has measure zero. Pick a cover O of ∂A by open intervals such that

∑
O∈O

v(O) < 1−
∞∑
i=1

bi − ai

which we rewrite as

1 >
∑
O∈O

+

∞∑
i=1

bi − ai
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From Exercise 1-18, we know that ∂A = [0, 1] \ A. So the collection of intervals in O
combined with the open intervals which make up A form a cover of [0, 1] by open intervals.
Call this cover O′. Then we know ∑

O∈O′

v(O) ≥ 1

But we also have ∑
O∈O

v(O) +

∞∑
i=1

bi − ai ≥
∑
O∈O′

v(O)

So

1 >
∑
O∈O

v(O) +

∞∑
i=1

bi − ai ≥
∑
O∈O′

v(O) ≥ 1

and we conclude that 1 > 1, contradiction. So ∂A does not have measure zero.

Exercise 3-12 Let f : [a, b] → R be an increasing function. Show that {x :
f is discontinuous at x} has measure zero.

Proof. I claim that for any n, there are at most n(f(b)− f(a)) points with o(f, x) > 1
n .

To prove this, suppose there are more than n(f(b) − f(a)) such points, x1, . . . , xk. Then
we may pick y0, . . . , yk with a = y0 < x1 < y1 < . . . < xk < yk = b. Then because f is
increasing, for each xi we have

o(f, xi) ≤ f(yi)− f(yi−1)

Then by a telescoping argument,

k∑
i=1

o(f, xi) ≤ f(yk)− f(y0) = f(b)− f(a)

But we also have

k∑
i=1

o(f, xi) ≥
k∑
i=1

1

n
=
k

n
>
n(f(b)− f(a))

n
= f(b)− f(a)

contradiction. Thus there are at most n(f(b) − f(a)) such points. Recall that f is discon-
tinuous at x precisely when o(f, x) > 0. But

{x : o(f, x) > 0} =

∞⋃
n=1

{x : o(f, x) >
1

n
}

So {x : f is discontinuous at x} is the countable union of finite sets and thus has measure
zero.
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Exercise 3-13

(a) Show that the collection of all rectangles [a1, b1]× . . .× [an, bn] with all ai and
bi rational can be arranged in a sequence.

(b) If A ⊆ Rn is any set and O is an open cover of A, show that there is a sequence
O1, O2, . . . of members of O which also cover A.

(a) Proof. This collection may be placed in bijection with Q2n, which is a finite Cartesian
product of countable sets, so it is countable.

(b) Proof. For each point x ∈ A, x ∈ O for some O ∈ O, and O is open, so there exists an
open rectangle Rx ⊆ O containing x. Moreover, we demand that each endpoint of Rx
is rational. Then the set of R = {Rx : x ∈ A} is a subset of the set of all rectangles
with rational endpoints, which we showed is countable. Thus R is countable, so we
may order its elements as R1, R2, . . ..

We then pick a countable subcover O′ of O by picking O′
1 such that R1 ⊆ O′

1, and
so on. We may skip terms if Ri is already contained in a previously chosen open set.
This gives a countable subcover of R, and R covers A, so this is a countable subcover
of A.

Exercise 3-14 Show that if f, g : A→ R are integrable, then fg is as well.

Proof. Since f and g are both integrable, they are discontinuous on sets C1, C2 ⊆ A of
measure zero. For any x such that x /∈ C1 and x /∈ C2, f, g are both continuous at x so fg
is continuous at x. Thus C3, the set of points where fg is continuous, is a subset of C1 ∪C2

and has measure zero. So fg is integrable.

Exercise 3-15 Show that if C has content zero, then C ⊆ A for some closed rectangle
A and C is Jordan measurable with

∫
A
χC = 0

Proof. We showed in Exercise 3-9 part a) that any unbounded set does not have content
zero. So C ⊆ A for a closed rectangle A. We showed in Exercise 3-10 part a) that ∂C has
content zero whenever C has content zero. So C is Jordan-measurable.

Now pick a partition P of A. For every subrectangle S of P, we cannot have S ⊆ C, since
otherwise C would not have content zero. So mS(χC) = 0 for each S and thus L(f,P) = 0.
This is true for all partitions P, so ∫

A

χC = L = 0

Exercise 3-16 Give an example of a bounded set C of measure zero such that
∫
A
χC

does not exist.
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Set C = Q∩ [0, 1]. Then χC is the Dirichlet function, which is discontinuous on [0, 1] (since
both irrationals and rationals are dense in [0, 1]). So χC is not discontinuous on a set of
measure zero, so

∫
A
χC does not exist.

Exercise 3-17 If C is a bounded set of measure zero and
∫
A
χC exists, show that∫

A
χC = 0.

Proof. See the second paragraph of the argument from Exercise 3-15.

Exercise 3-18 If f : A→ R is nonnegative and
∫
A
f = 0, show that {x : f(x) ̸= 0}

has measure zero.

Proof. Consider the set Bn = {x : f(x) ≥ 1
n} for any n. I claim that Bn has content zero.

Suppose it does not. Then there exists ε > 0 such that any cover of Bn has total volume
no less than ε. Then let P be any partition. If S is the collection of subrectangles which
intersect Bn, then MS(f) ≥ 1

n for any S ∈ S. So

U(f,P) =
∑
S∈P

v(S)MS(f) ≥
∑
S∈S

v(S)MS(f) ≥
1

n

∑
S∈S

v(S) ≥ ε

n

So U ≥ ε
n > 0, but this contradicts the assumption that

∫
A
f = 0. So Bn has content zero.

Thus

{x : f(x) ̸= 0} =

∞⋃
n=1

Bn

has measure zero.

Exercise 3-19 Let U be the union of open intervals (ai, bi) such that each rational
number in (0, 1) is contained in some (ai, bi), and

∞∑
i=1

bi − ai < 1

as in Exercise 3-11. Show that if f = χU except on a set of measure zero, then f is
not integrable on [0, 1].

Proof. In Exercise 3-11 we showed that ∂U = [0, 1] \ U does not have measure zero. χU is
discontinuous on ∂U , so it is discontinuous on a set that is not of measure zero, and thus
not integrable. Then we need to show that f is also discontinuous on a set not of measure
zero.

Let x ∈ ∂U , and suppose that f(x) = χU (x). Suppose for contradiction, suppose that f is
continuous at x. Since x ∈ ∂U and ∂U = [0, 1] \ U , x /∈ U . Thus f(x) = χU (x) = 0. If
f is continuous at x, then for any ε > 0 there exists a neighborhood around x such that
|f(y)| < ε for y in the neighborhood. We will show that this is not the case.
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Let ε = 1
2 . Let V be any neighborhood around x contained in [0, 1]. Then there exists

a rational q ∈ V . q ∈ U which is open, so there exists an open rectangle R containing q
contained in U ∩ V . So χU = 1 on an open rectangle within V . So if |f(y)| < ε for any
y ∈ V , we must have f ̸= χU on R. But R is not a set of measure zero, so this contradicts
the assumption that f = χU on a set of measure zero. So f is not continuous at x.

We have shown that for any x ∈ ∂U such that f(x) = χU (x), f is discontinuous at x. Then
we must show that the set of x ∈ ∂U with f(x) = χU (x) does not have measure zero.

Suppose that it does. Let ε > 0. Then there exists a cover U of {x ∈ ∂U : f(x) = χU (x)} by
open intervals with total length less than ε/2. We also know that {x ∈ [0, 1] : f(x) ̸= χU (x)}
has measure zero by assumption, so {x ∈ ∂U : f(x) ̸= χU (x)} also has measure zero and we
may cover it by an open cover O with total length less than ε/2.

Now for any x ∈ ∂U , we must have f(x) = χU (x) or f(x) ̸= χU (x), so U ∪ O covers ∂U .
Now we have ∑

(ci,di)∈U∪O

di − ci ≤
∑

(ci,di)∈U

di − ci +
∑

(ci,di)∈O

di − ci < ε

So ∂U has measure zero. But in Exercise 3-11 we showed that this is not the case. So the
assumption that {x ∈ ∂U : f(x) = χU (x)} has measure zero is incorrect. But we showed
that f is discontinuous on this set, and it does not have measure zero, so f is not integrable
on [0, 1].

Exercise 3-20 Show that an increasing function f : [a, b] → R is integrable on [a, b].

Proof. In Exercise 3-12 we showed that f is discontinuous on a set of measure zero. So it is
integrable on [a, b].

Exercise 3-21 If A is a closed rectangle, show that C ⊆ A is Jordan-measurable if
and only if for every ε > 0 there is a partition P of A such that∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

where S1 consists of all subrectangles intersecting C and S2 all subrectangles con-
tained in C.

We first prove the following fact:

Lemma

If A ⊆ Rn and x ∈ intA, y ∈ extA, then there exists z = tx+(1− t)y with 0 ≤ t ≤ 1
such that z ∈ ∂A. (Intuitively, this z lies along the line segment between x and y).

142



Proof. To see this, first note for sufficiently small t > 0, tx + (1 − t)y ∈ A since x ∈ intA.
Thus the set {0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A} is nonempty. Moreover, it is clearly bounded.
Then let

t′ = sup{0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A}

Now, first note that t′ < 1. This is because y ∈ extA, so there exists a ball around y entirely
contained in Rn \A.

I claim that z = t′x + (1 − t′)y ∈ ∂A. To see this, let Br(z) be any open ball around z.
Br(z) contains a point in A, as we can simply pick tx+(1−t)y for t ≤ t′ such that t′−t < r.
Then we need to show that Br(z) contains a point in Rn \A.

Let z′ = (t′ + ε)x+(1− t′ − ε)y, where ε < r and t′ + ε < 1 (possible because t′ < 1). Then
|z − z′| = ε < r, so z′ ∈ Br(z). But t′ + ε > t′, so t′ + ε /∈ {0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A}.
Since we provided that t′ + ε < 1, we conclude that z′ /∈ A. So z ∈ ∂A.

Now, continuing to the main proof:

Proof. ( =⇒ ) Suppose that C ⊆ A is Jordan-measurable. ∂C has measure zero, and is
compact, so we may pick a finite collection of closed rectangles O whose interiors cover ∂C
with total volume is less than ε. Then apply Lemma 3.9 to pick a partition P such that
every subrectangle S ∈ P is either contained in some O ∈ O or does not intersect ∂C. If
S ∈ P and S intersects C but is not contained in C, I claim that there exists z ∈ S with
z ∈ ∂C.

Indeed, we can pick x, y ∈ S such that x ∈ C and y /∈ C. Then if either of these points is
in ∂C, then we are done. Otherwise, x ∈ intC and y ∈ extC. By the Lemma, there exists
z = tx+ (1− t)y with 0 ≤ t ≤ 1 such that z ∈ ∂C. Since S is convex, z ∈ S. So the claim
is proved. Then S intersects ∂C, so we must have S ⊆ O for some O ∈ O. Thus∑

S∈S1

v(S)−
∑
S∈S2

v(S) ≤
∑
O∈O

v(O) < ε

( ⇐= ) Suppose that C ⊆ A satisfies the condition that for every ε > 0 there is a partition
P such that ∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

I claim that S1 \ S2 covers ∂C. To see this, let x ∈ ∂C. Then x ∈ S for some S ∈ P. Then
S ∈ S1 or S /∈ S1. But if S /∈ S1, then there exists an open rectangle (S) around x entirely
contained in extC, contradicting x ∈ ∂C. So S ∈ S1. But similarly, if S ∈ S2 then that
contradicts x ∈ ∂C. So S ∈ S1 \ S2.

Thus S1 \ S2 covers ∂C, and by assumption it can be made as small as required. So ∂C has
measure zero and C is Jordan-measurable.

Exercise 3-22 If A is Jordan-measurable and ε > 0, show that there exists a compact
Jordan-measurable set C ⊆ A such that

∫
A\C 1 < ε.
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Proof. Let A be Jordan-measurable and let ε > 0. Then by Exercise 3-21, we may pick a
partition P such that ∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

where S1 is the collection of subrectangles intersecting A and S2 is the collection of subrect-
angles contained in A. Then C =

⋃
S2 is a union of finite closed rectangles and thus closed.

Moreover, C ⊆ A. Since A is bounded, C is also bounded and thus compact. So we need
to show that it is Jordan-measurable.

I claim that ∂C ⊆
⋃
S∈S2

∂S. Let x ∈ ∂C. Then consider the sequence of open balls (Bn),
where Bn = B1/n(x). Then for each Bn, there exists some point yn ∈ C. Each yn ∈ S for
some S ∈ S2, but there are only finitely many such S, so there is some S′ such that yn ∈ S′

for infinitely many n. Moreover, each Bn contains a point not contained in C, which is thus
also not contained in S′. So x ∈ ∂S′. Thus the claim is proved.

We take without proof the fact that a rectangle is Jordan-measurable. Then ∂S has measure
zero for each S ∈ S2, so the finite union

⋃
S∈S2

∂S also has measure zero, and thus ∂C has
measure zero and C is Jordan measurable

Now, because C ⊆ A, we have
∫
A\C 1 =

∫
A
1−

∫
C
1. Moreover, S1 covers A. So∫

A

1 ≤
∫
⋃

S1

1

and thus ∫
A\C

1 =

∫
A

1−
∫
C

1 ≤
∫
⋃

S1

1−
∫
C

1 =
∑
S∈S1

v(S)−
∑
S∈S2

v(S) < ε

Exercise 3-23 Let A ⊆ Rn and B ⊆ Rm. Let C ⊆ A × B be a set of n + m-
dimensional content zero. Let A′ ⊆ A be the set of all x ∈ A such that {y ∈
B : (x, y) ∈ C} is not of m-dimensional content zero. Show that A′ is a set of
n-dimensional measure zero.

Proof. First, because C has content zero, ∂C has content zero so χC is integrable on A×B
and

∫
A×B χC = 0. Let U(x) = U

∫
B
χC(x, y)dy. Then by Fubini’s Theorem,∫
A×B

χC =

∫
A

U = 0

Now, fix some x ∈ A, and let P be a partition of B.

If x ∈ A′, then there exists some εx > 0 such that any finite cover of {y ∈ B : (x, y) ∈ C} by
closed rectangles has total length at least εx. Let S1 be the collection of subrectangles S in
P that intersect {y ∈ B : (x, y) ∈ C}. Because S1 is a finite cover of {y ∈ B : (x, y) ∈ C},

U(χC ,P) =
∑
S∈S1

MS(χC)v(S) =
∑
S∈S1

v(S) ≥ εx
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Then U(x) = U
∫
B
χC ≥ εx.

Now, U is clearly nonnegative, and we know that
∫
A
U = 0. So by Exercise 3-18, {x : U(x) ̸=

0} has measure zero. But we just showed that A′ ⊆ {x : U(x) ̸= 0}, so A′ has measure
zero.

Exercise 3-24 Let C ⊆ [0, 1]× [0, 1] be the union of all {p/q} × [0, 1/q], where p/q
is a rational in [0, 1] in lowest terms. Show that it is not true that the set A′ in
Exercise 3-23 has content zero.

Proof. First we show that C has content zero. Let ε > 0. Then let

R0 = [0, 1]×
[
0,
ε

2

]
Then there a finite number of rationals p/q such that {p/q} × [0, 1/q] is not contained in
R0. Call these r1, . . . , rk = p1/q1, . . . , pk/qk. Then for 1 ≤ i ≤ k, let

Ri =

[
pi
qi

− qiε

2i+1
,
pi
qi

+
qiε

2i+1

]
×
[
0,

1

qi

]
Letting R = {R0, R1, . . . , Rk}, R is a finite cover of C by closed rectangles with

∑
R∈R

v(R) = v(R0) +

k∑
i=1

v(Ri) =
ε

2
+

k∑
i=1

ε

2i+1
≤ ε

2
+

∞∑
i=1

ε

2i+1
=
ε

2
+
ε

2
= ε

So C has content zero.

But for each rational p/q ∈ [0, 1], the set {y ∈ [0, 1] : (p/q, y) ∈ C} is simply the set [0, 1/q],
which does not have content zero. So A′ = Q∩ [0, 1], which does not have content zero.

Exercise 3-25 Use induction on n to show that [a1, b1] × . . . × [an, bn] is not a set
of measure zero (or content zero) if ai < bi.

Proof. In the base case, n = 1, let U be a cover of [a1, b1] by open intervals. Since [a1, b1] is
compact, we can assume U is finite. From here the base case proceeds as in Exercise 3-8.

Now suppose the theorem is true for n, and we will prove it for n + 1. Then [a1, b1] ×
. . . [an+1, bn+1] = ([a1, b1]× . . .× [an, bn])× [an+1, bn+1]. Let A = [a1, b1]× . . .× [an, bn] and
B = [an+1, bn+1]. By Fubini’s Theorem2∫

A×B
1 =

∫
A

(∫
B

1 dy

)
dx =

(∫
A

1 dx

)(∫
B

1 dy

)
2Credit for work past this point to https://hidenori-shinohara.github.io/2019/12/23/measure-zero-ex-3-

25.html
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Now, the constant function 1 is a nonnegative function, and Exercise 3-18 shows that if∫
A
1 dx = 0, then 1 is nonzero on a set of measure zero. But 1 is nonzero on A, which is not

a set of measure zero by the inductive hypothesis. So∫
A

1 dx > 0

and similarly ∫
B

1 dy > 0

so ∫
A×B

1 > 0

Now A×B is bounded. If it has measure zero, then Exercise 3-18 says that
∫
A×B χA×B =∫

A×B 1 = 0. But this is not the case, so A×B does not have measure zero.

Exercise 3-26 Let f : [a, b] → R be integrable and nonnegative and let Af =
{(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}. Show that Af is Jordan-measurable and has area∫ b
a
f .

Proof. Since f : [a, b] → R is integrable and nonnegative, there exists M > 0 such that
M > f(x) for any x.

Claim A.1

Let

B = ([a, b]× {0})
C = {(x, f(x)) : x ∈ [a, b]}
D = {a} × [0,M ]

E = {b} × [0,M ]

F = {x : f is discontinuous at x} × [0,M ]

Then
∂Af ⊆ B ∪ C ∪D ∪ E ∪ F

To prove this, note that any (x, y) satisfies exactly one of the following conditions3:

1. (x, y) /∈ [a, b].

2. x = a.

3. x = b.

3Strictly speaking, conditions 5 and 8 are both filled by (x, 0) for x : f(x) = 0, but this does not detract
from the overall argument.
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4. (x, y) ∈ (a, b), y < 0.

5. (x, y) ∈ (a, b), y = 0.

6. (x, y) ∈ (a, b), 0 < y < f(x), f is continuous at x.

7. (x, y) ∈ (a, b), 0 < y < f(x), f is not continuous at x.

8. (x, y) ∈ (a, b), y = f(x).

9. (x, y) ∈ (a, b), y > f(x), f is continuous at x.

10. (x, y) ∈ (a, b), f(x) < y ≤M , f is not continuous at x.

11. (x, y) ∈ (a, b), y > M , f is not continuous at x.

For cases 2, 3, 5, 7, 8, 10, (x, y) ∈ B ∪C ∪D∪E ∪F . Thus we must show that (x, y) /∈ ∂Af
whenever conditions 1, 4, 6, 9, or 11 are met.

Case 1: We can pick an open rectangle R containing (x, y) such that (x1, y1) ∈ R =⇒
x1 /∈ [a, b]. So (x, y) ∈ extAf .

Case 4: We can pick an open rectangle R containing (x, y) such that (x1, y1) ∈ R =⇒
y1 < 0. So (x, y) ∈ extAf .

Case 6: Since f is continuous at x, there exists an interval (x− δ, x+ δ) such that f(x1) >
y + ε whenever x1 ∈ (x − δ, x + δ), for ε > 0 sufficiently small (where δ is chosen small
enough that this makes sense). Then the rectangle R = (x− δ, x+ δ)× (0, y+ ε) is an open
rectangle containing (x, y) which is contained in Af . So (x, y) ∈ intAf .

Case 9: Similarly to Case 4, since f is continuous at x, there exists an interval (x−δ, x+δ)
such that f(x1) < y − ε whenever x1 ∈ (x− δ, x+ δ) for ε > 0 sufficiently small. Then the
rectangle R = (x− δ, x+ δ)× (y − ε,M) shows that (x, y) ∈ extA.

Case 11: Similarly to Case 2, we may pick an open rectangle R containing (x, y) such that
(x1, y1) ∈ R =⇒ y1 > M =⇒ (x1, y1) /∈ Af . So (x, y) ∈ extAf .

Thus Claim 1 is proved.

Claim A.2

The sets B, C, D, E, F each have measure zero.

The line interval [a, b]× {0} has measure zero, as for any ε > 0 we cover it by

Rε = [a, b]×
[
− ε

2(b− a)
,

ε

2(b− a)

]
which has v(Rε) = ε. So B has measure zero. A similar proof holds for the line segments
D and E.

The set {x : f is discontinuous at x} has measure zero since f is integrable. Let ε > 0.
Then we may pick a cover I of {x : f is discontinuous at x} by open intervals such that∑

(c,d)∈I

d− c <
ε

4M
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Then the collection U of rectangles of the form (c, d) × (−M
2 ,

3M
2 ) for (c, d) ∈ I forms a

cover of {x : f is discontinuous at x} × [0,M ], Moreover, consider the remaining set

S = [a, b] \
⋃
I∈I

I

Since each I is open, S is closed. It is also bounded, so it is compact. Moreover, f is
continuous at each x ∈ S. Since f is continuous on S compact, it is uniformly continuous.
Thus we may pick δ > 0 such that

x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε

4(b− a)

Moreover, pick δ such that mδ = b− a for some m ∈ N. Now let δi = [a+ (i− 1)δ, a+ iδ].
Then the collection {δi}mi=1 partitions the interval [a, b]. Now for each i, define the rectangle
Pi as follows: if S ∩ δi = ∅, then let Pi = δi × {0}. Otherwise, pick xi ∈ S ∩ δi. Then let

Pi = δi ×
[
f(xi)−

ε

4(b− a)
, f(xi) +

ε

4(b− a)

]
Let P = {P1, . . . , Pn}, and let U = {U : U ∈ U}. I claim that P ∪UUU is a cover of C ∪F .
Indeed, we already showed that U covers F , so U does as well.

Now, for any x ∈ [a, b], either x ∈ S or x /∈ S. If x /∈ S, then x ∈ I for some I ∈ I and thus
(x, f(x)) ∈ U for some U ∈ U . On the other hand, if x ∈ S, then x ∈ δi for some i (this
does not require x ∈ S, just x ∈ [a, b]). Then |x− xi| < δi, so

|f(x)− f(xi)| <
ε

4(b− a)

so (x, f(x)) ∈ Pi. Thus P ∪ U is a cover of C ∪ F by closed rectangles. Lastly, we have∑
U∈U

=
∑
U∈U

v(U) =
∑

(c,d)∈I

v((c, d)× (−M
2
,
3M

2
)) = 2M

∑
(c,d)∈I

d− c <
ε

2

and
m∑
i=1

v(Pi) =

m∑
i=1

δ · ε

2(b− a)
=

ε

2(b− a)
mδ =

ε

2

so the total volume of P ∪ U is less than ε. Thus C ∪ F has measure zero, and C and F
each do.

Thus Claim 2 is proved.

Now, by Claim 2, each of B,C,D,E, F has measure zero. So B∪C∪D∪E∪F has measure
zero, and by Claim 1 ∂Af ⊆ B∪C∪D∪E∪F , so ∂Af has measure zero. It is also bounded,
so Af is Jordan-measurable.

The last part of the proof is to show that v(Af ) =
∫ b
a
f . Since Af is Jordan-measurable,

χAf is integrable on [a, b]× [0,M ]. So by Fubini’s Theorem,

v(Af ) =

∫
[a,b]×[0,M ]

χAf =

∫ b

a

(
L

∫ M

0

χAf (x, y) dy

)
dx
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For each fixed x ∈ [a, b], gx = χAf (x, ·) is integrable as it is only discontinuous at f(x).
Thus

L

∫ M

0

χAf (x, y) dy =

∫ M

0

χAf (x, y) dy

Moreover, ∫ M

0

χAf (x, y) dy =

∫ f

0

(x)1 dy = f(x)

So we have

v(Af ) =

∫ b

a

(∫ M

0

χAf (x, y) dy

)
dx−

∫ b

a

f(x) dx =

∫ b

a

f

Exercise 3-27 If f : [a, b]× [a, b] → R is continuous, show that∫ b

a

∫ y

a

f(x, y) dxdy =

∫ b

a

∫ b

x

f(x, y) dy dx

Proof. Define C = {(x, y) ∈ [a, b] : y ≥ x}. Then C has boundary ∂C = ({a} × [a, b]) ∪
([a, b]× {b}) ∪ {(x, x) : x ∈ [a, b]} which are all line segments, and thus have measure zero.
So C is Jordan-measurable and χCf is integrable on [a, b] × [a, b]. By Fubini’s Theorem,
since f is continuous,∫

[a,b]×[a,b]

χCf =

∫ b

a

∫ b

a

χC(x, y)f(x, y) dy dx =

∫ b

a

∫ b

x

f(x, y) dy dx

But applying it in the opposite order,∫
[a,b]×[a,b]

χCf =

∫ b

a

∫ b

a

χC(x, y)f(x, y) dxdy =

∫ b

a

∫ y

a

f(x, y) dx dy

Exercise 3-28 Use Fubini’s theorem to prove that D1,2f = D2,1f if both are con-
tinuous.

Proof. Suppose that D1,2f and D2,1 both exist and are continuous. Then D1,2f −D2,1f is
continuous. Suppose there exists a such that D1,2f(a)−D2,1f(a) > 0 (for the case < 0 the
proof is analogous). Then there exists a rectangle A = [a, b]× [c, d] containing a such that

D1,2f(x)−D2,1f(x) > ε

for any x ∈ A and ε > 0 smaller thanD1,2f(a)−D2,1f(a). SinceD1,2f−D2,1f is continuous,
it is integrable on A. So∫

A

D1,2f −D2,1f ≥
∫
A

ε = ε

∫
A

1 = εv(A) > 0
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But by Fubini’s Theorem,∫
A

D1,2f =

∫ b

a

∫ d

c

D1,2f(x, y) dy dx

=

∫ b

a

(∫ d

c

d

dy
D1f(x, y) dy

)
dx

=

∫ b

a

D1f(x, d)−D1f(x, c) dx

= f(b, d)− f(b, c)− f(a, d) + f(a, c)

Similarly, ∫
A

D2,1f =

∫ d

c

∫ b

a

D2,1f(x, y) dxdy

=

∫ d

c

D2f(b, y)−D2f(a, y) dy

= f(b, d)− f(a, d)− f(b, c) + f(a, c)

So∫
A

D1,2f −D2,1f = f(b, d)− f(b, c)− f(a, d) + f(a, c)− f(b, d) + f(a, d) + f(b, c)− f(a, c)

= 0

contradiction. Thus D1,2f −D2,1f = 0 and D1,2f = D2,1f .

Exercise 3-29 Use Fubini’s theorem to derive an expression for the volume of a
set of R3 obtained by revolving a Jordan-measurable set in the yz-plane about the
z-axis.

Exercise 3-30 Let C ⊆ [0, 1] × [0, 1] contain at most one point on each horizontal
and each vertical line, with ∂C = [0, 1]× [0, 1], as in Exercise 1-17. Show that∫

[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy =

∫
[0,1]

(∫
[0,1]

χC(x, y) dy

)
dx

but ∫
[0,1]×[0,1]

χC

does not exist.

Proof. Fix some y ∈ [0, 1]. Then A intersects [0, 1]× {y} at at most one point, so hy(x) =
χC(x, y) is zero everywhere except possibly one point. Thus it is nonzero at a finite number
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of points, so ∫
[0,1]

χC(x, y) dx = 0

so ∫
[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy = 0

Similarly, for any x ∈ [0, 1], A intersects {x}×[0, 1] at at most one point, so gx(y) = χC(x, y)
is nonzero at a finite number of points, so∫

[0,1]

χC(x, y) dy = 0

and ∫
[0,1]

(∫
[0,1]

χC(x, y) dy

)
dx =

∫
[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy = 0

On the other hand, ∂A = [0, 1] × [0, 1] by assumption, which does not have measure zero
and thus χC is not integrable on [0, 1]× [0, 1].

Exercise 3-31 If A = [a1, b1] × . . . × [an, bn] and f : A → R is continuous, define
F : A→ R by

F (x) =

∫
[a1,x1]×...×[an,xn]

f

What is DiF (x) for x ∈ intA?

Define G1 : R → R by

G1(y) = F (y, x2, . . . , xn) =

∫
[a1,y]×...×[an,xn]

f

and g1 : R → R by
g1(y) = f(y, x2, . . . , xn)

Since f is continuous, we may apply Fubini’s theorem to write

G1(y) =

∫ y

a1

(∫
[a2,x2]×...×[an,xn]

f(y, x2, . . . , xn) dx

)
dy

(where xi represents a variable being integrated against, as opposed to xi which is the ith
component of x). So by the Fundamental Theorem of Calculus,

G′
1(y) =

(∫
[a2,x2]×...×[an,xn]

f(y, x2, . . . , xn) dx

)
=

∫ x2

a2

. . .

∫ xn

an

f(y, x2, . . . , xn) dxn . . . dx2

We can make a similar argument for gi for any i, so that

DiF (x) = g′i(y) =

∫ x1

a1

. . .
�
�
�

∫ xi

ai

. . .

∫ xn

an

f(x1, . . . , xi−1, xi, x
i+1, . . . , xn) dxn . . .��dxi . . . dx

1
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where the strikethroughs indicate that the ith variables is not integrated against (that is,
we integrate against all other variables but hold xi constant).

Exercise 3-32 Let f : [a, b]× [c, d] → R be continuous and suppose D2f is continu-

ous. Define F (y) =
∫ b
a
f(x, y) dx. Prove Leibnitz’s rule:

F ′(y) =

∫ b

a

D2f(x, y) dx

Proof. Define gx(y) : [c, d] → R by

gx(y) = f(x, y)

Then by definition,
g′x(y) = D2f(x, y)

Since D2f is continuous, by the Fundamental Theorem of Calculus,

f(x, y) = gx(y) = gx(c) +

∫ y

c

g′x(t) dt = f(x, c) +

∫ y

c

D2f(x, t) dt

So

F (y) =

∫ b

a

(
f(x, c) +

∫ y

c

D2f(x, t) dt

)
dx =

∫ b

a

f(x, c) dx+

∫ b

a

∫ y

c

D2f(x, t) dtdx

Now, by Fubini’s Theorem we have∫ b

a

∫ y

c

D2f(x, t) dtdx =

∫ y

c

∫ b

a

D2f(x, t) dx dt

so

F ′(y) =
d

dy

∫ b

a

∫ y

c

D2f(x, t) dtdx =
d

dy

∫ y

c

∫ b

a

D2f(x, t) dx dt =

∫ b

a

D2f(x, y) dx

Exercise 3-33 If f : [a, b]× [c, d] → R is continuous and D2f is continuous, define

F (x, y) =

∫ x

a

f(t, y) dt

(a) Find D1F and D2F .

(b) If G(x) =
∫ g(x)
a

f(t, x) dt, find G′(x).

(a) Define hy(x) = f(x, y). Let Fy(x) = F (x, y), so that D1F (x, y) = F ′
y(x). Then

Fy(x) = F (x, y) =

∫ x

a

f(t, y) dt =

∫ x

a

hy(t) dt
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so

D1F (x, y) = F ′
y(x) =

d

dx

∫ x

a

hy(t) dt = hy(x) = f(x, y)

Now, defineHx(y) = F (x, y) =
∫ x
a
f(t, y) dt, so thatD2F (x, y) = H ′

x(y). By Leibnitz’s
rule from Exercise 3-32,

D2F (x, y) = H ′
x(y) =

∫ x

a

D2f(t, y) dt

(b) Here we have G(x) = F (g(x), x). By the Chain Rule,

G′(x) = D1F (g(x), x)g
′(x) +D2F (g(x), x) = f(g(x), x)g′(x) +

∫ x

a

D2f(t, x) dt

Exercise 3-34 Let g1, g2 : R2 → R be continuously differentiable and suppose
D1g2 = D2g1. As in Exercise 2-21, let

f(x, y) =

∫ x

0

g1(t, 0) dt+

∫ y

0

g2(x, t) dt

Show that D1f(x, y) = g1(x, y).

Proof. Differentiating term by term, the Fundamental Theorem of Calculus gives us

d

dx

∫ x

0

g1(t, 0) dt = g1(x, 0)

Now, since g2 is continuously differentiable, it is also continuous, so by Leibnitz’s Rule
(considering D1 rather than D2),

d

dx

∫ y

0

g2(x, t) dt =

∫ y

0

D1g2(x, t) dt

By assumption, D1g2 = D2g1, so∫ y

0

D1g2(x, t) dt =

∫ y

0

D2g1(x, t) dt

Then by the Fundamental Theorem of Calculus,

D1f(x, y) =
d

dx

∫ x

0

g1(t, 0) dt+
d

dx

∫ y

0

g2(x, t) dt = g1(x, 0)+

∫ y

0

D2g1(x, t) dt = g1(x, y)
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Exercise 3-35

(a) Let g : Rn → Rn be a linear transformation of one of the following types:{
g(ei) = ei, i ̸= j

g(ej) = aej ,{
g(ei) = ei, i ̸= j

g(ej) = ej + ek,
g(ek) = ek, k ̸= i, k ̸= j

g(ei) = ej

g(ej) = ei

If U is a rectangle, show that v(g(U)) = |det g|v(U).

(b) Prove that v(g(U)) = |det g|v(U) for any linear transformation g : Rn → Rn.

(a) Proof. First note that the scaling factor of g is scale invariant, for any of the above
cases. For instance, let U = [a1, b1] × . . . × [an, bn]. Let x = (a1, . . . , an). Then let
y ∈ U . Since g is linear,

g(y) = g(y − x+ x) = g(y − x) + g(x)

So g(U) = g(U − x) + g(x), and thus g(U) is a translated version of g(U − x), which
has the same volume. Thus we may assume that U = [0, b1]× . . .× [0, bn].

Let −→y i = biei, so that −→y 1, . . . ,
−→y n are the edges of U . Then g(U) is the rectangle

with edges given by g(−→y 1), . . . , g(
−→y n).

Case 1: We have

g(−→y i) = big(ei) =

{
biei, i ̸= j

abiei, i = j

so g(U) = [0, b1]× . . .× [0, abj ]× . . .× [0, bn]. Then

v(g(U)) = b1b2 . . . abj . . . bn = a(b1 . . . bn) = av(U)

Now, the matrix of g is

[g] =



1 0 . . . . . . 0

0
. . .

. . .
. . .

...
...

. . . a
. . .

...
...

. . .
. . .

. . . 0
0 . . . . . . 0 1


so

det g = det[g] = a
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Case 2: Since g is linear, it is continuous. Assume without loss of generality that
j = 1 and k = 2. Then g(U) = V × [0, b3]× . . .× [0, bn], where

V ⊆ R2 = {(x, y) : 0 ≤ x ≤ b1, x ≤ y ≤ x+ b2}

is a rhombus. Then by Fubini’s Theorem, (lettingM be any rectangle bounding g(U))

v(g(U)) =

∫
M

χg(U)

=

∫ b1

0

∫ x+b2

x

(∫ b3

0

. . .

∫ bn

0

dxn . . . dx3

)
dy dx

= b3 . . . bn

∫ b1

0

∫ x+b2

x

dy dx

= b3 . . . bn

∫ b1

0

b2

= b1 . . . bn

= v(U)

The matrix of g is given by

[g] =



1 0 . . . . . . 0

0
. . .

. . . 1
...

...
. . . a

. . .
...

...
. . .

. . .
. . . 0

0 . . . . . . 0 1


(where the off-diagonal 1 is an arbitrary off-diagonal location), which has determinant
1.

Case 3: We have

g(U) = [0, b1]× . . .× [0, bj ]︸ ︷︷ ︸
ith position

× . . .× [0, bi]︸ ︷︷ ︸
jth position

× . . .× [0, bn]

which has v(g(U)) = b1 . . . bn = v(U). The matrix of g is simply the identity matrix
with two columns switched, so det g = −1 and |det g| = 1.

(b) Proof. If det g = 0, then g(U) has volume zero for any U . If det g ̸= 0, then
RREF([g]) = In. Moreover, note that the elementary row operations correspond
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to the following matrices:



1
. . .

a
. . .

1


, scaling of a row



1
. . .

0 1
. . .

1 0
. . .

1


, row swap



1
. . .

1 a
. . .

. . .

1


, addition of rows

The first two ERO matrices directly correspond to Cases 1 and 3, respectively.

For the third matrix, suppose the ERO in question sends Ri to Ri + aRj . Then this
ERO matrix may be written as [g1][g2][g3], where g3 scales Rj by a (Case 1), g2 is a
Case 2 transformation which sends ei to ei + ej , and g1 scales Rj by 1/a (Case 1).

Thus any invertible transformation has a matrix which may be written as

[g] = [g1] . . . [gk] RREF([g]) = [g1] . . . [gk]

where each of the gk is of one of the three types considered above. By the property of
the determinant,

det[g] = det([g1] . . . [gk]) = det([g1]) . . . det([gk])

By applying part a), we have

v(g(U)) = v(g1(. . . (gk(U))))

= |det g1|v(g2(. . . (gk(U))))

= |det g1| . . . |det gk|v(U)

= |det g1 . . . det gk|v(U)

= |det g|v(U)
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Exercise 3-36 (Cavalieri’s Principle) Let A and B be Jordan-measurable subsets of
R3. Let Ac = {(x, y) : (x, y, c) ∈ A} and define Bc similarly. Suppose each Ac and
Bc are Jordan-measurable and have the same area. Show that A and B have the
same volume.

Proof. LetM = [a1, b1]× [a2, b2]× [a3, b3] be a closed rectangle which bounds both A and B.
Since A is Jordan-measurable, χA is integrable on M , and so is χB . By Fubini’s Theorem,∫

M

χA =

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χA(x, y) dx

)
dy

where our use of the integral sign is justified since Ac is Jordan measurable. Then we may
write ∫

[a1,b1]×[a2,b2]

χA(x, y) dx =

∫
[a1,b1]×[a2,b2]

χAy

This is precisely the area of Ay, which by assumption is the area of By. So∫
M

χA =

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χA(x, y) dx

)
dy

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χAy

)
dy

=

∫ b3

a3

v(Ay)

=

∫ b3

a3

v(By)

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χBy

)
dy

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χB(x, y) dx

)
dy

=

∫
M

χB

so v(A) = v(B).
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Exercise 3-37

(a) Suppose that f : (0, 1) → R is a nonnegative continuous function. Show that

ext

∫
(0,1)

f

exists if and only if

lim
ε→0+

∫ 1−ε

ε

f

exists.

(b) Define

An :=

[
1− 1

2n
, 1− 1

2n+1

]
Suppose that f : R → R satisfies∫

An

f =
(−1)n

n

and f = 0 outside of
⋃∞
i=1Ai. Suppose also that f does not change sign on the

interiors of any of the An. Show that

ext

∫
(0,1)

f

does not exist, but

lim
ε→0+

ext

∫
(ε,1−ε)

f = − ln 2

Note: The hypothesis that f does not change sign is not included in Spivak’s
original exercise. Spivak’s exercise is incorrect as written, but this is not the
only possible hypothesis to rectify the issue.

(a) Proof. ( =⇒ ) Suppose that

ext

∫
(0,1)

f

exists. Let Φ be some partition of unity subordinate to an admissible open cover O of
(0, 1). Now, let ε > 0. Then let Φε be the finite collection of φ ∈ Φ which are nonzero
on [ε, 1− ε]. Then we have∫ 1−ε

ε

f =

∫ 1−ε

ε

f
∑
φ∈Φε

φ =
∑
φ∈Φε

∫ 1−ε

ε

φf
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Now, since f is nonnegative, we have∑
φ∈Φε

∫ 1−ε

ε

φf ≤
∑
φ∈Φε

∫
Cφ

φf ≤
∑
φ∈Φ

∫
Cφ

φf = ext

∫
(0,1)

f

So
∫ 1−ε
ε

f is bounded above. Moreover, let ε′ < ε. Since f is nonnegative, we have∫ 1−ε

ε

f ≤
∫ 1−ε′

ε′
f

so

lim
ε→0+

∫ 1−ε

ε

f

exists.

( ⇐= ) Suppose that

lim
ε→0+

∫ 1−ε

ε

f

exists. For any n ∈ N, let

An :=

[
1

2n+1
,
1

2n

]
∪
[
1− 1

2n
, 1− 1

2n+1

]
By Exercise 2-26 there exists a C∞ function φn such that φn > 0 on An but φn = 0
outside of some closed set contained in(

1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)
which can be smoothly extended to have domain (−1, 2). Now, (0, 1) =

⋃∞
i=1Ai, so

for any x ∈ (0, 1) at least one φn is nonzero at x. Moreover, it is clear that only
finitely many are nonzero at x. So

∞∑
i=1

φi(x) > 0

and we may define the C∞ function ψn : (−1, 2) → R by

ψn(x) =
φn(x)∑∞
i=1 φi(x)

Then Ψ = {ψ1, ψ2, . . .} is a partition of unity subordinate to the open cover

O =

{(
1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)}∞

n=1

Now, let Sk be the partial sum

Sk :=

k∑
n=1

∫
Cφn

φn|f | =
k∑

n=1

∫
Cφn

φn|f |
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For each φi we have

Cφi ⊆
(

1

2k+2
, 1− 1

2k+2

)
so

Sk =

k∑
n=1

∫ 1− 1

2k+2

1

2k+2

φif =

∫ 1− 1

2k+2

1

2k+2

k∑
i=1

φif ≤
∫ 1− 1

2k+2

1

2k+2

f ≤ lim
ε→0+

∫ 1−ε

ε

f

where the last inequality follows since f is nonnegative. Moreover, since f is nonneg-
ative we have ∫

Cφi

φif ≥ 0

so we have an increasing, bounded above series which thus converges. So f is extended
integrable on (0, 1).

(b) Proof. To show that

ext

∫
(0,1)

f

does not exist, we will exhibit a partition of unity Φ subordinate to an admissible open
cover O of (0, 1) such that

ext
Φ

∫
(0,1)

f =
∑
φ∈Φ

∫
Cφ

φ|f |

does not converge. Define

On =

(
1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)
for each n, and let O = {On}n∈N be our open cover. By Exercise 2-26, pick ψn so
that ψn > 0 on An but ψn = 0 outside of some closed set contained in On. Then only
finitely many (but at least one) ψi are nonzero at any given point x ∈ (0, 1), so write

φn(x) =
ψn(x)∑∞
i=1 ψi(x)

Φ = {φ1, φ2, . . .} is our desired partition of unity subordinate to O.

Since
⋃∞
i=1Ai = [1/2, 1) and f = 0 outside of

⋃∞
i=1Ai, we have

supp(φn|f |) ⊆
(
1− 1

2n−1
, 1− 1

2n+2

)
so that∫

Cφn

φn|f | =
∫
suppφn|f |

φn|f | =
∫
An−1

φn|f |+
∫
An

φn|f |+
∫
An+1

φn|f |
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(for n = 1 the first term is omitted). Letting

Sk =

k∑
i=1

∫
Cφi

φi|f |

we have

∞∑
i=1

∫
Cφi

φi|f | ≥ Sk

=

k∑
i=1

(∫
Ai−1

φi|f |+
∫
Ai

φi|f |+
∫
Ai+1

φi|f |

)

=

k−1∑
i=1

∫
Ai

φi+1|f |+
k∑
i=1

∫
Ai

φi|f |+
k+1∑
i=2

∫
Ai

φi−1|f |

≥
k−1∑
i=1

∫
Ai

φi+1|f |+
k∑
i=1

∫
Ai

φi|f |+
k∑
i=2

∫
Ai

φi−1|f |

=

∫
A1

|f |(φ2 + φ1) +

k−1∑
i=2

(∫
Ai

|f |(φi+1 + φi + φi−1)

)
+

∫
Ak

|f |(φk + φk−1)

≥
∫
A1

|f |(φ2 + φ1) +

k−1∑
i=2

(∫
Ai

|f |(φi+1 + φi + φi−1)

)
Note that by construction, φ1 and φ2 are the only nonzero φ on A1, and φi−1, φi, φi+1

are the only nonzero φ on Ai for i ≥ 2. Thus this simplifies to∫
A1

|f |+
k−1∑
i=2

∫
Ai

|f | ≥
k−1∑
i=1

∣∣∣∣∫
Ai

f

∣∣∣∣ = k−1∑
i=1

1

n

so (Sk) is the sequence of partial sums of the harmonic series, which diverges. Thus
extΦ

∫
(0,1)

f does not exist.

But in contrast, we have

ext

∫
(ε,1−ε)

f =

M−1∑
i=1

∫
Ai

f +

∫
(1−1/2M ,1−ε)

f

where M is the largest integer such that 1− 1/2M ≤ 1− ε. If M is even then we have

M−1∑
i=1

∫
Ai

f ≤ ext

∫
(ε,1−ε)

f ≤
M∑
i=1

∫
Ai

f

and if M is odd then

M−1∑
i=1

∫
Ai

f ≥ ext

∫
(ε,1−ε)

f ≥
M∑
i=1

∫
Ai

f
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so

lim
ε→0

ext

∫
(ε,1−ε)

f =

∞∑
i=1

∫
Ai

f =

M∑
i=1

(−1)i

i
= − ln 2

Exercise 3-38 Let An be a closed set contained in (n, n+1). Suppose that f : R → R
satisfies ∫

Ai

f =
(−1)i

i

and f = 0 outside of
⋃∞
i=1Ai. Find two partitions of unity Φ,Ψ for R such that∑

φ∈Φ

∫
Cφ

φf

and ∑
ψ∈Ψ

∫
Cψ

ψf

both converge absolutely, but to different values.

Proof. First, pick C∞ functions g1, g2, . . . : R → [0, 1] such that gi = 1 on Ai and gi = 0
outside of a closed set contained in (i, i+1). Now, let φn = g2n−1+g2n. Then the collection
Φ = {φ1, φ2, . . .}, together with appropriately chosen functions, forms a partition of unity
for R. We have∫

Cφn

φnf =

∫
Cg2n−1

f +

∫
Cg2n

f =

∫
A2n−1

f +

∫
A2n

f =
−1

2n− 1
+

1

2n
= − 1

4n2 − 2n

Thus

ext
Φ

∫
R
f =

∞∑
i=1

∫
Cφi

φif =

∞∑
i=1

− 1

4n2 − 2n
= − ln 2

If we instead pick ψ1 = g1 and ψn = g2n+g2n+1, then Ψ = {ψ1, ψ2, . . .} (with appropriately
chosen functions) forms a partition of unity and we similarly have

ext
Ψ

∫
R
f =

∫
A1

f +

∞∑
i=2

(∫
A2n

f +

∫
A2n+1

f

)
= −1 +

∞∑
i=2

1

4n2 + 2n
= −1

6
− ln 2

Both of the series indicated converge absolutely since they converge, and do not change
sign.

Exercise 3-39 Prove Theorem 3.19 without the assumption detu′(x) ̸= 0 using
Sard’s Theorem.

Proof. Suppose u : A → Rn is injective and continuously differentiable, with A open. Let
C be the set of points x ∈ A such that detu′(x) = 0. detu′(x) is composed of products
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and sums of the partial derivatives, which are continuous, so x 7→ detu′(x) is continuous.
So C is a closed set in A, which means that A \ C is open in A and thus in Rn. Then the
restriction of u to A \ C is an injective, continuously differentiable function defined on an
open set with detu′(x) ̸= 0 for x ∈ A \ C. By Theorem 3.19, we have

ext

∫
u(A\C)

f = ext

∫
A\C

(f ◦ u)|detu′|

Since u is injective, u(A \C) = u(A) \ u(C). By Sard’s Theorem, u(C) has measure zero so

ext

∫
u(A)

f = ext

∫
u(A)\u(C)

f + ext

∫
u(C)

f = ext

∫
u(A)\u(C)

f

Now, since (f ◦ u)|detu′| = 0 on C, and

ext

∫
A\C

|detu′| = ext

∫
A

|detu′|

By Sard’s Theorem, u(C) has measure zero. So we have

ext

∫
u(A)

1 = ext

∫
u(A)\u(C)

1 = ext

∫
u(A\C)

1 = ext

∫
A\C

|detu′| = ext

∫
A

|detu′|

Exercise 3-40

(a) If g : Rn → Rn is continuously differentiable and det g′(a) ̸= 0, prove that in
some open set containing a we can write g = T ◦ gn ◦ . . . ◦ g1, where gi is of the
form

gi(x) = (x1, . . . , fi(x), . . . , xn)

for some fi : Rn → R, and where T is a linear transformation.

Note: Spivak failed to require that g be C1.

(b) Show that if fi does not depend on xj , i ̸= j, then we can take T = I if and
only if g′(a) is diagonal.

Note: Spivak’s original question does not include the stipulation that fi does
not depend on the other variables, but it is incorrect as stated.

(a) Proof. First note that it suffices to prove the case g′(a) = I. In the general case, we
would consider (Dg(a))−1 ◦g, and then g may be written as Dg(a) composed with the
representation produced in the identity case.

Recursively define the following:

g1(x) = (g1(x), x2, . . . , xn)

g2(x) = (x1, g
2(g−1

1 (x)), x3, . . . , xn)

...

gn(x) = (x1, . . . , xn−1, g
n(g−1

1 (. . . (g−1
n−1(x)))))
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The fact that each g−1
i exists is by the Inverse Function Theorem, since each has

g′i(a) = I and thus there is an open set around a where all gi are invertible. It follows
that

g = gn ◦ . . . ◦ g1

(b) ( =⇒ ) Suppose T = I. Then if j ̸= i, we have

Djgi(a) = Dj(g
i ◦ (g−1

1 ◦ . . . ◦ g−1
i−1)(a))

= Djg
i(g−1

1 ◦ . . . ◦ g−1
i−1)(a)︸ ︷︷ ︸

=0

Dj(g1 ◦ . . . ◦ gi−1)(a)

= 0

so g′(a) is diagonal.

( ⇐= ) Suppose

g′(a) =

a1 . . .

an


where each ai is nonzero. Then g ◦ [Dg(a)]−1 satisfies

(g ◦ [Dg(a)]−1)′(a) = g′(Dg(a)−1(a))[g′([Dg(a)]−1(a))]−1 = I

So we have g = gn ◦ . . . ◦ g1 ◦Dg(a). Since Dg(a) is of the form

Dg(a) = f1 ◦ . . . ◦ fn

we can write
g = gn ◦ . . . ◦ g1 ◦ f1 ◦ . . . ◦ fn

Since fi only depends on and changes the ith coordinate, and the same is true for gi,
we can freely interchange them so long as the relative order of gi, fi is preserved for
each i. So this becomes

g = (gn ◦ fn) ◦ . . . ◦ (g1 ◦ f1)
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Define f : {r : r > 0} × (0, 2π) → R2 by f(r, θ) = (r cos θ, r sin θ).

(a) Show that f is injective, compute f ′(r, θ), and show that det f ′(r, θ) ̸= 0 for all
(r, θ). Show that f({r : r > 0}×(0, 2π)) is the set A = {x < 0 or x ≥ 0, y ̸= 0},
as in Exercise 2-23.

(b) If P = f−1, show that P (x, y) = (r(x, y), θ(x, y)), where

r(x, y) =
√
x2 + y2

θ(x, y) =



arctan y
x , x > 0, y > 0

π + arctan y
x , x < 0

2π + arctan y
x , x > 0, y < 0

π
2 , x = 0, y > 0
3π
2 , x = 0, y < 0

Find P ′(x, y). P is called the polar coordinate system on A.

(c) Let C ⊆ A be the region between the circles of radius r1 and r2 and the half-
lines through 0 which make angles of θ1 and θ2 with the x-axis. If h : C → R
is integrable and h(x, y) = g(r(x, y), θ(x, y)), show that∫

C

h =

∫ r2

r1

∫ θ2

θ1

rg(r, θ) dθ dr

If Br = {(x, y) : x2 + y2 ≤ r2}, show that∫
Br

h =

∫ r

0

∫ 2π

0

rg(r, θ) dθ dr

(c) If Cr = [−r, r]× [−r, r], show that∫
Br

e−(x2+y2) dxdy = π(1− e−r
2

)

and ∫
Cr

e−(x2+y2) dxdy =

(∫ r

−r
e−x

2

dx

)2

(e) Prove that

lim
r→∞

∫
Br

e−(x2+y2) dxdy = lim
r→∞

∫
Cr

e−(x2+y2) dx dy

and conclude that ∫ ∞

−∞
e−x

2

=
√
π
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(a) Proof. Suppose r1 cos θ1 = r2 cos θ2 and r1 sin θ1 = r2 sin θ2. Then

r21 = r21(cos
2 θ1 + sin2 θ1) = r22(cos

2 θ2 + sin2 θ2) = r22

so r1 = r2. So sin θ1 = sin θ2 and cos θ1 = cos θ2, and we conclude that θ1 = θ2. We
have

det f ′(r, θ) = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r > 0

f(r, θ) ∈ R2 \ A only if y = 0 and x ≥ 0, which implies sin θ = 0 and cos θ > 0 and
thus θ = 0, or sin θ = cos θ = 0 which is impossible. So f({r : r > 0} × (0, 2π)) ⊆ A.
Let A = (x, y). Then take

r =
√
x2 + y2

θ =



arctan y
x , x > 0, y > 0

π + arctan y
x , x < 0

2π + arctan y
x , x > 0, y < 0

π
2 , x = 0, y > 0
3π
2 , x = 0, y < 0

So A ⊆ f({r : r > 0} × (0, 2π)) and we have equality.

(b) Proof. It suffices to check that r(f(r, θ)) = r and θ(f(r, θ)) = θ. The first equality is
easy:

r(f(r, θ)) =
√
r2 cos2 θ + r2 sin2 θ = r

For the second: 

0 < θ < π
2 =⇒ cos θ > 0, sin θ > 0

π
2 < θ < 3π

2 =⇒ cos θ < 0
3π
2 < θ < 2π =⇒ cos θ > 0, sin θ < 0

θ = π
2 =⇒ cos θ = 0, sin θ > 0

θ = 3π
2 =⇒ cos θ = 0, sin θ < 0

Since r > 0, all of the following remain true when cos θ is replaced by f1 and sin θ by
f2. So we have

0 < θ < π
2 =⇒ θ(f(r, θ)) = arctan tan θ = θ

π
2 < θ < 3π

2 =⇒ θ(f(r, θ)) = π + arctan tan θ = θ
3π
2 < θ < 2π =⇒ θ(f(r, θ)) = 2π + arctan tan θ = θ

θ = π
2 =⇒ θ(f(r, θ)) = π

2 = θ

θ = 3π
2 =⇒ θ(f(r, θ)) = 3π

2 = θ
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We have

D1P
1(x, y) = D1r(x, y) =

x√
x2 + y2

D2P
1(x, y) = D2r(x, y) =

y√
x2 + y2

D1P
2(x, y) = D1θ(x, y) =

1

1 + y2

x2

(
− y

x2

)
= − y

x2 + y2

D2P
2(x, y) = D2θ(x, y) =


1

1+ y2

x2

1
x = x

x2+y2 , x ̸= 0

0, x = 0

so

P ′(x, y) =

[
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

]

(c) Proof. Let C ′ = P (C) = (r1, r2)×(0, 2π), so that C = P−1C. Note also that h = g◦P .
P−1 is continuously differentiable by the Inverse Function Theorem, so by the Change
of Variables theorem,∫

C

h =

∫
C′
(h ◦ P−1)|det(P−1)′| =

∫
C′
(h ◦ P−1)

1

|detP ′|
=

∫
C′
g

1

|detP ′|

We can calculate,

detP ′(x, y) =
x2 + y2√
x2 + y2

3 =
1√

x2 + y2
=

1

r

So ∫
C′
rg =

∫
(r1,r2)×(0,2π)

rg

By Fubini’s Theorem, this becomes∫
C

h =

∫ r2

r1

∫ 2π

0

rg(r, θ) dθ dr

Similarly, let B′
r = P (Br) = (0, r)× (0, 2π). By similar logic,∫

Br

h =

∫
B′
r

(h ◦ P−1)
1

|detP ′|
=

∫
B′
r

gr =

∫
(0,r)×(0,2π)

gr =

∫ r

0

∫ 2π

0

rg(r, θ) dθ dr

(d) Proof. Using the result from part c),∫
Br

e−(x2+y2) dx dy =

∫ r

0

∫ 2π

0

re−r
2

dθ dr =

∫ r

0

2πre−r
2

dr = −πe−r
2

|r0 = π(1−e−r
2

)
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By Fubini’s Theorem,∫
Cr

e−(x2+y2) dxdy =

∫ r

−r

(∫ r

−r
e−x

2

e−y
2

dy

)
dx

=

∫ r

−r
e−x

2

(∫ r

−r
e−y

2

dy

)
dx

=

(∫ r

−r
e−x

2

dx

)2

(e) Proof. The quantity e−(x2+y2) is positive everywhere. So for any r, there exists r′ > r
such that Cr ⊆ Br′ , giving∫

Cr

e−(x2+y2) dxdy ≤
∫
Br′

e−(x2+y2) dx dy

But we can also pick r′′ so that Br ⊆ Cr′′ so that the other direction is true. This
shows that

lim
r→∞

∫
Br

e−(x2+y2) dx dy = lim
r→∞

∫
Cr

e−(x2+y2) dxdy

Then we have ∫ ∞

−∞
e−x

2

dx = lim
r→∞

∫ r

−r
e−x

2

dx

= lim
r→∞

√∫
Cr

e−x2+y2 dx dy

=

√
lim
r→∞

∫
Cr

e−x2+y2 dxdy

=

√
lim
r→∞

∫
Br

e−x2+y2 dxdy

=
√

lim
r→∞

π(1− e−r2)

=
√
π
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Definitions

k-tensor, 60

admissible, 49
alternating, 65
angle preserving, 76

boundary, 6

Cartesian product, 5
Cavalieri’s Principle, 157
characteristic function, 40
closed, 5
closed k-cell, 5
closed rectangle, 5
common refinement, 32
compact, 6
component functions, 9
composition, 8
content, 41
content zero, 35
continuous, 9
continuously differentiable, 21

derivative, 12
differentiable, 12
directional derivative, 120

Euclidean n-space, 3
extended integrable, 50, 51
exterior, 6

functional limit, 9

image, 8
inner product, 4, 64
inner product preserving, 75
integrable, 33

integral, 33
interior, 6
inverse, 8
iterated integrals, 42

Jacobian matrix, 13
Jordan-measurable, 40

Leibnitz’s rule, 152
level curve, 28
lower integral, 42

measure zero, 34
multilinear, 60

norm, 3
norm preserving, 75
Note:, 46

open, 5
open k-cell, 5
open cover, 6
open rectangle, 5
orthogonal, 80
orthonormal, 64
oscillation, 10

partial derivative, 19
partition, 31
partition of unity, 46
polar coordinate system, 165
preimage, 8
projection function, 9
pullback, 63
Pythagorean Identity, 80

refinement, 32

169



sign, 65
standard basis, 5
subcover, 6
subordinate, 46
subrectangles, 31

Taylor polynomial, 93

tensor product, 61

upper integral, 42

vector valued functions, 8
volume, 41

wedge product, 67
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