
MAT 429 Notes

Max Chien

Fall 2025



Contents

1 Preliminaries 3

Definitions 8

1



Introduction

2



Chapter 1

Preliminaries

Definition 1.1

Cm(Rn) denotes the class of functions f : Rn → R which have m continuous deriva-
tives on Rn, and moreover are bounded. Accompanying this, a norm is defined by

∥f∥Cm(Rn) = max
|α|≤m

sup
Rn

|∂αf |

Hence (x 7→ x) /∈ Cm(R) for any m. Also, the norm is equivalent to taking the sum
of such suprema. The problem at hand, then, is to consider a function f : E → R, where
E ⊆ Rn is compact, and ask how we might extend it to a Cm(Rn) function on all of Rn.
Moreover, supposing that such a function exists, we ask for bounds on the Cm(Rn) norm
of such an extension. We also seek formulas for the extension in terms of f , and for bounds
on th ederivatives at points close to E.

We will also consider the particular case where E is a finite set. Using bump functions, the
first question is trivial; we can easily create extensions that are in C∞(Rn). But this is not
a particularly reasonable or useful choice for interpolation or extrapolation. Instead, we will
attempt to find extensions which minimize the Cm(Rn) norm over solutions to the problem,
up to some constant factor which depends only on m,n.

For the finite case, we will also attempt to find algorithms which can search for these
minimizing solutions, and which minimize compute time and memory resources.
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Theorem 1.1

Let E ⊆ R2 be finite with |E| ≥ 6, and consider C2(R2). Let f : E → R. For any 6
distinct points G ⊆ E, let

g(G) = inf
F∈Cm(Rn)
F |G=f |G

∥F∥Cm(Rn)

Then there is a constant C, not depend on f , such that

max
G⊆E
|G|=6

g(G) ≤ C inf
F∈Cm(Rn)
F |E=f |E

∥F∥Cm(Rn)

The above is not true for 5 instead of 6.

Another problem, which leads to the Whitney extension theorem, asks if and how we may
extend functions which have not just their values but also their derivatives prescribed on an
initial set.

To illustrate why the n dimensional case is significantly harder than the 1 dimensional case,
suppose E consists of many points on the x axis, and a single point which is offset in the y
direction by +ε. Without this point, we have no information about y direction derivatives
at other points nearby on the x axis. However, if we do have that point, we can use it to
extrapolate bounds on the y derivative at all of the other points. Nevertheless, our algorithm
needs to understand how to identify that this data must be obtained from that point.

Similarly, let P be a third degree polynomial in x, y, and let E be its zero set, with a single
point lying just off of the curve. Once again we can use this point to estimate the gradient
of our function nearby on E.

For another example, consider C4(R3), and let G be an algebraic surface {x : P = 0}, and
consider a curve in G {x : P = Q = 0}. If all the points in E lie in or near G, and moreover
there are points which are close to our curve, the interpolation algorithm should identify
these patterns just from the input data E.

We can also make this useful for experiments by considering data which is prescribed with
errors. Concretely, consider E ⊆ Rn finite for m,n fixed, and for x ∈ E suppose we are
given f(x) and σ(x) > 0. Then we want to find functions F ∈ Cm(Rn) such that

|F (x)− f(x)| < σ(x) ∀x ∈ E

and such that ∥F∥Cm(Rn) is as small as possible up to a constant factor C. There exist

algorithms which can compute a solution for |E| = N in O(N logN) time, print queries in
O(logN) time, and use O(N) memory.

Example 1.1

Homework: We are given points x1, x2, . . . , xN ∈ R and are working in C2(R), with
initial data f(xk) = yk. We want an algorithm which computes extensions F ∈ C2(R)
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such that sup|F ′′| is optimal up to a universal constant C, in the sense that if F̃ is

also an extension, then sup|F ′′| ≤ C sup
∣∣∣F̃ ′′

∣∣∣. Similarly we can look for computations

of extension such that maxk=0,1,2 sup
∣∣F (k)

∣∣ is optimal to a constant. The algorithm
should compute F with O(N logN) overhead, and computation of specific values
F (x) should occur in O(logN) time.

If we add error bars σ(xk) > 0 to the above problem, it becomes an open problem,
although it can be solved if a 1+ ε factor is introduced and the constants allowed to depend
on ε.

To extend this problem to arbitrary metric spaces (X, d), with F : X → RD, we replace
smooth functions with Lipschitz functions. Supposing for each x ∈ X we are given a convex
set K(x) ⊆ RD, we want to calculate F such that F (x) ∈ K(x) for all x, and moreover the
Lipschitz constant for F is as small as possible, up to a constant. This may be solved using
a similar strategy as the previous 6-point method, with 2D test points.

Let E ⊆ Rn and |E| = N . Given f : E → R, compute the Lipschitz constant

L(f) = max
x,y∈E
x̸=y

|f(x)− f(y)|
|x− y|

Clearly the constant may be computed in O(N2) time by using direct comparison of each
pair. If we need to compute L(f) merely within 1% error, we can do so in O(N logN)
operations using well separated pairs decomposition.

Suppose we have to sets E′, E′′, and

dist(E′, E′′) > A(diam(E′) + diam(E′′))

with A large, say 103. Then we may save a number of operations by computing

max
x′∈E′

x′′∈E′′

|f(x′)− f(x′′)|
|x′ − x′′|

The distances between the points may be bounded below easily by the separation assump-
tion. We can also bound the numerator by computing the maximum and minimum values
of f over points E′, E′′. The first step takes O(1) operations, and the second takes O(N)
operations. To produce these sets, we will need more operations, but not O(N2).

Theorem 1.2: Well Separated Pairs Decomposition

Let E ⊆ Rn and |E| = N . Let E = E × E \ (diagonal). Then E may be partitioned
into νmax rectangular sets E′

ν × E′′
ν , ν = 1, . . . , νmax such that:

• For each ν, dist(E′
ν , E

′′
ν ) ≥ A(diam(E′

ν) + diam(E′′
ν )).

• νmax ≤ CN , where C depends on A and n.
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Proof. Assume that A ≥ 10 and A ∈ N, say. We proceed using dyadic cubes. We’ll use the
convention that cubes are Cartesian products of half open intervals; that is, we begin with
the unit cube (say) [0, 1)n and subdivide further. Note that the problem is clearly invariant
under scale, so we can assume E ⊆ [0, 1)n.

Choose any two dyadic cubes of side length 2−(k+A) such that the distance between their
centers is between 2−(k+1) and 2−k, and each contains a point in E. Call them Q′

ν , Q
′′
ν .

Then set E′
ν = Q′

ν ∩ E,E′′
ν = Q′′

ν ∩ E, and take all such ν. This construction suffices as a
partition, because any two points lie in exactly one such pair of dyadic cubes.

Let Q be the collection of all such (Q′
ν , Q

′′
ν), so that νmax = |Q|. Consider the subclass

Q̂ ⊆ Q which consists of those pairs (Q′
ν , Q

′′
ν) where Q′

ν , Q
′′
ν have sidelength 2−(k+A), and

they lie in the same dyadic cube of sidelength 2−(k−A). In general the cube of sidelength
2−(k−A) is much larger than the distance between the two cubes, so that nearly all pairs in
Q should lie in Q̂. For pairs which do not, Q′′

ν lies in the margin of width 2−(k−2) around
the 2−(k−A) dyadic square containing Q′

ν .

We next want to argue that |Q| = O(
∣∣∣Q̂∣∣∣). To do this, consider the tree of dyadic cubes

beginning with [0, 1)n and including all children which have at least one point of E. For any
children which have at least two points of E, we include their children as well, and so on.
Note that any path will terminate once a cube is reached which contains exactly one point of
E. Call any node which has at least two children a “branching node.” For instance, for any
pair (Q′

ν , Q
′′
ν) ∈ Q̂, there is a branching node at most 2A generations above the pair (since

at worst, the 2−(k−A) cube containing them both will be a branching node). The association
from (Q′

ν , Q
′′
ν) to their first mutual ancestor may be many-to-one, but it is bounded-to-one,

since the ancestor has a bounded number of descendant pairs at most 2A generations deep.
Thus we just need to count the number of branching nodes in order to count Q̂.

Note that the number of branching nodes in a tree with N leaves is at most N − 1.

To calculate νmax, define the dyadic distance between two dyadic cubes to be the sidelength
of the smallest dyadic cube which contains them both. Now consider the collection of cubes
chosen in the previous step such that the dyadic distance between Q′

ν , Q
′′
ν is at most K

times the sidelength of Q′
ν , where K is a large constant. Note that K is necessarily at least

2−A. For any such pair Q′
ν , Q

′′
ν , denote by Q̂ the smallest dyadic cube containing them both.

Then

diam(E ∩ Q̂) ≥ 2−A

K
diam(Q̂)

since we can take the pair of points guaranteed to be in Q′
ν , Q

′′
ν , and their distance is

∼ 2−A diam(Q′
ν), while diam(Q̂) ≤ K diamQ′

ν .

Next, we want to show that thre are at most CN dyadic cubes Q̂ such that

diam(E ∩ Q̂) > κ diam(Q̂)

where C depends only on κ, n.

Having chosen a well separated pairs decomposition, we can pick a representative point
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(x′
ν , x

′′
ν) ∈ E′

ν × E′′
ν for each ν. Then (say A = 106), L(f) is approximated by

max
ν

|f(x′
ν)− f(x′′

ν)|
|x′

ν − x′′
ν |

≤ max
x,y∈E
x̸=y

|f(x)− f(y)|
|x− y|

≤ (1 + 10−3)max
ν

|f(x′
ν)− f(x′′

ν)|
|x′

ν − x′′
ν |

The first inequality is clear. To prove the second, observe the following:

Proposition 1.3

For A = 106, if |f(x′
ν)− f(x′′

ν)| ≤ |x′
ν − x′′

ν | for all representatives, then it follows
that for any x, y ∈ E, |f(x)− f(y)| ≤ (1 + 10−3)|x− y|.

Proof. Suppose not. Then |f(x)− f(y)| > (1 + 10−3)|x− y| for some x, y ∈ E. Pick such
x, y where |x− y| is minimzed among pairs of points satisfying this. In particular x ̸= y, so
(x, y) ∈ E′

ν × E′′
ν , and we take the representative pair (x′

ν , x
′′
ν). We have

|x− x′
ν | ≤ diam(E′

ν)

|y − x′′
ν | ≤ diam(E′′

ν )

=⇒ |x− y| ≥ dist(E′
ν , E

′′
ν ) ≥ 106(diam(E′

ν) + diam(E′′
ν )) ≥ |x− x′

ν |+ |y − x′′
ν |

In particular, since (x, y) were the minimal counterexample, (x, x′
ν) and (y, x′′

ν) are not
counterexamples. Hence

|f(x)− f(x′
ν)| ≥ (1 + 10−3)|x− x′

ν |
|f(y)− f(x′′

ν)| ≥ (1 + 10−3)|y − x′′
ν |

Also by assumption,
|f(x′

ν)− f(x′′
ν)| ≤ |x′

ν − x′′
ν |

so

|f(x)− f(y)| ≤ |x′
ν − x′′

ν |+ (1 + 10−3)(|x− x′
ν |+ |y − x′′

ν |) ≤ (1 + 10−3)|x− y|

But this contradicts the assumption that (x, y) is a counterexample.
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