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Introduction

This document contains notes taken for the class MAT 425: Integration Theory and Hilbert
Spaces at Princeton University, taken in the Spring 2025 semester. These notes are primarily
based on lectures by Professor Jacob Shapiro. Other references used in these notes include
Real Analysis by Elias Stein and Rami Shakarchi, Real and Complex Analysis by Walter
Rudin, Real Analysis (2nd Edition) by Halsey Royden, The Elements of Integration and
Lebesgue Measure by Robert Bartle, Measure Theory by Paul Halmos, and Real Analysis:
Modern Techinques and Their Applications by Gerald Folland. Since these notes were
primarily taken live, they may contains typos or errors.
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Chapter 1

Introductory Measure Theory

1.1 Motivations

The formal study of measure theory is motivated historically by the insufficiency of the
Riemann integral as a complete tool for describing integration. Considering some bounded
function f : [a, b] → R, there are many desirable properties that we might expect from an
integral.

1. We might ask that the integral produces the average value of the function f on [a, b],
as

f =
1

b− a

∫ b

a

f

2. Geometrically, we can interpret the integral as the signed area between the graph of
f and the x-axis:

A =

∫ b

a

f

3. We also think of integrals as the continuous generalization of summation.

Recall that the Riemann integral of f over [a, b] is defined by considering, for fixed N ∈ N,
the upper and lower sums LN , UN defined by

LN (f) =
b− a
N

N−1∑
j=0

inf

{
f(x) : x ∈ a+ [n, n+ 1]

b− a
N

}

UN (f) =
b− a
N

N−1∑
j=0

sup

{
f(x) : x ∈ a+ [n, n+ 1]

b− a
N

}

We say that f is Riemann integrable with integral I =
∫ b
a
f ∈ R if limLN , limUN both exist

and are equal to I.

From our previous studies, Lebesgue’s criterion gave a convenient characterization of Rie-
mann integrable functions.
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Definition 1.1

A set S ⊆ R has measure zero if for any ε > 0 there exists a collection {Un}n∈N of
open intervals such that S ⊆

⋃
Un and

∑
|Un| < ε, where |Un| is the length of Un.

Example 1.1

The Cantor set C has measure zero. This is a consequence of the fact that at each
iterative step in the construction of the Cantor set, we have a collection of open

intervals covering the Cantor set, and the total length at step k is given by
(
2
3

)k → 0.

Theorem 1.1: Lebesgue’s Theorem

A bounded function f : [a, b] → R is Riemann integrable if and only if the set of
discontinuities of f has measure zero.

In particular, continuous functions are always Riemann integrable. The indicator func-
tion χC of the Cantor set is Riemann integrable, since its discontinuities are of measure zero.
However, χQ (restricted to some compact interval) is not, since it is discontinuous at every
point (this is precisely Dirichlet’s function).

One can define a Riemann integral for unbounded functions or on unbounded domains by
considering appropriate limits of Riemann integrals on compact intervals.

Example 1.2

The improper integral
∫ 1

0
1√
x
dx is computed as∫

[0,1]

1√
x
dx = lim

n→∞

∫
[ 1n ,1]

1√
x
dx = lim

n→∞
2
√
x|11

n
= lim
n→∞

[
2− 2√

n

]
= 2

This method may be naturally extended to functions with a finite number of ”integrable”
discontinuities, or sometimes countable discontinuities. However, the following example
shows that it fails in the general case.

Example 1.3

Let {ηn}n∈N be an enumeration of the set (0, 1) ∩Q. Define fn : [0, 1]→ R by

fn : x 7→

{
1√
x−ηn

: x > ηn

0 : x ≤ ηn

Then define

f(x) :=

∞∑
n=1

2−nfn(x)
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By density, f is unbounded in every open subinterval of [0, 1]. As a result, there is
no limit of intervals increasing to [0, 1] which we could use to define the integral of
f over [0, 1], in the sense used in the previous example.

To try to figure out a way around this, note that our work in the previous example
shows that ∫

[0,1]

fn = 2
√
1− ηn

Now, consider the (unjustified) interchange of the integral and sum:∫
[0,1]

f =

∫
[0,1]

∞∑
n=1

2−nfn −→
∞∑
n=1

2−n
∫
[0,1]

fn =

∞∑
n=1

2−n2
√

1− ηn <∞

As the above example demonstrates, an important question in analysis is which opera-
tions respect the limiting process. In particular, we know that uniform convergence respects
the limit:

Theorem 1.2

Let fn : [a, b] → R be a sequence of bounded Riemann integrable functions which
converge uniformly to f . Then f is Riemann integrable and lim

∫
[a,b]

fn =
∫
[a,b]

f .

However, it is desirable to us to apply this interchange under weaker hypotheses than
uniform convergence, so that we can develop a more powerful and general theory of inte-
gration.

Example 1.4

Consider again the enumeration {ηn}n∈N of (0, 1) ∩Q. Define

fn := χ{ηj :j∈[1,n]}

In words, fn(x) = 1 if x = ηj for some j ≤ n and 0 otherwise.
∫
[0,1]

fn = 0 for all

n, so we would like to assign the value 0 to
∫
[0,1]

lim f . However, observe that fn
converges pointwise to Dirichlet’s function, which is not Riemann integrable.

The development of the Lebesgue integral, which solves many issues with the Riemann
integral, will be accomplished by first discussing the general theory of measure and integra-
tion, and following the construction of the Lebesgue measure and integral.

1.2 Abstract Measure Theory

The development of a measure space structure on a set is accomplished by defining a col-
lection of ”measurable” subsets, not unlike a topology, which satisfies particular structural
constraints.
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Definition 1.2

Let X be a set, and consider a collection of subsetsM ⊆ P(X). We say thatM is
a σ-algebra on X if

1. X ∈M,

2. If A ∈M then X \A ∈M,

3. If {An}n∈N is a countable collection of elements ofM, then
⋃
An ∈M.

IfM is a σ-algebra on X, then (X,M) is called a measurable space. An element
ofM is called a measurable set. If the σ-algebra on X is understood by context,
then Meas(X) denotes the set of measurable subsets of X (that it, it denotes the
implied σ-algebra).

Notice that while a topology is required to be closed under arbitrary unions, a σ-algebra
is only required to be closed under countable unions. Moreover, the following follows directly
from the axioms of σ-algebras:

Proposition 1.3

∅ ∈ Meas(X) and Meas(X) is clsoed under countable intersections.

For comparison, recall the following definition of a topology:

Definition 1.3

Let X be a set, and consider a collection of subsets T ⊆ P(X). We say that T is a
topology on X if

1. X,∅ ∈ T ,

2.
⋂N
n=1 Vn ∈ T whenever each Vn ∈ T ,

3.
⋃
α∈A Vα ∈ T whenever Vα ∈ T for an arbitrary indexing set A.

By direct comparison, a topology is not automatically a σ-algebra, since it may not be
closed under complements.

Again in analogy to topology, recall that continuous functions are the morphisms of topo-
logical spaces. Thus, we can ask which functions can be considered to be the morphisms of
measurable spaces. Indeed, just as continuous functions are topologically characterized by
preserving open sets under preimages, we define measurable space morphisms similarly:

Definition 1.4

A function f : X → Y for measurable spaces X,Y is said to be a measurable
function if f−1(A) ∈ Meas(X) whenever A ∈ Meas(Y ).
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It follows immediately that the composition of measurable functions is measurable.

As with topologies, any set automatically comes equipped with two σ-algebras: the power
set P(X) and {∅, X}. These are the largest and smallest σ-algebras on X, respectively.

Example 1.5

Let X = {1, 2, 3, 4}. Then the following is a nontrivial σ-algebra:

M = {∅, X, {1, 2} , {3, 4}}

Generalizing the above, for any A ⊆ X, the σ-algebra {∅, X,A,X \ A} is the smallest
σ-algebra containing A.

Remark 1.1

The arbitrary intersection of σ-algebras on a common set is again a σ-algebra, but
not necessarily unions.

Definition 1.5

Let f : X → Y , where X is an arbitrary set and Y is a measurable space. Then the
σ-algebra σ(f) generated by f is

σ(f) :=
{
f−1(A) : A ∈ Meas(Y )

}
Essentially, σ(f) is generated by pulling back the measurable structure of Y through f .

It is straightforward to verify that σ(f) is actually a σ-algebra, and it follows that σ(f) is
the smallest σ-algebra on X such that f is measurable. In other words, ifM is a σ-algebra
on X, then f is measurable with respect to (X,M), Y if and only if σ(f) ⊆M.

We can generalize the construction of ”smallest σ-algebra” type constructions to find the
smallest σ-algebra containing a certain collection of subsets. It is somewhat nonobvious
that such an algebra exists or is unique.

Theorem 1.4

Let F ⊆ P(X). Then there exists a unique minimal σ-algebra σ(F) on X such that
F ⊆ σ(F).

Proof. Let Ω be the set of collection of all σ-algebras on X which contain F . Ω is nonempty
since P(X) ⊆ Ω. Define

σ(F) =
⋂

M∈Ω

M

Since the arbitrary intersection of σ-algebras is a σ-algebra, σ(F) is indeed a σ-algebra.
Moreover, by construction σ(F) is contained in any element of Ω, and it is thus minimal.
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As we remarked above, a topology is not in general a σ-algebra. The two notions are
linked by considering the Borel σ-algebra, which is generated by the open sets on a space.

Definition 1.6

Let X be a topological space with topology T . Then the Borel σ-algebra on X is
given by B(X) = σ(T ).

Note that since σ-algebras are closed under complements, by definition the closed sets on
X are in B(X). It is also the case that countable intersections of open sets and countable
unions of closed sets are contained in B(X), when this is not necessarily true in T . Elements
of a Borel σ-algebra are called Borel sets. In general, when we refer to topological spaces
without specifying a σ-algebra, the Borel algebra is implicitly taken.

Under Hausdorff’s terminology, sets which are the countable union of closed sets are denoted
Fσ sets. Analogously, sets which are the countable intersection of open sets are denoted Gδ
sets.

To make more precise the connection between topologies and measurable spaces through
the Borel σ-algebra, we make the following claim:

Proposition 1.5

Let f : X → Y be a mapping between topological spaces such that f−1(V ) ∈ B(X)
for any open set V ⊆ Y . Then f is measurable with respect to B(X),B(Y ).

Proof. Define the collection

M =
{
A ∈ P(Y ) : f−1(A) ∈ B(X)

}
It can be verified that M is a σ-algebra on Y . Then, by assumption the open sets in Y
are contained inM. Moreover, by definition B(Y ) is the smallest σ-algebra containing the
open sets. Therefore we have Open(Y ) ⊆ B(Y ) ⊆ M. Since B(Y ) is contained in M it
follows by definition that f is measurable with respect to B(X),B(Y ).

Note that the above proposition implies that any continuous mapping between topo-
logical spaces is measurable with respect to their Borel algebras. We prove the following
statement, which will aid our understanding of complex measurable functions:

Proposition 1.6

Let X be a measurable space and Y a topological space. Let u, v : X → R be
measurable and φ : R2 → Y be continuous. Then h : X → Y defined by

h(x) = φ(u(x), v(x))

is measurable with respect to Meas(X),B(Y ).
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Proof. From the previous proposition, φ is measurable with respect to B(R2) and B(Y ).
Let f : X → R2 be x 7→ (u(x), v(x)). Then h = φ ◦ f , and the composition of mea-
surable functions is measurable. So it suffices to show f is measurable with respect to
Meas(X),B(R).

Take some rectangle R = I1×I2 for intervals I1, I2. Then f−1(R) = u−1(I1)∩v1(I2). f−1(R)
is then a measurable set since both u, v are measurable functions. Now, let V ∈ Open(R2).
Then V can be written as the countable union of rectangles. So we have

f−1(V ) = f−1

( ∞⋃
n=1

Rn

)
=

∞⋃
n=1

f−1(Rn) ∈ Meas(X)

From the previous proposition it follows that f is measurable.

We can now use this fact to produce measurable functions from other measurable func-
tions.

Theorem 1.7

Let X be a measurable space. Then:

1. If u, v : X → R are measurable, then so is u+ iv : X → C.

2. If f : X → C is measurable, then so are Re(f), Im(f), |f |.

3. If f, g : X → C are measurable then f + g and fg are both measurable.

4. If A ∈ Meas(X) then χA : X → R is measurable as well.

5. If f : X → C is measurable then there exists α : X → C measurable such that
f = α|f |.

It is often of interest to us to work in the extended real line, so that we can consider
functions or measures which assign infinite values to some points or sets. This is also helpful
since the extended real line is compact.

Definition 1.7

The extended real line is denoted [−∞,∞] or R, and consists of the set R∪{±∞},
together with the topology that contains open sets in R and countable unions of sets
of the form (a,∞] and [−∞, a).

Theorem 1.8

Let f : X → R with X a measurable space. If

f−1((a,∞]) ∈ Meas(X)

for all a ∈ R, then f is measurable.
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Proof. The point is to show that any open set in R may be constructed countably from sets
of the form (a,∞].

First we consider sets of the form [−∞, a). Let {an} → a be a sequence of points with
an < a for all an. Then

[−∞, a) =
∞⋃
n=1

[−∞, an] =
∞⋃
n=1

(an,∞]c

so f−1([−∞, a)) ∈ Meas(X). We can similarly write

(a, b) = [−∞, b) ∩ (a,∞]

so that f−1((a, b)) ∈ Meas(X) as well. Now it follows that any open set in the topology on
R has a preimage in Meas(X), so it follows that f is measurable with respect to the Borel
algebra on R.

Theorem 1.9

Let fn : X → R be a sequence of measurable functions. Then the functions
sup fn, lim sup fn, inf fn, lim inf fn, which are defined pointwise, are all measurable.

Proof. By the previous theorem, it suffices to check that (sup fn)
−1

((a,∞]) is measurable
for all a ∈ R, which we will do by expressing these sets as countable unions of preimages
through the individual fn.

We claim that

(sup fn)
−1

((a,∞]) =

∞⋃
n=1

f−1
n ((a,∞])

While this is not true in general, it holds for the half-open infinite intervals. We show double
inclusion.

(⊆) Let x ∈ (sup fn)
−1

((a,∞]). Then sup fn(x) > a. Thus there exists n such that
fn(x) > sup fn − ε for ε sufficiently small that sup fn − ε > a. So x ∈ f−1

n (a,∞].

(⊇) Similarly, if x ∈
⋃∞
n=1 f

−1
n ((a,∞]), then there exists n with fn(x) > a, which then

implies that sup fn(x) > a as well.

By hypothesis, f−1
n ((a,∞]) ∈ Meas(X) for all n. Thus sup fn is measurable. Of course this

is true for inf as well.

To show that lim sup is measurable as well, we simply use the representation of lim sup as

lim sup an = inf
n≥1

(
sup
m≥n

am

)
Thus lim sup fn and lim inf fn are both measurable as well.
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Corollary 1.10

If lim fn exists and each fn : X → R is measurable, then so is lim fn.

Proof. If the limit exists then it is equal to both the lim sup and lim inf.

Corollary 1.11

If f, g : X → R are measurable then so is max{f, g} and min{f, g}.

Proof. Define f1 = f and fn = g for all n ≥ 2.

The following theorem, which is a direct result of the above, is useful for considering an
arbitrary function in terms of two nonnegative functions, which are easier to work with.

Proposition 1.12

For any f : X → R, we can decompose it into positive and negative parts as f =
f+ − f−, with

f+ := max{f, 0}
f− := −min{f, 0}

If f is measurable then so are f+, f−.

Proof. Based on the previous theorems, we just need to show that the constant zero function
is measurable. But this is clear since the preimage of any subset of R will be all of X if the
subset contains 0, and ∅ otherwise.

1.3 Measures and Integration

Our next goal is to define integration of measurable functions. To do so, we will first consider
simple functions, which will be the smallest building blocks that we define an integral on.

Definition 1.8

A function s : X → C is a simple function if it has finite image. A simple
nonnegative function is a simple function s : X → [0,∞).

Because a simple function s assumes only finitely many values, we can always express it
as the weighted sum of characteristic functions:

s =

n∑
i=1

αiχAi

where the αi are the values in the image, and the Ai are their preimages.
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Proposition 1.13

A simple function expressed as

s =

n∑
i=1

αiχAi

is measurable if and only if each Ai is measurable.

Proposition 1.14

Products and sums of simple functions are simple.

Proof. Clearly there are only finitely many values in the image.

The utility of simple functions is that we may use them to approximate arbitrary mea-
surable functions. Thus, so long as our integral operator interchanges with limits, we will
be free to define integrals solely over simple functions.

Theorem 1.15

Let f : X → [0,∞] be measurable. Then there exists a sequence of simple nonnega-
tive measurable functions sn : X → [0,∞) such that:

• 0 ≤ s1 ≤ s2 ≤ . . . ≤ f .

• sn → f pointwise.

Proof. We first provide an approximation for the identity, and then compose this with our
function f . This approximation is made easier since we only need a pointwise limit. Thus we
can consider a step function which both has finer steps (in order to approach the identity),
and approximates the identity on a larger range (so that at there are always finite points in
the range). Thus, we define

φn(t) =

{
2−n⌊2nt⌋, 0 ≤ t < n

n, t ≥ n

φn is simple since it has ∼ 2−n values in its image. Additionally its preimages are half-open
intervals so φn is measurable.

Now, we need to show that φn ≤ φn+1 and φn converges to the identity pointwise. To
show this, we prove that t− 2−n < φn(t) ≤ t for all t. Then it is clear that as n→∞, φn
approaches the identity.

Now, the conclusion to the proof is to set sn := φn ◦ f . sn is simple since we factor through
the simple function φn, and it is measurable as the composition of measurable functions.
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Now, we have established the technical background to define integration of simple func-
tions. To do this, we essentially just assign each possible preimage of the simple functions
a weight (which must be additive). Such a weight is a generalization of the notions of area,
volume, mass, and so on, and is called a measure. We make two slightly different definitions
for real and complex measures.

Definition 1.9

A complex measure on X is a function µ : Meas(X) → C which is countably
additive, meaning that whenever {An} is a countable sequence of pairwise disjoint
measurable sets, we have

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

Definition 1.10

A nonnegative measure on X is a map µ : Meas(X)→ [0,∞] which is countably
additive, and such that there is at least one set A ∈ Meas(X) with finite measure.
A measure space is a triple (X,M, µ) where (X,M) is a mesaurable space and µ
is a measure on (X,M).

Note it follows that µ(∅) = 0, which would not be true in the nonnegative case if we did
not require the existence of a finite measure set.

Proposition 1.16

If µ is a nonnegative meausre on X, then:

1. µ(∅) = 0.

2. µ is finitely additive.

3. If A ⊆ B then µ(A) ≤ µ(B).

4. If A1 ⊆ A2 ⊆ . . . is a countable sequence of measurable sets, then

limµ(An) = µ
(⋃

An

)
5. If A1 ⊇ A2 ⊇ . . . is a countable sequence of measurable sets and at least one
An has finite measure, then

limµ(An) = µ
(⋂

An

)
Roughly speaking, (4) and (5) tell us that measures may be approximated from either

inside or outside.
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Proof. 1. Take A measurable with finite measure, and consider the sequence A1 = A,
An = ∅ For n ≥ 2. Then

∞ > µ(A) = µ
(⋃

An

)
=
∑

µ(An) = µ(A) +
∑

µ(∅)

which implies that we must have µ(∅) = 0.

2. Follows from countable additivity now that we know µ(∅) = 0.

3. We write B = A ⊔ (B \A) and apply (2).

4. Define B1 = A1, B2 = A2 \A1, and Bn = An \An−1 for n ≥ 2. Then apply countable
additivity.

5. Suppose µ(AN ) <∞. Then we have

⋂
n∈N

An = AN \

( ∞⋃
n=1

AN \AN+n

)

so by the previous item,

µ

(⋂
n∈N

An

)
= µ(AN )− µ

( ∞⋂
n=1

AN \AN+n

)
= lim
n→∞

µ(AN )− µ(AN \AN+n)

= lim
n→∞

µ(AN+n)

The most important example of a nonnegative measure is the Lebesgue measure. Because
it is harder to define, we start by defining a few simpler measures.

Definition 1.11

Let X be a measurable space with Meas(X) = P(X). The counting measure is
defined as c : Meas(X) → [0,∞] such that c(A) is the cardinality of A (possibly
infinite).

Definition 1.12

Let X be a measurable space with Meas(X) = {∅, X, {x0}, X \ {x0}} for some
distinguished point x0. Then the Dirac delta measure at x0 is defined by

S 7→

{
1, x0 ∈ S
0, x0 /∈ S

We can now define the integral of a positive function against a measure. We will do so
by first defining the integral of simple functions, then passing to the limit.
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Definition 1.13

Let µ : Meas(X) → [0,∞] be a nonnegative measure. Let s =
∑n
i=1 αiχAi

be a
simple measurable function, and let E ∈ Meas(X). Then we define the Lebesgue
integral of s over E with respect to µ to be∫

E

s dµ :=

n∑
i=1

αiµ(Ai ∩ E)

By convention, if αi = 0 on a set of infinte measure, the entire term is considered to
be zero.

Definition 1.14

Let f : X → [0,∞] be measurable, and let µ : Meas(X) → [0,∞] be a nonnegative
measure. Let E ∈ Meas(X). Then the Lebesgue integral of f over E with respect
to µ is ∫

E

f dµ := sup
0≤s≤f

∫
E

s dµ

where the supremum is taken over all nonnegative simple measurable functions which
satisfy 0 ≤ s ≤ f .

Note that the second definition agrees with the first since the supremum is attained by
f .

Example 1.6

Set X = N, Meas(X) = P(X), and c to be the counting measure on X. Then∫
A

f dc =
∑
x∈A

f(x)

when A ⊆ N. This is clear for finite A but requires limit theorems for countable A.
Thus we have represented the sum as an integral against the counting measurable,
meaning that our integral theorems will apply to sums as well.

1.4 Limit Theorems

We now turn to the question of interchanging the limit operator and integral, which is a
major motivation for the definition of the integral in this way. We begin first with a few
elementary properties.
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Proposition 1.17

Let 0 ≤ f ≤ g be nonnegative measurable functions. Then:

1.
∫
f ≤

∫
g.

2. If A ⊆ B then
∫
A
f ≤

∫
B
f .

3. If 0 ≤ c <∞, then
∫
cf = c

∫
f .

4. If f ≡ 0 then
∫
E
f = 0 for any measurable E, even if E has infinite measure.

5. If E is measurable with µ(E) = 0, then
∫
E
f = 0.

6. For E measurable,
∫
E
f =

∫
χEf .

Theorem 1.18

Let s, t ≥ 0 be nonnegative simple functions and µ a measure. Define

φs(E) =

∫
E

s dµ

Then φs is a measure, and φs+t = φs + φt.

Proof. Let E =
⊔
Ei be the disjoint countable union of some Ei. By definition,

φs(E) =

n∑
i=1

αiµ(E ∩Ai) =
n∑
i=1

αi

∞∑
j=1

µ(Ej ∩Ai)

Because s is simple we can interchange the finite sum:

n∑
i=1

αi

∞∑
j=1

µ(Ej ∩Ai) =
∞∑
j=1

n∑
i=1

αiµ (Ej ∩ Ei) =
∞∑
j=1

φs(Ej)

Thus φs is a measure. Linearity follows since we are only adding two simple functions, and
so there are at most finitely many sets to work with.

Example 1.7

To give an example of a sequence where the limit and integral cannot be interchanged,
define fn = nχ(0,1/n). Then

∫
fn = 1 for all n, but the pointwise limit is 0 everywhere.

We now prove our first limit theorem:

16



Theorem 1.19: Monotone Convergence Theorem

Let 0 ≤ fn ↗ f ≤ ∞ be a sequence of nonnegative measurable functions. Then f is
measurable and ∫

fn →
∫
f

Proof. First note that the sequence
∫
fn is monotone increasing, so it has a limit (in the

extended reals). Thus we have

L = lim

∫
fn ≤

∫
f

Pick a simple function s ≤ f and ε < 1. We want to show that L ≥ ε
∫
s, which will then

prove the result by taking ε→ 1 and s→ f .

For each n, define
En = {x : fn(x) ≥ εs(x)}

For any point x ∈ X, we have fn(x)→ f(x) > εs(x), so⋃
En = X

Then for each n we have ∫
En

εs ≤
∫
En

fn ≤
∫
X

fn → L

We also have ∫
En

εs→
∫
X

εs

so ∫
εs ≤ L

for all ε < 1, s ≤ f . Thus ∫
f ≤ L

so we have both inequalities and thus∫
f = L = lim

∫
fn

Corollary 1.20

If f, g are nonnegative and measurable then
∫
f + g =

∫
f +

∫
g.

Proof. Take two sequences of simple functions si ↗ f and ti ↗ g. The monotone conver-
gence theorem gives the result.

17



Corollary 1.21

If fn ≥ 0 is a sequence of nonnegative measurable functions then∫ ∞∑
n=1

fn(x) =

∞∑
n=1

∫
fn(x)

Proof. Combine the monotone convergence theorem with the previous corollary.

Corollary 1.22

If aij is a sequence of nonnegative numbers then

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij

Proof. We write one of the sums as an integral with the counting measure.

Lemma 1.23: Fatou’s Lemma

Let fn ≥ 0 be a sequence of nonnegative measurable functions. Then∫
lim inf fn ≤ lim inf

∫
fn

Proof. Define gn(x) = infm≥n fm(x). Then by definition, gn ↗ lim inf fn. Also
∫
gn ≤

∫
fn

for each n. So by monotone convergence we have∫
lim inf fn = lim

∫
gn = lim inf

∫
gn ≤ lim inf

∫
fn

Having established limit theorems for nonnegative functions, we now make our definition
of arbitrary integrals.

Definition 1.15

Let f : X → R be a measurable function. Writing f = f+ − f−, we define∫
f =

∫
f+ −

∫
f−

For a complex measurable function F = u+ iv : X → C, we define∫
F =

∫
u+ i

∫
v

Clearly this definition agrees with our previous one. However, there is a slight subtlety,
which is that our definition may end up with an expression like ∞ − i∞. As such, we

18



restrict this definition to those f which make the integral absolutely convergent (meaning∫
|f | <∞). In this case our new integral inherits the properties we have shown for integrals

of nonnegative functions.

Definition 1.16

Let µ be a measure on X. Then we define the L1 space to be

L1(µ) =

{
f : X → C :

∫
|f |dµ <∞

}
Occasionally we will also specify the domain and codomain as L1(X → C, µ), or just
the domain or codomain as appropriate when the other is implied.

Proposition 1.24

For f ∈ L1(X → C, µ) measurable such that |f | is integrable,∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f |
Proof. For f real valued, we write∣∣∣∣∫ f

∣∣∣∣ = ∣∣∣∣∫ f+ −
∫
f−
∣∣∣∣ ≤ ∣∣∣∣∫ f+

∣∣∣∣+ ∣∣∣∣∫ f−
∣∣∣∣ = ∫ f+ +

∫
f− =

∫
|f |

A similar proof shows the result for complex functions.

Proposition 1.25

Let f, g ∈ L1(X → C, µ). Then∫
f + g =

∫
f +

∫
g

Proof. We have already proved this for nonnegative functions. Suppose f, g are real valued.
Set h = f + g. Then f, g, h admit decompositions into nonnegative functions as

f = f1 − f2
g = g1 − g2
h = h1 − h2
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Now, applying the result for nonnegative functions and rearranging, we have

h1 − h2 = f1 − f2 + g1 − g2
h1 + f2 + g2 = h2 + f2 + g2∫

h1 +

∫
f2 +

∫
g2 =

∫
h2+ ∈ tf2 +

∫
g2∫

f + g =

∫
h1 − h2 =

∫
f1 − f2 +

∫
g1 − g2 =

∫
f +

∫
g

The proof proceeds similarly for complex valued functions.

Theorem 1.26: Dominated Convergence Theorem

If fn → f and there exists g ∈ L1 such that |fn| ≤ g, then:

• fn, f ∈ L1,

• lim
∫
|f − fn| = 0 (equivalently, fn → f in L1),

• lim
∫
fn =

∫
f (weak convergence)

Proof. First note that we have
|fn| ≤ g −→ |f | ≤ g

so fn, f ∈ L1. Moreover, we have
|fn − f | ≤ 2g

so the differences are in L1 as well. Moreover, we have 2g−|fn − f | ≥ 0. Thus we can apply
Fatou’s lemma: ∫

2g =

∫
lim (2g − |f − fn|) =

∫
lim inf (2g − |f − fn|)

≤ lim inf

∫
(2g − |f − fn|) =

∫
2g + lim inf

∫
−|f − fn|

Because
∫
2g <∞, we can subtract it from both sides to see that

0 ≤ lim inf

(
−
∫
|f − fn|

)
=⇒ lim sup

∫
|f − fn| ≤ 0

Since the RHS is nonnegative we conclude that lim
∫
|f − fn| exists and is equal to zero. To

demonstrate weak convergence, we have∣∣∣∣∫ fn −
∫
f

∣∣∣∣ = ∣∣∣∣∫ fn − f
∣∣∣∣ ≤ ∫ |fn − f | → 0
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Example 1.8

Consider fn = nχ(0,1/n2). These functions are bounded by g(x) = 1√
x
∈ L1. More-

over, we have

lim

∫
fn = lim

1

n
= 0 =

∫
0 =

∫
lim fn
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Chapter 2

The Lebesgue Measure

To this point we have defined integrals in a way that allows us to interchange them with
limit operators in various settings. We have also defined an appropriate σ-algebra, B(R),
on R, which we can use to work with this integral. Now we have to define a measure on
B(R) that extends the Riemann integral. To make this definition we will essentially present
an existence and uniqueness proof.

More precisely we show that there exists a unique positive, translation invariant meausre
λ : B(R)→ [0,∞] such that λ([0, 1]) = 1.

In this search it will also turn out that the measurable sets under λ is larger than the Borel
algebra.

Definition 2.1

For a set S ⊆ R and x ∈ R, we define translation by

S + x := {s+ x : s ∈ S}

A measure µ is called translation invariant if µ(S) = µ(S + x) for all x, S.

Our work will involve first developing theorems about how to construct measures out of
more primitive objects. Applying this to R with some geometric intuition will give us the
Lebesgue measure.

2.1 Premeasures and Outer Measures

Consider some nonempty set X, and let ρ : E → [0,∞] be a map which is initially defined on
some subset E of P(X), with ρ(∅) = 0. We do not assume that E is a σ-algebra; however
it will generate the σ-algebra that is used by the final measure.
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Definition 2.2

If X is nonempty, an outer measure on X is a map φ : P(X)→ [0,∞] such that

1. φ(∅) = 0,

2. φ(A) ≤ φ(B) whenever A ⊆ B,

3. φ (
⋃
An) ≤

∑
φ(An) for any countable collection of sets An.

Note that an outer measure is not a measure.

We now define an outer measure φρ : P(X)→ [0,∞] using the data from ρ.

Proposition 2.1

Let X be nonempty, ρ : E → [0,∞] for E ⊆ P(X) containing {∅, X}, and ρ(∅) = 0.
Then the function φρ : P(X)→ [0,∞] defined by

φρ(A) := inf
{∑

ρ(En) : {En}n∈N ⊆ E,A ⊆
⋃
En

}
is an outer measure. Here the infimum is over all countable covers of A with elements
of E. If no such cover exists then by definition the infimum is ∞.

Proof. It is clear that φρ(∅) = 0 since we can take the cover to be En = ∅. To show
monotonicity, if A ⊆ B then any cover of B covers A, so φρ(A) ≤ φρ(B) (this still holds
when one or both sets admit no covers).

If A =
⋃
An, then for any ε > 0 we can pick covers {En,i}i for each n such that

∞∑
i=1

ρ(En,i) ≤ φρ(An) +
ε

2n

Then the collection {En,i}n,i is a countable cover of A, and we have∑
n,i

ρ(En,i) =
∑
n

∑
i

ρ(En,i) ≤
∑
n

(
φ(An) +

ε

2n

)
=
∑
n

φρ(An) + ε

Taking ε→ 0 and taking the infimum, we conclude that

φρ

(⋃
n

An

)
≤
∑
n

φρ(An)

Example 2.1

Taking E to be the set of intervals and letting ρ((a, b)) = b − a, we generate the
Lebesgue outer measure.
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So far we have placed no assumptions on ρ. In order to get outer measures and measures
which we can work with nicely, it is helpful to impose a few conditions. To see this, we ex-
amine some possible difficulties with pathological ρ. For instance, if ρ itself is not countably
additive, then φρ could fail to coincide with ρ on E.

Definition 2.3

If φ is an outer measure on X, a set A ⊆ X is called φ-measurable if for all
Q ∈ P(X),

φ(Q) = φ(Q ∩A) + φ(Q ∩Ac)

The set of φ-measurable sets is denoted Aφ.

Essentially, a φ-measurable set splits with respect to measure. It is not a priori obvious
that nonmeasurable sets should exist under this definition, but we will see later that they
do. Note that we always have

φ(Q) ≤ φ(Q ∩A) + φ(Q ∩Ac)

by countable subadditivity of φ. Thus in general we can check φ-measurability just by
verifying that

φ(Q) ≥ φ(Q ∩A) + φ(Q ∩Ac)
Moreover, when φ(Q) =∞ this is automatically true.

A natural question is then to ask whether φρ-measurable sets form a σ-algebra. The answer
to this question is yes; moreover the restriction theorem that we prove shows that φρ is also
a measure when restricted to these sets.

Theorem 2.2: Caratheodory’s Restriction Theorem

Let X be a nonempty set and φ an outer measure on X. Then Aφ is a σ-algebra,
and µφ := φ|Aφ is a measure.

Proof. Take ∅. By the remark above, it suffices to show that for any Q ∈ X,

φ(Q) ≥ φ(Q ∩∅) + φ(Q ∩∅c)

But this is clear since the right hand side is just

φ(∅) + φ(Q) = φ(Q)

It is also obvious that Aφ is closed under complements since the definition treats A,Ac

symmetrically.

To show closure under countable unions, we first show finite unions. For A,B ∈ Aφ, and
pick Q ∈ P(X) with φ(Q) <∞ (recall from above that we can assume finite outer measure).
Then

φ(Q) = φ(Q ∩A) + φ(Q ∩Ac)
= φ(Q ∩A ∩B) + φ(Q ∩A ∩Bc) + φ(Q ∩Ac ∩B) + φ(Q ∩Ac ∩Bc)
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We have the identity
A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B)

Since φ is an outer measure, it follows that

φ(A ∪B) ≤ φ(A ∩B) + φ(A ∩Bc) + φ(Ac ∩B)

So we have

φ(Q) ≥ φ(Q ∩ (A ∪B)) + φ(Q ∩Ac ∩Bc) = φ(Q ∩ (A ∪B)) + φ(Q ∩ (A ∪B)c)

Now we extend this to countable unions
⋃
An. It suffices to assume that the An are pairwise

disjoint by picking

A′
n = An \

(
n−1⋃
m=1

Am

)
Then A′

n are in Aφ by our work showing that complements and finite unions were closed.

Now take Q with φ(Q) <∞. Then for any N ,
⋃N

An ∈ Aφ. Therefore we can write

φ(Q) = φ

(
Q ∩

(
N⋃
n=1

An

))
+ φ

(
Q ∩

(
N⋃
n=1

An

)c)

≥ φ

(
Q ∩

(
N⋃
An

)
∩An

)
+ φ

(
Q ∩

(
N⋃
An

)
∩AcN

)
+ φ

(
Q ∩

(
N⋃
n=1

An

)c)

= φ (Q ∩AN ) + φ

(
Q ∩

(
N−1⋃

An

))
+ φ

(
Q ∩

(
N⋃
n=1

An

)c)
...

≥
N∑
n=1

φ(Q ∩An) + φ

(
Q ∩

(
N⋃
An

)c)

Now, we have
⋃∞

An ⊇
⋃N

An, so we have

φ

(
Q ∩

(
N⋃
An

)c)
≥ φ

(
Q ∩

(∞⋃
An

)c)

Taking N →∞, we have

φ(Q) ≥
∞∑
n=1

φ(Q ∩An) + φ

(
Q ∩

(∞⋃
φ(An)

)c)

Since φ is countably subadditive,

∞∑
n=1

φ(Q ∩An) ≥ φ

(
Q ∩

(∞⋃
An

))
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Thus

φ(Q) ≥ φ

(
Q ∩

(∞⋃
An

))
+ φ

(
Q ∩

(∞⋃
φ(An)

)c)
showing that

⋃∞
An ∈ Aφ. Thus Aφ is a σ-algebra.

We know there is a set with finite measure since µφ(∅) = 0. To demonstrate finite additivity,
pick A,B ∈ Aφ disjoint. Then

µφ(A∪B) = φ(A∪B) = φ((A∪B)∩A)+φ((A∪B)∩Ac) = φ(A)+φ(B) = µφ(A)+µφ(B)

The proof for countable additivity is the same.

It is also worth noting that the measure produced by the restriction theorem has the
property of being a “complete” measure.

Definition 2.4

A measure µ : Meas(X)→ [0,∞] is said to be complete if for any M ⊆ N with N
measurable and µ(N) = 0, M is measurable.

In short, any subset of a measure zero set is measurable. (We already know that any such
measurable set has measure zero, but a priori it is not clear that such sets are measurable
in the first place).

Proposition 2.3

Given X and φ an outer measure on X, the measure µφ as defined in Caratheodory’s
Restriction Theorem is complete.

Proof. Pick B ∈ Aφ with µφ(B) = 0, and take A ⊆ B. Take some Q ⊆ X with φ(Q) <∞.
Then we have

Q ∩A ⊆ Q ∩B ⊆ B =⇒ φ(Q ∩A) ≤ φ(B) = µφ(B) = 0

Also we have
Q ∩Ac ⊆ Q =⇒ φ(Q ∩Ac) ≤ φ(Q)

so
φ(Q) ≥ φ(Q ∩A) + φ(Q ∩Ac)

and thus A ∈ Aφ.

Proposition 2.4

Given any measure µ : M → [0,∞], there exists a unique complete measure µ :
M→ [0,∞], whereM⊇M is another σ-algebra on X and µ|M = µ.

We have thus illustrated a method to pass from a primitive function ρ : E → [0,∞] to
a full measure µφρ

on Aφρ
. To that end it is worth investigating the relationship between

σ(E) and Aφρ
. In order to properly do this it is best to impose additional conditions on ρ.
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Definition 2.5

An algebra on a set X is a collection A ⊆ P(X) which contains X, is closed under
complements, and closed under finite unions.

Note the only difference between a σ-algebra and an algebra is we require σ-algebras to
be closed under countable unions as well.

Definition 2.6

Let A ⊆ P(X) be an algebra. Then a function ρ : A → [0,∞] is called a premea-
sure if:

1. ρ(∅) = 0,

2. If {An} ⊆ A is a countable collection of pairwise disjoint sets, and if in addition⋃
An ∈ A , then

ρ
(⋃

An

)
=
∑

ρ(An).

Proposition 2.5

If ρ : A → [0,∞] is a premeasure, then for A ⊆ B with A,B ∈ A , ρ(A) ≤ ρ(B).

Proof. B \A ∈ A , so by countable additivity

ρ(B) = ρ(A) + ρ(B \A) ≥ ρ(A)

Adding the condition that ρ is a premeasure ensures that our extended constructions
are proper extensions, in the sense that they are consistent with our original data.

Proposition 2.6

Suppose ρ : A → [0,∞] is a premeasure. Then φρ|A = ρ. Moreover, A ⊆ Aφρ .

Proof. Note that clearly φρ|A ≤ ρ, since any set in A is a cover for itself.

For the reverse inequality, pick Q ∈ A and a countable cover {En} ⊆ A . Note that by
monotonicity we can assume the En are disjoint (call the disjoint parts {Fn}), and we can
also assume that Q = ⊔Fn; that is the Fn do not overcover Q. Then we have

ρ(Q) = ρ (⊔∞n=1Fn) =

∞∑
n=1

ρ(Fn) ≤
∞∑
n=1

ρ(En)

So ρ ≤ φρ|A as well and thus φρ|A = ρ.

To show that A ⊆ Aφρ
, pick A ∈ A and Q ⊆ X. Then by the definition of φρ, we can pick
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a countable cover {En} ⊆ A with

φρ(Q) ≥
∞∑
n=1

ρ(En)− ε

Since each En ∈ A and A ∈ A , we have ρ(En) = ρ(En ∩A) + ρ(En ∩Ac). Thus we have

φρ(Q) + ε ≥
∞∑
n−1

ρ(En) =

∞∑
n=1

ρ(En ∩A) + ρ(En ∩Ac) =
∞∑
n=1

φρ(En ∩A) + φρ(En ∩Ac)

Since Q ∩A ⊆
⋃
En ∩A, by countable subadditivity of φ we have

φρ(Q ∩A) ≤
∞∑
n=1

φρ(En ∩A)

and similarly for the Ac term. Thus we have

φρ(Q) + ε ≥ φρ(Q ∩A) + φρ(Q ∩Ac)

Taking ε→ 0, we see that A is φρ-measurable and thus A ⊆ Aφρ .

Thus, since we can now properly use premeasures to build outer measures, we can apply
the restriction theorem to actually extend premeasures.

Theorem 2.7: Caratheodory’s Extension Theorem

Let ρ : A → [0,∞] be a premeasure and φρ, Aφρ , µφρ be as defined above. Then:

1. σ(A ) ⊆ Aφρ
;

2. If ν : σ(A )→ [0,∞] is any other measure such that ν|A = ρ, then ν ≤ µφρ
on

σ(A ), and moreover for any E ∈ σ(A ) with µφρ
(E) <∞, ν(E) = µφρ

(E);

3. If X is σ-finite with respect to ρ, meaning that there is a countable collection
{An} ⊆ A with ρ(An) <∞ and X =

⋃
An, then µφρ

is the unique extension
of ρ to σ(A ).

Proof. 1. This is clear since A ⊆ Aφρ with Aφρ a σ-algebra. Then by definition σ(A )
is the smallest σ-algebra containing A so σ(A ) ⊆ Aφρ .

2. Let E ∈ σ(A ) and pick a cover {En} ⊆ A . Then we have subadditivity (note the En
are not necessarily disjoint):

ν(E) ≤
∞∑
n=1

ν(En) =

∞∑
n=1

ρ(En)

Taking the infimum, we have ν(E) ≤ µφρ
(E).
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Note that in general, by approximation from inside, if we pick a sequence of sets
{En} ⊆ A , then

ν

( ∞⋃
n=1

En

)
= lim
n→∞

ν(En) = lim
n→∞

µφρ
(En)

Suppose µφρ
(E) < ∞. By the infimum property, for ε > 0 we can pick a cover

{En} ⊆ A such that

µφρ

( ∞⋃
n=1

En

)
< µφρ

(E) + ε =⇒ µφρ

(( ∞⋃
n=1

En

)
\ E

)
< ε

Then we have

µφρ
(E) ≤ µφρ

( ∞⋃
n=1

En

)
= ν

( ∞⋃
n=1

En

)

= ν

(( ∞⋃
n=1

En

)
∩ E

)
+ ν

(( ∞⋃
n=1

)
∩ Ec

)
= ν(E) + ν

(( ∞⋃
n=1

En

)
\ E

)

≤ ν(E) + µφρ

(( ∞⋃
n=1

En

)
\ E

)
≤ ν(E) + ε

3. If X is σ-finite with respect to ρ, then pick a pairwise disjoint countable collection
{An} ⊆ A with ρ(An) <∞ and X =

⋃
An. Then we have

µ(E) =

∞∑
n=1

µ(E ∩An) =
∞∑
n=1

ν(E ∩An) = ν(E)

2.2 The Lebesgue Premeasure

Having now developed a theory of how to define measures on simpler sets, we apply this to
construct the Lebesgue measure.

To do this, we first need to consider the simpler sets on which we will define a premeasure.
For the case of the Levesgue measure, we will take the collection of half open intervals:

A0 := {∅} ∪ {(a, b] : a ∈ [−∞,∞), a < b} ∪ {(a,∞) : a ∈ [−∞,∞)} ⊆ P(R)

This is the set of all intervals which are open on the left and closed on the right, with
appropriate consideration of infinite endpoints.

Definition 2.7

An elementary family on X is a collection F ⊆ P(X) such that

1. ∅ ∈ F ,

2. F is closed under finite intersections,
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3. For any E ∈ F , X \ E is a finite disjoint union of elements of F .

Proposition 2.8

A0 is an elementary family on R.

Proof. 1 is true by definition.

For intersections, in general we have

(a, b] ∩ (a′, b′] =


∅
(a′, b′], a < a′ < b′ < b
...

Here we do not show all of the cases but it is true in general. Complements are similar:

∅c = R
(a, b]c = (−∞, a] ∪ (b,∞)

...

Proposition 2.9

If E is an elementary family then the collection A of finite disjoint unions of elements
of E is an algebra.

Proposition 2.10

σ(A ) = B(R), where A is the algebra given by the collection of finite disjoint unions
of elements of the half open intervals A0.

Proof. We can write half open intervals as countable intersections of open intervals:

(a, b] =

∞⋂
n=1

(
a, b+

1

n

)
so σ(A0) ⊆ B(R). In the other direction, we have

(a, b) =

∞⋃
n=1

(
a, b− 1

n

)
Here we have handwaved some of the cases away but it is nevertheless true that B(R) ⊆
σ(A ) as well.
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Now, we have developed an suitable algebra to define a premeasure on. (Note that we
would have liked to simply define our premeasure on intervals. However this is not an algebra
and so not sufficient to define a premeasure on. Nevertheless we can define essentially the
same premeasure on disjoint unions thereof; with extra work to verify that it is well-defined.)

Definition 2.8

We define the Lebesgue premeasure ρ : A → [0,∞] by

ρ

 n⊔
j=1

(aj , bj ]

 :=

n∑
j=1

bj − aj

ρ(∅) = 0

To check that it is well defined, note that alternate representations like (0, 1] = (0, 1/2]∪
(1/2, 1] must “telescope” and hence since they are disjoint unions this is well defined.

Theorem 2.11

ρ is well defined, and it is a premeasure on A .

Note that R is σ-finite with respect to ρ since it is the union of [n, n+ 1] for n ∈ Z.

Definition 2.9

The Lebesgue measure on R is the unique measure λ = µφρ
produced by applying

Caratheodory’s extension theorem to the Lebesgue premeasure ρ. Elements of the
associated σ-algebra Aφρ are called Lebesgue measurable subsets of R.

Caratheodory’s extension theorem assures us that λ is the unique extension of ρ to
B(R). However, we need to remove the arbitrary choice of ρ for full generality of λ. This is
accomplished by showing that λ satisfies another uniqueness condition.

Theorem 2.12

There exists a unique measure λ : B(R) → [0,∞] such that λ([0, 1]) = 1 and λ is
translation invariant.

Proof. Existence is satisfied by the Lebesgue measure we just showed. It is translation
invariant since the premeasure it is defined on is, and it is not hard to verify that [0, 1] has
Lebesgue measure 1.

For uniqueness, pick another measure λ̃ : B(R) → [0,∞] obeying the hypotheses of the
theorem. To show that λ = λ̃, we will need some regularity properties of Borel measures.
We will delay the proofs of these properties, but essentially the statement is that measures
on sufficiently nice Borel algebras may be approximated from the outside by open sets and
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from the inside from compact sets. More formally, for any µ : B(R)→ [0,∞] and S ∈ B(R),

µ(S) = inf {µ(U) : S ⊆ U ∈ Open(R)}
µ(S) = sup {µ(K) : S ⊇ K ∈ Compact(R)}

In particular it suffices to show that λ, λ̃ agree on open sets. Moreover since any open set in
R is the countable disjoint union of open intervals, we can just show this for open intervals,
and by translation invariance we just need to show that for a > 0,

λ((0, a)) = λ̃((0, a))

In essence, since we already know λ([0, 1]) = 1, we need to prove a scaling property of
translation invariant measures.

To show that the endpoints of intervals will not be a problem, we show that singletons
have measure zero in both λ, λ̃. If we pick N distinct points x1, . . . , xN in [0, 1], then by
translation invariance we have

Nλ({0}) = λ

 N⋃
j=1

{xj}

 ≤ λ([0, 1]) = 1

Taking N →∞, we conclude λ({0}) = 0, and similarly for λ̃.

Claim: λ̃
([
0, 1

n

])
= 1

n . This is clear since [0, 1] is formed of n translated copies:

1 = λ([0, 1]) = λ

(
n−2⊔
k=0

[
k

n
,
k + 1

n

)
∪
[
n− 1

n
, 1

])
=

n−1∑
k=0

λ

([
k

n
,
k + 1

n

])
= nλ

([
0,

1

n

])

Similar work shows that λ, λ̃ obey a rational scaling factor:

λ̃
([

0,
m

n

])
=
m

n

To show that this is the case for real endpoints, we can use approximation from inside or
outside for arbitrary measures to conclude that for b > 0 and rn ↗ b,

λ([0, b]) = limλ([0, rn]) = lim rn = b

Thus we conclude that λ = λ̃ on the open intervals and hence all open sets, so that λ = λ̃
on B(R) (pending the regularity conditions for Borel measures).

2.3 Regularity of Borel Measures

Remark

The argument outlined by Prof. Shapiro in this chapter during lecture used a flawed
argument. The statements which are correct have been left here, but a proper proof
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of Borel regularity uses the Kakutani-Markov-Riesz theorem (here see Folland 7.7).

In this section we discuss regularity properties connecting topological and measure spaces
over arbitrary sets with sufficiently nice properties. These proofs are taken from Bogachev’s
Measure Theory.

Definition 2.10

Given a topological space X, a Borel measure is a measure on B(X).

Definition 2.11

Let µ : B(X)→ [0,∞] be a Borel measure on X. A set A ∈ B(X) is called µ-outer
regular if

µ(A) = inf {µ(U) : A ⊆ U ∈ Open(X)}

and similarly it is µ-inner regular if either A is open or µ(A) <∞, and also

µ(A) = sup {µ(K) : A ⊇ K ∈ Compact(X) ∩B(X)}

We say that µ is regular if every Borel set is µ-inner and µ-outer regular.

Definition 2.12

A topological space X is a Hausdorff space if for any x, y ∈ X there exist open
sets x ∈ U and y ∈ V with U, V disjoint.

Note that in a Hausdorff space, every compact set is closed and hence Borel, so there is
no need to check measurability.

This leads us to the natural question of what assumptions must be placed on our topological
space X such that every Borel measure is regular. The first is a requirement that essentially
ensures the topological operations are compatible with the Borel algebra operations:

Definition 2.13

A topological space X is called second countable if there exists a countable basis
for its topology.

Definition 2.14

A topological space X is called σ-compact if there exists a countable collection of
compact sets {Kn}∞n=1 ⊆ Compact(X) such that X =

⋃
Kn.
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Definition 2.15

A measure µ : B(X) → [0,∞] is locally finite if for any x ∈ X there exists U ∋ x
open with µ(U) <∞.

Proposition 2.13

If µ : B(X)→ [0,∞] is locally finite and X is Hausdorff, then µ(K) <∞ for any K
compact.

Proof. (Note that since X is Hausdorff, K is closed and hence Borel, so it is actually
measurable). For each x ∈ K take Ux ∋ x of finite measure. Then K ⊆

⋃
x∈K Ux. Picking

a finite subcover, we establish that µ(K) <∞.

We state the following without proof, which connects the criterion we just established
with µ-regular sets. This is proved with monotonicity and approximation.

Theorem 2.14

Let X be a topological space and µ : B(X) → [0,∞] a Borel measure. A set
A ∈ B(X) of finite measure is µ-regular if and only if for all ε > 0 there exists Uε
open and Kε ∈ B(X) compact with Kε ⊆ A ⊆ Uε and µ(Uε \Kε) < ε.

Definition 2.16

A topological space X is called locally compact if for any x ∈ X there exists U ∋ x
open with U compact.

Theorem 2.15

Let X be locally compact, σ-compact, and Hausdorff with µ : B(X) → [0,∞] a
σ-finite and locally finite Borel measure. The:

1. For any ε > 0, A ∈ B(X), there exists Uε open and Fε closed with µ(Uε\Fε) <
ε with Fε ⊆ A ⊆ Uε.

2. µ is regular.

3. For any A ∈ B(X) there exists F ∈ Fσ and G ∈ Gδ with F ⊆ A ⊆ G and
µ(G \ F ) = 0.

In particular, any Borel set may be written as the countable union of closed sets (F ∈ Fσ)
and a measure zero set.
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2.4 Product Measures

So far we have only defined a Lebesgue measure on R, but we would like to extend this
naturally to Rn. Under sufficient assumptions we can ensure uniqueness of a Borel measure
on Rn; however showing existence may be done in two ways. One way to do so is to rerun
the Lebesgue construction on Rn, with rectangles in place of intervals. To do this more
abstractly, we can define what it means to construct measures on product spaces more
generally.

Definition 2.17

Let {Xα}α∈A be a collection of measurable spaces with associated σ-algebras
{Mα}α∈A. Then the product space is the Cartesian product of the Xα:

X =
∏
α∈A

Xα =

{
f : A→

⋃
α∈A

Xα : f(α) ∈ Xα

}

For β ∈ A, let πβ : X → Xβ denote the canonical projection map. We endow X
with the product σ-algebra

M := σ
({
π−1
α (Eα) : α ∈ A,Eα ∈Mα

})
= σ

(
{πα}α∈A

)
We notate this product asM =

⊗
α∈AMα.

Proposition 2.16

If the index set is countable thenM is generated by the ”rectangular sets”:

M = σ

({∏
α∈A

Eα : Eα ∈Mα

})

Proof. Homework.

Having defined product spaces, we can now define the natural way to define a product
measure. Here we will restrict ourselves to the case of finite products.

Definition 2.18

A rectangular subset of
∏
α∈AXα is a set of the form

∏
α∈AEα where Eβ ⊆ Xβ .

Proposition 2.17

Let X =
∏n
j=1Xj be a finite product space with associated nonnegative measures

{µj :Mj → [0,∞]}nj=1. We write A0 to denote the measurable rectangular sets in
X. Then A0 is an elementary family.
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Proof. Clearly ∅, X ∈ A0. Intersections are closed since

n∏
j=1

Ej ∩
n∏
k=1

Fk =

n∏
j=1

(Ej ∩ Fj)

Also since our index set is finite, the complement of rectangular sets are finite disjoint unions
of rectangular sets.

As a result it follows then that the collection A of finite disjoint unions of elements in
A0 is an algebra. Note that because A is finite, M =

⊗n
j=1Mj = σ(A0). Since M is by

definition the smallest σ-algebra containing A0 and A0 ⊆ A ⊆ σ(A ), we conclude that
σ(A ) =M.

As in the case of the Lebesgue measure, we now define a premeasure on A by

ρ

 m⊔
j=1

n∏
k=1

Ek,j

 =

m∑
j=1

n∏
k=1

µk(Ek,j)

The fact that this is well defined essentially follows from additivity of each µj .

Proposition 2.18

ρ is a premeasure.

Proof. ρ(∅) = 0 since each µj is a measure. Also it is essentially clear by definition that ρ
is finitely additive. If a countable union

⋃∞
n=1An ∈ A , then since A is composed of finite

unions, we must have
⋃∞
n=1An =

⊔k
j=1Bj . Then we have

∞⋃
n=1

An =

k⊔
j=1

n∏
ℓ=1

Fℓ,j =

k∑
j=1

n∏
ℓ=1

µℓ(Fℓ,j)

Prof. Shapiro did not make it clear how to finish this argument.

Now that we have a premeasure, we can run the Caratheodory construction to generate
a complete measure µ : Aφρ

→ [0,∞] where µ|A = ρ and Aφρ
is a σ-algebra containing

σ(A ) =M.

Thus we have to note that in general, the product σ-algebra is not the algebra on which the
product measure is complete.

In particular we define the Lebesgue measure on Rn to be the n-fold product measure of
the Lebesgue measure on R. The domain of this completed measure is the set of Lebesgue
measurable sets on Rn. Note that this is strictly larger than simply the product σ-algebra:

Ln ⊋ L ⊗ . . .⊗L

For instance A×B ⊆ R2 is measurable when A is not measurable but B has measure zero.
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2.5 Fubini-Tonelli

Here we develop results on iterated integrals with respect to measures. In multivariable
analysis we noted that for sufficiently nice functions, the relation∫

X×Y
f =

∫
X

(∫
Y

fx

)
=

∫
Y

(∫
X

fy

)
holds. Proving this for arbitrary measures is particularly helpful since it allows us to extend
these results to, say, double sums and combinations of sums and integrals. In the language
of measure theory we would like to prove that given a sufficiently nice measurable function
f : X × Y → C, we have∫

X×Y
f d(µ× ν) =

∫
X

(∫
Y

fx dν

)
dµ =

∫
Y

(∫
X

fy dµ

)
dν

The Fubini and Tonelli theorems provide two conditions for this to hold. In short the Tonelli
theorem applies to nonnegative product measurable functions while Fubini’s applies to L1

functions. It is often helpful to use Tonelli’s theorem on |f | to satisfy the L1 hypothesis for
Fubini’s theorem.

Let (X,M, µ), (Y,N , ν) be two measure spaces, and as before equip X×Y with the product
σ-algebraM⊗N , with the product measure µ×ν defined onM⊗N . Let π1 : X×Y → X
and π2 : X × Y → Y be the canonical projections. For any M ⊗ N -measurable function
f : X × Y → C and x ∈ X, y ∈ Y , we define the sections of f by

fx :

{
Y → C
y 7→ f(x, y)

fy :

{
X → C
x 7→ f(x, y)

Similarly, for a subset A ∈M⊗N we consider the sections by

A2(x) = {y : (x, y) ∈ A} ⊆ Y
A1(y) = {x : (x, y) ∈ A} ⊆ X

Of course in order to consider iterated integrals we will need the sections fx, f
y to be

measurable as well. (Note that this is equivalent to measurability of set sections).

Proposition 2.19

1. Let f : X × Y → C beM⊗N measurable, and fix x ∈ X, y ∈ Y . Then fx, f
y

are both measurable with respect to N ,M, respectively.

2. Let A ∈ M⊗N , and fix x ∈ X, y ∈ Y . Then A1(y), A2(x) areM,N measur-
able, respectively.

Proof. 1. This follows from point 2 since (fx)
−1(B) = (f−1(B))2(x) whenever B ∈ B(C).
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2. Define the collection of sets whose sections are measurable:

R = {E ⊆ X × Y : E1(y) ∈M, E2(x) ∈ N∀(x, y) ∈ X × Y }

Note that all measurable rectangular sets are in R, since the sections of U × V are U
or V (or ∅). Since the rectangles generateM⊗N , we just need to show that R is a
σ-algebra.

Clearly X ×Y ∈ R. Also taking complements passes nicely through set sections since
we are just complementing relative to the section:

(Ec)2(x) = (E2(x))
c

Similarly  ∞⋃
j=1

Ej


2

(x) =

∞⋃
j=1

(Ej)2(x)

Definition 2.19

A monotone class on a nonempty set X is a subset C ⊆ P(X) which is closed
under:

1. countable increasing unions (if En ↗ E and En ∈ C , then E ∈ C );

2. countable decreasing intersections (if En ↘ E and En ∈ C , then E ∈ C ).

Obviously any σ-algebra must be a monotone class. Also the arbitrary intersection of
monotone classes is a monotone class, as is common with any construction of this type.

Proposition 2.20

For any E ⊆ P(X), there exists a unique smallest monotone class containing E,
denoted C (E). This is called the monotone class generated by E.

Proof. Take the intersection over all monotone classes containing E. This is nonempty since
P(X) is a monotone class.

Lemma 2.21: Monotone Class Lemma

If A ⊆ P(X) is a algebra of sets then

σ(A ) = C (A )

Proof. Clearly we have σ(A ) ⊇ C (A ) since σ(A ) is itself a monotone class.

To see that C (A ) is a σ-algebra, consider for any E ∈ C (A ) the collection

DE(A ) := {F ∈ C (A ) : E \ F, F \ E,E ∩ F ∈ C (A )}
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Clearly ∅, E ∈ DE(A ). Also F ∈ DE(A ) ⇐⇒ E ∈ DF (A ). Also because relative
complements and intersections commute with increasing unions and decreasing intersections,
DE is itself a monotone class. Clearly it must contain A since A is an algebra, so DE(A ) =
C (A ). This shows that C (A ) contains the whole set and is closed under complements.

Finally, C (A ) is closed under countable unions, since

n⋃
i=1

Ai ↗
∞⋃
i=1

Ai

and C (A ) is closed under increasing unions by definition.

The following theorem says that the functions assigning measures of sections are them-
selves measurable.

Theorem 2.22

Let (X,M, µ), (Y,N , ν) be two σ-finite measure spaces. If E ∈ M⊗ N then x 7→
ν(E2(x)) and y 7→ µ(E1(y)) are both measurable, and

(µ× ν)(E) =

∫
X

ν(E2) dµ =

∫
Y

µ(E1) dν

Proof. Let us first assume that µ(X), ν(Y ) are both finite. Define the class

C = {E ∈M⊗N s.t. the theorem holds}

It is clear by simple multiplication that rectangular sets are in C . Also it is true for finite
disjoint unions thereof, by additivity. Then since the algebra generatingM⊗N is contained
in C , we merely need to show that C is a monotone class.

Consider some increasing sequence En ↗ E with En ∈ C . To show that E ∈ C , define for
each n ∈ N, y ∈ Y , fn(y) = µ((En)1(y)). Then fn(y) ↗ f(y) := µ(E1(y)), which proves
that f is measurable since it is the pointwise limit of measurable functions. Then by the
monotone convergence theorem,∫

µ(E1) dν = lim
n

∫
µ

((En)1) dν

= lim
n
(µ× ν)(En)

= (µ× ν)(E)

For the intersection we apply the same strategy, and use the assumption that µ, ν are finite
for approximating from the outside. In general this can be relaxed to σ-finiteness by splitting
X,Y into finite measure portions and applying monotone convergence.
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Theorem 2.23: Tonelli’s Theorem

Let (X,M, µ), (Y,N , ν) be two σ-finite measure spaces. Let f : X × Y → [0,∞] be
measurable with respect toM⊗N . Then∫

X×Y
f d(µ× ν) =

∫
X

(
x 7→

∫
Y

fx dν

)
dµ =

∫
Y

(
y 7→

∫
X

fy dµ

)
dν

Proof. The previous theorem shows that this holds for indicator functions of measurable
sets, and hence also for simple functions. Then taking a sequence of nonnegative simple
functions fn ↗ f , we observe we also have (fn)x ↗ fx for all x, and hence by monotone
convergence

lim
n→∞

∫
Y

(fn)x dν =

∫
Y

fx dν

for all x. This establishes that the iterated integrals are measurable. Also, applying mono-
tone convergence again,∫

X×Y
f d(µ× ν) = lim

n→∞

∫
X×Y

fn d(µ× ν) = lim
n→∞

∫
X

(
x 7→

∫
Y

(fn)x dν

)
dµ

=

∫
X

(
x 7→

∫
Y

fx dν

)
dµ

Theorem 2.24: Fubini’s Theorem

Let X,Y be σ-finite measure spaces as in Tonelli’s Theorem. Suppose f : X×Y → C
isM⊗N measurable and also is L1. Then∫

X×Y
f d(µ× ν) =

∫
X

(
x 7→

∫
Y

fx dν

)
dµ =

∫
Y

(
y 7→

∫
X

fy dµ

)
dν

Proof. Apply Tonelli’s theorem to the positive and negative parts of the real and imaginary
parts of f . The L1 assumption then ensures that each of the iterated integrals will be finite
and hence well-defined.

A result of the combination of Tonelli’s theorem and Fubini’s theorem is that for any
measurable f : X × Y → C,∫

X×Y
|f |d(µ× ν) =

∫
X

(
x 7→

∫
Y

|f |x dν
)
dµ =

∫
Y

(
y 7→

∫
X

|f |y dµ
)
dν

and if any of them are finite, then the same equality holds for f as well.

An important technical point is that these theorems assume that f is measurable with
respect to M⊗N , not to the completion of the product space. This is in general a more
restrictive condition, and the theorem does not hold in general for functions which are only
measurable with respect toM⊗N . In the case that f is only measurable with respect to
M⊗N , it may not be the case that each of the sections fx, f

y is measurable. However, the
set of x (resp. y) values for which this occurs is measure zero, so no issue results.
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Chapter 3

Change of Variables and the
Radon-Nikodym Derivative

In this chapter we investigate ways that measures can be related to each other, particularly
in ways remniscient of the classical change of variables formula for functions in Rd.

3.1 The Change of Variables Formula

In the next section we work to reprove the change of variables formula from the Riemann
integral for the Lebesgue integral.

Definition 3.1

Let (X,M, µ) be a measure space and (Y,N ) a measurable space. Let φ : X → Y
be measurable. Then the pushforward measure µφ on Y is given by

µφ(A) := µ(φ−1(A))

Proposition 3.1

The pushforward measure is in fact a measure.

Proof. ∅ has finite measure since µφ(∅) = µ(∅) = 0. Also since we factor through φ−1,
which preserves disjoint unions, we have for {Ai} ⊆ N disjoint

µφ

( ∞⋃
i=1

Ai

)
= µ

(
φ−1

( ∞⋃
i=1

Ai

))
= µ

( ∞⋃
i=1

φ−1(Ai)

)
=

∞∑
i=1

µ(φ−1(Ai)) =

∞∑
i=1

µφ(Ai)
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Theorem 3.2: Change of Variables

Let (X,M, µ) be a measure space and (Y,N ) a measurable space, with φ : X → Y
measurable. If f ∈ L1(Y, µφ), then f ◦ φ ∈ L1(X,µ) and∫

Y

f dµφ =

∫
X

f ◦ φ dµ

Proof. We begin by proving the theorem for nonnegative simple functions f =
∑
αiχAi

. In
this case we have∫

Y

f dµφ =

∫
Y

(
n∑
i=1

αiχAi

)
dµφ =

∑
αiµφ(Ai) =

∑
αiµ(φ

−1(Ai))

=
∑

αi

∫
X

χφ−1(Ai) dµ =

∫
X

∑
αiχφ−1(Ai) dµ

Observe that χAi
◦ φ = χφ−1(Ai) so that this becomes∫

X

∑
αiχAi ◦ φ dµ =

∫
X

f ◦ φ dµ

Now if f : Y → [0,∞] is a general nonnegative measurable function, then we can take a
sequence of nonnegative simple functions fn ↗ f pointwise. By the monotone convergence
theorem this follows then:∫

Y

f dµφ =

∫
Y

(lim fn) dµφ = lim

∫
Y

fn dµφ = lim

∫
X

fn ◦ φ dµ

Now if fn ↗ f , then also fn ◦φ↗ f ◦φ, so we can apply the monotone convergence theorem
again:

lim

∫
X

fn ◦ φ dµ =

∫
X

lim fn ◦ φ dµ =

∫
X

f ◦ φ dµ

This proves the statement for nonnegative functions and hence for complex valued functions
as well.

In the above case we only required φ to be measurable. In the case that φ is injective,
then we have stronger results. Specifically, if φ is injective then

χA = χφ(A) ◦ φ

Therefore for A ∈M, we can localize the change of variables using characteristic functions:∫
A

f ◦ φ dµ =

∫
X

χAf ◦ φ dµ =

∫
X

(χφ(A) ◦ φ)(f ◦ φ) dµ =

∫
Y

χφ(A)f dµφ =

∫
φ(A)

f dµφ

Note that while we need to assume the existence of a left inverse to write χA = χφ(A) ◦ φ,
we do not actually need to assume that the inverse is measurable.
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Example 3.1

Consider φ(t) = t2 on [−2, 2], which is not injective. As a result if we only look at
the interval [0, 2],

χ[0,2](t) ̸= χ[0,4](t
2)

In general we have the inequality χA(t) ≤ χφ(A)(φ(t)).

Now let λ be the Lebesgue measure on Rn and consider φ : Rn → Rn invertible. If f is
measurable then by our work immediately above,∫

A

f ◦ φ dλ =

∫
φ(A)

f dλφ

However the measure dλφ is in general difficult to work with, so we need to derive easier
expressions for it. In particular the notation dλφ suggests that it might be somehow related
to derivatives in the rough sense of a formula

dλφ =
dλφ
dλ

dλ

The quantity
dλφ

dλ is currently undefined, but as we will show in the Radon-Nikodym theo-
rem, this quantity can be seen to exist.

3.2 Lp Spaces

Recall that for a measure space (X,M, µ), we defined the L1 space (with the alternate
notations L1(X), L1(µ), L1(X → C, µ)) to be the set1

L1(X) =

{
f : X → C : f measurable,

∫
X

|f |dµ <∞
}

By the linearity of the integral, this is a C-vector space. However, its dimension as such
a vector space is infinite (when X is). When studying finite dimensional vector spaces,
isomorphisms with Cn induce the Euclidean norm on any vector space. The topology
induced by such a norm is independent of the isomorphism chosen, and all the topologies
between spaces are therefore equivalent.

In contrast, for infinite dimensional vector spaces the choice of norm or metric is specific to
the space itself.

Definition 3.2

A norm on a C-vector space V is a function ∥·∥ : V → [0,∞) which is:

1. Homogeneous: ∥αv∥ = |α|∥v∥.

2. Satisfies the triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

1Actually, L1 is the space of equivalence classes of functions defined up to a set of measure zero
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3. Positive definite: ∥v∥ > 0 if ∥v∥ ̸= 0.

In the case of L1, the norm is defined by

∥f∥L1(X) =

∫
X

|f |dµ

It turns out that (L1(X), ∥f∥L1(X)) is a completed normed C-vector space, or a Banach
space.

Theorem 3.3

If f : (a, b)→ R is bounded and Riemann integrable, then it is Lebesgue measurable
and the integrals agree: ∫ b

a

f dx =

∫
[a,b]

f dλ

Definition 3.3

Let p ∈ [1,∞] and let f ∈ Lp. Then the equivalence class of f in Lp is the set of
functions which agree except possibly on a set of measure zero:

[f ] = {g ∈ Lp : µ ({f ̸= g}) = 0}

Strictly speaking, we can distinguish Lp from the collection of equivalence classes in Lp,
denoted as L̃p. The Lp-norm is inherited by L̃p in the natural way, and for L̃p is in fact a
complete normed space, or a Banach space. For convenience we will ignore this distinction.
We can extend this definition to consider spaces Lp(X) for any p ∈ [1,∞). The Lp space
is defined as the set (of equivalence classes) of functions such that

Lp(X) =

{
f : X → C measurable,

∫
X

|f |p dµ <∞
}

with the norm given by

∥f∥p =
p

√∫
X

|f |p dµ

Homogeneity is essentially immediate due to the pth root. For L1 the triangle inequality
follows from the inequality for C. To show positive definiteness (say for L1), we need to
show that if

∫
X
|f |dµ = 0 then f = 0. In general this is not strictly true; however it can

be shown that f is nonzero only on a set of measure zero. As a result we identify those
functions which differ on a set of measure zero, and in this case any f with

∫
X
|f |dµ = 0 is

in the equivalence class of the constant zero function. This can be equivalently phrased by
saying that f is equal to zero µ-almost everywhere.

In order to show that ∥·∥p is a norm for p ̸= 1, we will need to establish some other
inequalities.
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Proposition 3.4: Jensen’s Inequality

Let (X,M, µ) be a finite measure space; that is µ(X) < ∞ (where we can assume
µ(X) = 1 by scaling). Let f ∈ L1(X → (a, b), µ) and let φ : (a, b) → R be convexa.
Then

φ

(∫
X

f dµ

)
≤
∫
X

φ ◦ f dµ

aA convex function satisfies φ(tx + (1 − t)y) ≤ tφ(x) + (1 − t)φ(y) for x, y ∈ (a, b), t ∈ [0, 1].
This is the same as saying φ is concave up.

Definition 3.4

Let p, q ∈ [1,∞]. If 1
p +

1
q = 1 then p, q are called conjugate pairs.

Proposition 3.5: Holder’s Inequality

Let p ∈ (1,∞) and (X,M, µ) be a measure space. Let q be the conjugate pair of p,
and let f, g : X → C be measurable. Then∣∣∣∣∫

X

fg dµ

∣∣∣∣ ≤ ∥f∥Lp∥g∥Lq

Proposition 3.6: Minkowski’s Inequality

Let p ∈ (1,∞) and (X,M, µ) be a measure space. If f, g : X → [0,∞] be measurable.
Then

∥f + g∥p ≤ ∥f∥p + ∥g∥p

Definition 3.5

A Banach space is a normed vector space that is complete with respect to its norm.

Definition 3.6

A Hilbert space is a Banach space H equipped with an inner product ⟨·, ·⟩ :
H ×H → C which is sesquilinear (meaning it is conjugate linear in the first slot
and linear in the second), and such that ∥·∥ = ⟨·, ·⟩.

A priori, both the norm and inner product are simply given to use. However, it is worth
trying to find out if there is a way that the inner product may be derived from a given norm.
This derivation is known as the polarization identity, However, it only is an inner product
subject to the parallelogram law.
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Definition 3.7

A norm ∥·∥ on a vector space V is said to satisfy the parallelogram law if for any
ψ,φ ∈ V ,

∥ψ + φ∥2 + ∥ψ − φ∥2 ≤ 2∥ψ∥2 + 2∥φ∥2

Proposition 3.7

If a Banach space V is equipped with a norm ∥·∥ that satisfies the parallelogram law,
then the function ⟨·, ·⟩ : V × V → C given by the polarization identity

⟨φ,ψ⟩ = 1

4

[
∥φ+ ψ∥2 − ∥φ− ψ∥2 + i∥iψ − φ∥2 − i∥iψ + φ∥2

]
is an inner product on V .

In particular, any Banach space which satisfies the parallelogram law can be converted
into a Hilbert space with the inner product given by the polarization identity. In fact, a
stronger statement holds:

Claim 3.1

If a Banach space V does not satisfy the parallelogram law, then there is no inner
product on V such that ∥·∥ =

√
⟨·, ·⟩.

It can be shown that the parallelogram law is violated for Lp, for any p ∈ [1,∞] except
p = 2. Thus L2 is the only such space which is a Hilbert space (note that this holds for all
L2(X → C, µ), regardless of the underlying space X). The inner product on L2 is given by

⟨f, g⟩L2 :=

∫
X

fg dµ

Definition 3.8

Two functions f, g ∈ L2 are said to be orthogonal if ⟨f, g⟩L2 = 0.

Definition 3.9

A bounded operator on a Hilbert space (H , ∥·∥H ) is a C-linear functional Λ :
H → C with finite operator norm

∥Λ∥op := sup {∥Λψ∥C : ψ ∈H , ∥ψ∥H ≤ 1} <∞

The following is an important result from functional analysis that we may use to study
L2:
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Theorem 3.8: Riesz Representation Theorem

Let H be a Hilbert space. Then for any bounded operator Λ : H → C, there exists
a unique ψΛ ∈H such that

Λ(·) = ⟨ψΛ, ·⟩

In the context of L2, we can use this result to express different measures as integrals
against particular functions. In particular, let µ, λ be two measures on X, and consider the
functional

L2(µ) ∋ f 7→
∫
f dλ

While this map is C-linear, we need to find the conditions under which this operator is
bounded. In such a case, the Riesz representation theorem tells us that we will be able to
represent integration against λ as integration against µ with a specific function:∫

X

f dλ =

∫
X

gλf dµ

for gλ ∈ L2(µ).

3.3 Lebesgue Decomposition and The Radon-Nikodym
Derivative

Given a measure space (X,M, µ) and a function f : X → [0,∞], we can define a new
measure φµ,f :M→ [0,∞] by

φµ,f (A) :=

∫
A

f dµ

We can then ask the question, given a measurable space (X,M) with a fixed measure µ,
is it necessarily the case that all other measures on (X,M) may be expressed using this
construction?

It turns out that the answer is no. In particular, if µ(A) = 0 for some A, then for any choice
of f , φµ,f (A) = 0 as well. Thus any measure which assigns A nonzero measure cannot be
represented in this way. However, we will show that this is in fact the only barrier to such
a representation.

Definition 3.10

Let (X,M) be a measurable space with two measures µ, ν. We say that ν is ab-
solutely continuous with respect to µ (denoted ν Î µ) if whenever µ(E) = 0,
ν(E) = 0.

Example 3.2

If F : X → [0,∞], then φµ,F Î µ.
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Example 3.3

Let φ : X → X be measurable and moreover measure-preserving. Then the pushfor-
ward measure µφ : · 7→ µ(φ−1(·)) is absolutely continuous with respect to µ.

Definition 3.11

We say that a (positive or complex) measure ν is concentrated on A ∈ M if
ν = ν(A ∩ ·).

Intuitively, the above says that all of the measure of a subset of X is contained in A.
Equivalently, ν(E) = 0 whenever A ∩ E = ∅. If ν is positive then this is equivalent to
ν(X \A) = 0 and if it is finite then it is equivalent to ν(A) = ν(X).

Definition 3.12

Two measures µ, ν are said to be mutually singular (denoted µ ⊥ ν) if there exist
disjoint sets A,B ∈ M such that µ is concentrated on A and ν is concentrated on
B.

Proposition 3.9

If ν Î µ and µ ⊥ λ then ν ⊥ λ.

Proposition 3.10

If ν Î µ and ν ⊥ µ then ν = 0.

Theorem 3.11: Lebesgue Decomposition Theorem

Let (X,M, µ) be a σ-finite measure space with µ a nonnegative measure. Let λ :
M→ C be a complex measure. Then there exist two unique measures λac, λs :M→
C such that:

• λ = λac + λs,

• λac Î µ,

• λs ⊥ µ

Proof. This theorem will be proved in conjunction with Theorem 3.14

Note that here λac and λs stand for the absolutely continuous and singular parts of λ,
respectively.
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Lemma 3.12

Let µ :M→ [0,∞] be σ-finite. Then there exists w : X → (0, 1) with w ∈ L1(µ).

Proof. Since µ is σ-finite we may pick {En} ⊆ M such that X =
⋃
nEn and µ(En) < ∞.

Then we can define

wn(x) =

{
0, x /∈ En

1
2n(1+µ(En))

, x ∈ En

Then define w =
∑
wn. Each wn is measurable, and also bounded by 1

2n , so that w is
bounded by 1 (it is strictly less than 1 as long as any En has positive measure). Also∫

X

w dµ =
∑
n

∫
X

wn dµ =
∑
n

µ(En)

2n(1 + µ(En))
<∞

Lemma 3.13

Let µ : M → [0,∞) be a positive finite measure and f ∈ L1(X → C, µ), with
F ∈ Closed(C) such that ∫

E
f dµ

µ(E)
∈ F

for all E measurable with positive measure. Then f(x) ∈ F for almost all x ∈ X.

Proof. If F = C we are done. Otherwise F c is the union of countably many open balls
{Bεn(zn)}n. We want to show that f lies outside of each ball µ-almost everywhere; that is
that

µ(f−1(Bεn(zn))) = 0

Suppose there is some n such that this is not true. Then applying the assumption to
E = f−1(Bεn(zn)), ∫

f−1(Bεn (zn))
f dµ

µ(f−1(Bεn(zn)))
∈ F

Since Bεn(zn) ⊆ F c, we know that∣∣∣∣∣
∫
f−1(Bεn (zn))

f dµ

µ(f−1(Bεn(zn)))
− zn

∣∣∣∣∣ ≥ εn
But also ∣∣∣∣∣

∫
f−1(Bεn (zn))

f dµ

µ(f−1(Bεn(zn)))
− zn

∣∣∣∣∣ = 1

µ(f−1(Bεn(zn)))

∣∣∣∣∣
∫
f−1(Bεn (zn))

(f − zn) dµ

∣∣∣∣∣
≤ 1

µ(f−1(Bεn(zn)))

∫
f−1(Bεn (zn))

|f − zn| dµ
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But on f−1(Bεn(zn)) we have |f − zn| < εn by definition, so that

1

µ(f−1(Bεn(zn)))

∫
f−1(Bεn (zn))

|f − zn| dµ < εn

contradiction. Thus µ(f−1(Bεn(zn))) = 0 for all n, and it follows that µ(f−1(F c)) = 0.

Theorem 3.14: Radon-Nikodym

Let (X,M, µ) be a σ-finite measure space with µ a nonnegative measure. Let λ :
M → C be a finite complex measure such that λ Î µ. Then there exists a unique
function h ∈ L1(X → C, µ) such that λ = φµ,h. This function, known as the
Radon-Nikodym derivative of λ with respect to µ, is denoted

h =
dλ

dµ

which satisfies ∫
X

g dλ =

∫
X

g
dλ

dµ
dµ

We will first prove the theorem for those λ which are finite and positive. After doing so
we will develop some results on complex measures that will allow us to prove the general
case.

Proof of Lebesgue Decomposition and Radon-Nikodym for λ Finite, Positive. From Lemma
3.12, pick w : X → (0, 1) with w ∈ L1(µ). Define

µ̃(E) := φµ,w(E) =

∫
E

w dµ

µ̃(X) < ∞ since w is L1. Also N ∈ M has zero µ-measure if and only if it has zero µ̃-
measure.

Since we assume that λ :M→ [0,∞) is positive and finite, µ̃ is also positive and finite, so
we can define a new positive and finite measure:

φ = λ+ µ̃

Note that this also implies that for simple functions s,∫
X

s dφ =

∫
X

s dλ+

∫
X

sw dµ

and by the monotone convergence theorem it follows that for f : X → C measurable,∫
X

f dφ =

∫
X

dλ+

∫
X

fw dµ

Claim: The map which takes f ∈ L2(φ) to
∫
X
f dλ is a bounded C-linear operator.
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This map is C-linear since the integral is. To show that it is bounded, if ∥f∥L2(φ) ≤ 1 then∣∣∣∣∫
X

f dλ

∣∣∣∣ ≤ ∫
X

|f |dλ =

∫
X

|f |dφ−
∫
X

|f |w dµ ≤
∫
X

|f |dφ = ⟨|f |, 1⟩L2(φ)

≤ ∥f∥L2(φ)∥1∥L2(φ) = ∥f∥L2(φ)

√
φ(X) ≤

√
φ(X)

Thus we have shown that this map is C-linear and bounded. In particular, the Riesz
representation theorem tells us that there exists a unique g ∈ L2(φ) such that this operator
is equivalently given by ∫

X

f dλ←[ f 7→ ⟨g, f⟩L2(φ) =

∫
X

gf dφ

Note that strictly speaking g is only unique φ-almost-everywhere, since Riesz really only
gives us an equivalence class. We want to show that g may be chosen such that g ≥ 0.

Since φ is positive (we can assume that the measures are not the zero measure, since the
theorem holds in that case), there exists E ∈ M such that φ(E) > 0. Picking f = χE , we
then have

λ(E) =

∫
X

χE dλ =

∫
E

g dφ

As measures, we have 0 ≤ λ ≤ φ, so for E we know 0 ≤ λ(E) ≤ φ(E), or equivalently

0 ≤
∫
E
g dφ

φ(E)
≤ 1

Now by Lemma 3.13, g takes values in [0, 1] φ-almost everywhere, so we can pick a repre-
sentative of the equivalence class which is in [0, 1] everywhere. In particular we may ignore
the distinction between g and g. This means that we have∫

X

f dλ =

∫
X

fg dφ =

∫
X

fg dλ+

∫
X

fgw dµ

=⇒
∫
X

(1− g)f dλ =

∫
X

fgw dµ (∗)

Now define A = g−1([0, 1)) and B = g−1({1}). A,B are measurable and disjoint so we may
define two mutually singular measures by

λac := λ(A ∩ ·)
λs := λ(B ∩ ·)

Applying (∗) to f = χB , we have

0 =

∫
X

(1− g)︸ ︷︷ ︸
=0

f dλ =

∫
B

w dµ = µ̃(B)

This tells us that µ̃ is concentrated on B and hence λs ⊥ µ̃ =⇒ λs ⊥ µ.
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If we do the same for f = χE
∑n
j=0 g

j for E measurable and n ∈ N, we get∫
E

gw

n∑
j=0

gj dµ =

∫
E

(1− g)
n∑
j=0

gj dλ =

∫
E

(1− gn+1) dλ

On B, g = 1 so 1−gn+1 = 0. On A, gn+1 → 0 monotonically. The sequence {gw
∑n
j=0 g

j} is
monotonically increasing, so it converges pointwise to some limiting function h : X → [0,∞].
Then by monotone convergence we have∫

E

h dµ = lim

∫
E

gw

n∑
j=0

gj dµ = lim

∫
E

(1− gn+1) dλ =

∫
E∩A

dλ = λac(E)

Thus for all E we have

φµ,h(E) =

∫
E

h dµ = λac(E)

To see that h ∈ L1(µ), since λ is finite we have∫
X

h dµ = λa(X) <∞

This also shows that λa Î µ.

To demonstrate uniqueness for the Lebesgue decomposition theorem, we first need to show
that the decomposition of λ into mutually singular components is unique. Indeed if we have
some other λ̃ac, λ̃s with

λ̃ac + λ̃s = λ = λac + λs

and λ̃ac Î µ, λ̃s ⊥ µ. It follows that

λ̃ac − λac = λs − λ̃s

Since the LHS is absolutely continuous with respect to µ and the RHS mutually singular,
both sides are zero. To show that the choice of h is unique µ-almost everywhere, if it is true
that for all E ∈M, ∫

E

h dµ =

∫
E

h̃ dµ =⇒
∫
E
h̃ dµ

λac(E)
= 1

then by Lemma 3.13 it follows that h = h̃ µ-almost everywhere.

If λ is not complex but positive and σ-finite, then the theorem holds, but the function
h is not necessarily L1, but is locally L1 in the sense that if X =

⋃
Xn with µ(Xn) < ∞,

then
∫
Xn

h dµ <∞.

We can also further decompose the singular part of the measure λ into the pure point and
singular continuous parts. The pure point part of λs is that part which is nonzero on
singletons, and the singular continuous part is that which remains.
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Definition 3.13

Let λ : X → [0,∞) be a finite positive measure on X. Then define

λpp = λ(Xpp ∩ ·)

where Xpp is the set of atomic singletons

Xpp = {x ∈ X : λ({x}) > 0}

and
λsc = λ− λpp

Intuitively, the singular part of a decomposition λ = λac+λpp+λsc is split into the unit
masses in λpp and other behavior in λsc. For instance, one can construct a measure based
on the Cantor function which is singular continuous with respect to λ, essentially because
it is measure zero but uncountable.

3.4 Complex Measures

Our construction of the Radon-Nikodym derivative allows us to better understand complex
measures. In this section, we will first consider ways to construct nontrivial complex mea-
sures. Afterward, we will consider the ways that any two complex measures may be related
to each other.

First note that any finite positive measure is also a complex measure. Thus one way to
construct a complex measure is to simply consider µ ± iν for µ, ν finite positive measures.
Alternatively, and more helpfully, we can consider measures which are constructed by inte-
grated functions against other measures. For instance, let ν be a finite measure on X, and
let f ∈ L1(X → C, ν). Then we can define a new, complex measure by

µ(S) =

∫
S

f dν

Given this construction, we can ask whether any complex measure on X arises through this
construction for appropriate f, ν.

Also, we can ask for more control over these functions. If µ, ν are two positive measures,
then µ, ν Î µ+ν. By Radon-Nikodym, we are then given f such that f = dµ

d(µ+ν) , which we

will also write as dµ = f d(µ+ ν). So given two measures, we can write them as integrated
measures with respect to a common measure.

The above construction does not directly work for complex measures, and will instead require
the development of some additional tools. First, we will define a positive measure produced
from any complex measure, called the variation of the measure. The intuitive idea is that
if dµ = f dν, with f ∈ L1(ν), then we will define |µ| to be d|µ| = |f | dν. However, we need
to show that such a ν even exists, and also that the definition of |µ| is independent of the
choice of f, ν.
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Definition 3.14

Let µ be a complex measure on (X,M). Then the variation of µ is the nonnegative
measure |µ| :M→ [0,∞] defined by

|µ|(S) := sup


∞∑
j=1

|µ(Ej)| : {En} partitions S


Proposition 3.15

The variation of a complex measure is indeed a measure.

Proof. Let S1, S2, . . . ∈M be a countable sequence of disjoint sets. We want to show that

|µ|

⋃
j

Sj

 =
∑
j

|µ|(Sj)

(≥) We can assume |µ|(Sj) <∞ for all j, since otherwise we are done. Fix ε > 0. Then for
each Sj , take a partition {Ejk}k ⊆M such that∑

k

|µ(Ejk)| ≥ |µ|(Sj)−
ε

2j

Then the entire collection {Ejk}jk is a partition of S =
⋃
j Sj , and

|µ(S)| ≥
∑
j,k

|µ(Ejk)| =
∑
j

|µ|(Sj)− ε

Taking ε→ 0, we obtain one direction.

(≤) Assume first that |µ|(S) ̸=∞. Consider a partition E1, E2, . . . of S such that∑
j

|µ(Ej)| ≥ |µ|(S)− ε

Define Ejk := Sj ∩ Ek. Then {Ejk}k partitions Sj for each j, so by definition∑
k

|µ(Ejk)| ≤ |µ|(Sj)

Summing over all j, we have ∑
j

|µ|(Sj) ≥
∑
j,k

|µ(Ej,k)|

By the triangle inequality, for any fixed k we have

|µ(Ek)| =

∣∣∣∣∣∣µ
∑

j

Ejk

∣∣∣∣∣∣ ≤
∑
j

|µ(Ejk)|
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Then it follows that∑
j

|µ|(Sj) ≥
∑
j,k

|µ(Ej,k)| ≥
∑
k

|µ(Ek)| ≥ |µ|(S)− ε

If |µ|(S) =∞, then instead of writing
∑
j |µ(Ej)| ≥ |µ|(S)−ε, we will write

∑
j |µ(Ej)| ≥M

and take M →∞.

In the proof above, we needed to consider the case |µ|(S) =∞ separately. We can show
that the variation is in fact a finite measure, but it will take a few steps to show.

Lemma 3.16

There exists C > 0 such that for any z1, z2, . . . , zn ∈ C, there exists a subset J ⊆
{1, 2, . . . , n} with ∣∣∣∣∣∣

∑
j∈J

zj

∣∣∣∣∣∣ ≥ C
n∑
j=1

|zj |

(Note that the sharp bound is C = 1
π , but here we will prove the statement for

C = 1
4
√
2
.)

Proof. First note we can assume zj ̸= 0 since it doesn’t affect any value in the inequality.
Each zi lies in one of the four quadrants, and the sum of |zj | over each quadrant is at least
1
4

∑n
j=1|zj | for at least one of the quadrants. Since rotating the zj does not change any of

the relevant values, we can assume that quadrant is arg z ∈ (−π4 ,
π
4 ) (note that rotating also

allows us to assume no point lies on the boundary of the quadrants). Now if zj = xj + iyj ,
we have |yj | ≤ |xj |, and also xj > 0. So letting J be the set of indices of these points, we
have ∑

j∈J
|zj | =

∑
j

|xj + iyj | ≤
∑
j

√
2xj

On the other hand, we have∣∣∣∣∣∣
∑
j∈J

zj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈J

xj + i
∑
j∈J

yj

∣∣∣∣∣∣ ≥
∑
j

xj

Since ∑
j∈J
|zj | ≥

1

4

n∑
j=1

|zj |

we conclude.

Proposition 3.17

The variation of any complex measure is a finite positive measure.
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Proof. The point is to show that we may continuously split sets which have infinite variation
into a disjoint sequence of sets with measure bounded away from 0 ∈ C, contradicting
additivity. For any set E ∈ M with |µ|(E) = ∞, we can pick a partition {Ei}i of E such
that

n∑
i=1

|µ(Ei)| >
1 + |µ(E)|

C

Now applying Lemma 3.16, we can choose {Eik} such that∣∣∣∣∣
N∑
k=1

µ(Eik)

∣∣∣∣∣ > 1 + |µ(E)|

If we let A =
⋃N
k=1 µ(Eik) and B = E \A, it follows that

|µ(A)| > 1 + |µ(E)| ≥ 1

and also
|µ(B)| ≥ |µ(A)| − |µ(E)| ≥ 1

Now, suppose |µ|(X) = ∞. Then split X into disjoint sets A1, B1 as above, and suppose
without loss of generality that |µ|(B) = ∞ (at least one must have infinite measure). We
can then split B1 into A2, B2, and so on. Then the sequence {An} is a countable collection
of disjoint sets with measure bounded away from 0. This is impossible since

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

but the left hand side series does not converge.

We can now lay out some easy properties of the variation of a measure.

Proposition 3.18

Let µ be a complex measure. Then:

1. |µ|(S) ≥ |µ(S)|.

2. If ν is any positive measure satisfying ν(S) ≥ |µ(S)| for all S, then ν(S) ≥
|µ|(S) for all S.

3. If µ is positive and finite then |µ| = µ.

4. If µ is concentrated on A then so is |µ|.

5. If ν ⊥ µ then |ν| ⊥ |µ|.

6. If µ Î ν and ν is a positive measure, then |µ| Î ν.

Proof. 1. This is clear since S is a partition of itself.
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2. Consider any partition of S into a finite number of disjoint sets S1, . . . , Sn. Then

ν(S) =

n∑
i=1

ν(Si) ≥
n∑
i=1

|µ(Si)|

Taking the supremum on the right, we conclude ν ≥ |µ|.

3. Clear by additivity.

4. Since µ is finite by definition, µ being concentrated on A implies that µ(E) = 0 for
any E ⊆ A. Then the same is true for |µ|.

5. Obvious from 4.

6. The argument from 4 holds.

Note that in general we may separate a complex measure ν :M→ C into its real and
imaginary parts, both of which are necessarily also measures:

ν = Re(ν) + i Im(ν)

These measures are real-valued measures.

Definition 3.15

A signed measure is a measure µ :M→ R.

Now, for signed measures we can then consider the total variation measure |ν|. Using
this, we can define two new measures by

ν± :=
1

2
(|ν| ± ν)

It is immediate that ν± are both signed, but because |ν| ≥ ν, they are in fact both positive
measures. Moreover, we then have

ν = ν+ − ν−

which is known as the Jordan decomposition of ν. Then a similar decomposition works
for complex measures by decomposing the real and imaginary parts separately, so that we
know a general complex measure can be written as

ν = ν1 − ν2 + iν3 − iν4

where each νj is positive. This also finally allows us to define integration against a complex
measure.
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Definition 3.16

Let ν be a complex measure and let ν = ν1−ν2+iν3−iν4 be its Jordan decomposition
into positive measures. If f ∈ L1(X → C, |µ|), then the integral of f with respect to
ν is defined as∫

X

f dν =

∫
X

f dν1 −
∫
X

f dν2 + i

∫
X

f dν3 − i
∫
X

f dν4

While it is not in general the case that this decomposition of ν into the difference be-
tween two positive measures is unique, if ν = µ+ − µ− for some other positive measures
µ+, µ−, then it is the case that µ+ ≥ ν+ and µ− ≥ ν−. In this way we can say that the
Jordan decomposition is the simplest such decomposition.

A stronger theorem, called the Jordan decomposition theorem, provides a uniqueness crite-
rion for this decomposition, which is related to the Hahn decomposition of a measure, which
we will see after the next theorem.

This finally allows us to conclude the proof of the Lebesgue Decomposition Theorem and
Radon-Nikodym Theorem.

Proof of Lebesgue Decomposition and Radon-Nikodym. For λ = λ1 − λ2 + iλ3 − iλ4, we ob-
serve that both Lebesgue decomposition and Radon-Nikodym derivatives are linear for pos-
itive measures, so that we can calculate the decompositions and derivatives for the positive
measures first and then add them.

The following theorem gives an ε − δ condition that provides some rough intuition for
why the notion of absolute continuity is referred to as “continuity.”

Theorem 3.19

Let µ :M→ [0,∞] be σ-finite, and let ν :M→ C. Then ν Î µ if and only if for all
ε > 0 there exists δ > 0 such that if A ∈M and µ(A) < δ then |ν(A)| < ε.

Proof. (⇐= ) If µ(A) = 0 then for any ε > 0, |ν(A)| < ε. Thus ν(A) = 0.

( =⇒ ) Suppose that ν Î µ but there exists ε > 0 and a sequence {Ai} ⊆ M such that
µ(Ai) < 2−i and |ν(Ai)| ≥ ε. Note that in general |ν|(·) ≥ |ν(·)|, so we also have |ν|(Ai) ≥ ε.
Then for any n we have

µ

( ∞⋃
i=n

Ai

)
≤

∞∑
i=n

µ(Ai) ≤
∞∑
i=n

2−i = 2−n+1

It follows then that {
⋃∞
i=nAi}n is a decreasing sequence of sets, with at least having finite

measure. Thus we can see that by approximation from the outside,

µ

( ∞⋂
n=1

∞⋃
i=n

Ai

)
= lim
n→∞

µ

( ∞⋃
i=n

Ai

)
= 0
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Also

|ν|

( ∞⋂
n=1

∞⋃
i=n

Ai

)
= lim
n→∞

|ν|

( ∞⋃
i=n

Ai

)
≥ ε > 0

Therefore |ν| ̸Î µ and thus ν ̸Î µ, contradicting the assumption.

Proposition 3.20

Let µ be a complex measure. Then µ Î |µ| and

dµ

d|µ|
∈ L1(X → C, |µ|)

takes values in S1 a.e.

Proof. It is clear that µ Î |µ| since for any set E with |µ|(E) = 0, E is a valid partition of
itself and hence it must be the case that µ(E) = 0.

To see that h = dµ
d|µ| takes values in S1, define Ar = {x : |h(x)| < r}. We want to bound

|µ|(Ar). If {Ei}ni=1 is a partition of Ar, then we have

n∑
i=1

|µ(Ei)| =
n∑
i=1

∣∣∣∣∫
Ei

h d|µ|
∣∣∣∣ ≤ r n∑

i=1

|µ|(Ei) = r|µ|(Ar)

Taking the supremum over all partitions of Ar, we conclude |µ|(Ar) ≤ r|µ|(Ar). The only
way this can happen when r < 1 is if |µ|(Ar) = 0,∞, but |µ| is a finite measure so |µ|(Ar) = 0
when r < 1. Thus |h| ≥ 1 a.e.

In the other direction, for any set E ⊆ X with |µ|(E) > 0,∣∣∣∣ 1

|µ|(E)

∫
E

h d|µ|
∣∣∣∣ = |µ(E)|
|µ|(E)

≤ 1

since we previously showed |µ(E)| ≤ |µ|(E). Thus the average value of h on any positive
measure set is contained in D, so by Lemma 3.13, h ∈ D a.e. as well. So we have shown
that |h| = 1 a.e., and without loss of generality we can define h so that |h| = 1 everywhere
on X.

Proposition 3.21

If µ is a complex measure and λ is a positive σ-finite with µ Î λ, then

d|µ|
dλ

=

∣∣∣∣dµdλ
∣∣∣∣

(Note we previously verified |µ| Î λ.)

Proof. Let g ∈ L1(X → C, λ) be such that dµ = g dλ. Using Proposition 3.20, we also
have h ∈ L1(X → C, µ) such that dµ = h d|µ|. Thus d|µ| = hg dλ. Both |µ|, λ are positive
measures, so we must also have hg ≥ 0 a.e. Since |h| = 1 it follows that hg = |g| a.e.
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Definition 3.17

If A,B ⊆ X, then the symmetric difference is defined as

A△B := (A \B) ∪ (B \A)

Theorem 3.22: Hahn Decomposition Theorem

Let µ : M → R be a measure. Then there exist two sets A± ∈ M such that
A+⊔A− = X and the Jordan decomposition of µ = µ+−µ− satisfies µ± = µ(A±∩·)
(such a partition is called a Hahn decomposition of X). Moreover, if B+, B− are
two other such sets then it is the case that µ(A+△B+) = µ(A−△B−) = 0.

Proof. We know that µ Î |µ|, and that dµ
d|µ| ∈ L1(X, |µ|), and also

∣∣∣ dµ
d|µ|

∣∣∣ = 1 almost

everywhere. Since µ is real, we can choose the derivative so that its range is ±1. Then we
will set

A+ :=
dµ

d|µ|

−1

({1})

A− :=
dµ

d|µ|

−1

({−1})

From here, if E is any measurable set then we have

µ+(E) =
1

2
(|µ|(E) + µ(E))

=
1

2

∫
E

(
1 +

dµ

d|µ|

)
d|µ|

=
1

2

∫
E∩A+

2 d|µ|+ 1

2

∫
E∩A−

0 d|µ|

=

∫
E∩A+

dµ

d|µ|
d|µ|

= µ(E ∩A+)

and similarly for A−. The symmetric difference must have measure zero because we can
write

A+△B+ = A−△B− = (A+ ∩B−) ∪ (A− ∩B+)

µ is nonnegative on A+ and nonpositive on B− so µ(A+ ∩ B−) = 0 and similarly µ(A− ∩
B+) = 0.

Corollary 3.23

If µ : M → R and λ1, λ2 : M → [0,∞) are positive finite measures such that
µ = λ1 − λ2, then µ+ ≤ λ1 and µ− ≤ λ2.
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Proof. Let A+, A− be a Hahn decomposition of X with respect to M. Clearly we have
µ ≤ λ1; it follows that

µ+(E) = µ(E ∩A) ≤ λ1(E ∩A) ≤ λ1(E)

Similalry µ− ≤ λ2.
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Chapter 4

Lebesgue Differentiation

This chapter considers the specific setting (X,M, µ) = (Rn,B(Rn), λ). We then consider
how we can understand differentiation through parameters of an integral, including results
such as the fundamental theorem of calculus. For instance, if f is continuous then the cor-
respondence between the Riemann and Lebesgue integrals allows us to use the fundamental
theorem of calculus to write

lim
ε→0+

1

ε

[∫ x+ε

a

f dλ−
∫ x

a

f dλ

]
= lim
ε→0+

1

ε

∫ x+ε

x

f dλ = f(x)

Otherwise, we can more generally write this integral as∫ x+ε

x

f dλ = φλ,f ([x, x+ ε])

with λ([x, x + ε]) = ε. This leads us to ask the question of which Borel measures on Rn it
is true that

lim
ε→0+

µ(Bε(x))

λ(Bε(x))

exists.

Definition 4.1

If µ : B(Rn) → C is a measure then the symmetric derivative of µ at x with
respect to λ is defined as

(Dλµ)(x) = lim
ε→0+

µ(Bε(x))

λ(Bε)

if the limit exists. The Hardy-Littlewood maximal function is defined as

(Mλµ)(x) := sup
ε>0

|µ|(Bε(x))
λ(Bε)

In the case that µ = φλ,f for some f , we use the shorthand Mλf =Mλφλ,f .
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Definition 4.2

A function f : Rn → R is said to be lower semicontinuous if for all a it is the case
that

f−1((a,∞])

is open.

To see that Mλµ is measurable, we can show that it is lower semicontinous. Then we
observe that the proof we used for showing that continuous functions are measurable in fact
only needed lower semicontinuity. Thus Mλµ is measurable.

Example 4.1

Mλλ = 1, since the inside of the limit is always 1. In contrast Mλδx0
= ∞ at x0,

and decays polynomially away from x0:

(Mλδx0
)(x) =

{
∼ ∥x− x0∥−n, x ̸= x0

∞, x = x0

(Dλδx0
)(x) =

{
0, x ̸= x0

∞, x = x0

For continuous functions f : Rn → C,

(Dλφλ,f )(x) = f(x)

On the other hand, we would expect the maximal function to be equal to |f |, (it
would be if it was defined as the lim supε→0+), but in general it is possible for the
average to be greater on some radius away from zero. So all that we can say in
general is that

(Mλφλ,f )(x) ≥ |f(x)|

Example 4.2

For fixed ε, the function

f(x) =

{
∥x∥
ε , ∥x∥ < ε

1, ∥x∥ > ε

satisfies
(Mλf)(0) = 1

but
f(0) = 0
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Lemma 4.1: Vitali Covering Lemma

Let {xi}Ni=1 ⊆ Rn, {ri}ni=1 ⊆ (0,∞). Then there exists a collection of indices S ⊆
{1, . . . , N} such that:

1. The collection of balls {Bi = Bri(xi)}i∈S are pairwise disjoint.

2.
⋃N
i=1Bi ⊆

⋃
i∈S 3Bi where 3Bi = B3ri(xi).

3. λ
(⋃N

i=1Bi

)
≤ 3n

∑
i∈S λ(Bi).

Proof. The idea is to choose the balls using a greedy algorithm, and to show that it works.
First we assume without loss of generality that the ri are decreasing, so that ri ≤ rj if i ≥ j.
Add 1 to S. Then add the next smallest index j such that Bj is pairwise disjoint from the
elements of S, and continue until all indices have been exhausted (this process stops since
N is finite).

To see that this works, pick i ∈ {1, . . . , N} \ S. Then there exists j ∈ S with j < i and
Bi ∩Bj ̸= ∅. Then by assumption rj ≥ ri, so ∥xj − xi∥ ≤ 2rj , and in particular 3Bj ⊇ Bi
by a geometric argument. The measure result is clear based on the scaling of λ.

Now the Vitali covering lemma will allow us to provide bounds on the maximal function
(which in turn bounds the symmetric derivative).

Definition 4.3

Let µ : X → C be a measure. Then the total variation of µ on X is ∥µ∥ := |µ|(X).

Theorem 4.2

Let µ : B(Rn)→ C and a > 0. Then

λ ({x ∈ Rn : (Mλµ)(x) > a}) ≤ 3n
∥µ∥
a

Proof. Write Ea = {Mλµ(x) > a}. Since Mλµ is lower semicontinuous, Ea ∈ Open(Rn).
Then by regularity of λ,

λ(Ea) = sup
K∈Compact(Rn)

K⊆Ea

λ(K)

Now for any K ⊆ Ea compact, for all x ∈ K we have (Mλµ)(x) > a by definition of Ea.
Thus by the definition of Mλµ there exists ε > 0 such that

|µ|(Bεx(x))
λ(Bεx)

> a ⇐⇒ λ(Bεx) <
|µ|(Bεx)(x)

a

The collection {Bx = Bεx(x)}x∈K is an open cover for K so we can select a finite subcover
B1, . . . , Bn. We then apply the Vitali covering lemma to pick a subcollection S ⊆ {1, . . . , N}.
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This gives us

λ(K) ≤ λ

(
N⋃
i=1

Bi

)
≤ 3n

∑
i∈S

λ(Bi) ≤
3n

a

∑
i∈S
|µ|(Bεx(x)) =

3n

a
|µ|

(⋃
i∈S

Bi

)
≤ 3n

a
∥µ∥

Taking the supremum over all K proves the result.

Corollary 4.3

If f ∈ L1 then

λ ({x ∈ Rn : (Mλf)(x) > a}) ≤ 3n
∥f∥L1

a

Proof. Follows since ∥φλ,f∥ = ∥f∥L1 .

Definition 4.4

Let f ∈ L1(Rn → C, λ). Then x ∈ Rn is said to be a Lebesgue point if

lim
ε→0+

1

λ(Bε)

∫
Bε(x)

|f − f(x)|dλ = 0

This is a stricter requirement than

Dλf = lim
ε→0+

1

λ(Bε)

∫
Bε(x)

f dλ = f(x)

which is certainly the case if x is a Lebesgue point. Now, the following important theorem
is an extension of Lebesgue’s criterion for Riemann integrable functions to L1 functions.

Theorem 4.4: Lebesgue Differentation Theorem

If f ∈ L1(λ) then λ-almost-all points in Rn are Lebesgue points for f .

Proof. The point is to use a continuous approximation of f since every point is a Lebesgue
point for a continuous function. Define the r-radius average of f to be

(Arf)(x) =
1

λ(Br)

∫
Br(x)

|f(y)− f(x)|dλ(y)

and
(Af)(x) = lim sup

r→0+
(Arf)(x)

We want to show that Af = 0 λ-a.e. Fix ε > 0 and pick g ∈ Cc(Rn) such that ∥f − g∥L1 < ε
(note that we only need g to be continuous and L1, but by density of Cc(Rn) ⊆ C(Rn)∩L1(λ)
this is possible).

(Arf)(x) ≤ (Arg)(x) + (Ar(f − g))(x) ≤ (Arg)(x) +
1

λ(Br)

∫
Br(x)

|f − g| dλ+ |f(x)− g(x)|
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Since g is continuous, Arg → 0 so Ag = 0 everywhere. Thus taking the limsup on both
sides, we have

Af ≤Mλ(f − g) + |f − g|

Now we show that the sets {Mλ(f − g) > α} and {|f − g| > α} can both be made to be
arbitrarily small for α > 0 by choosing g closer to f . Indeed, by Chebyshev’s inequality we
have

λ ({|f − g| > α}) ≤ 1

α

∫
Rn

|f − g|dλ =
1

α
∥f − g∥L1

On the other hand, we also showed the bound

λ ({Mλ(f − g) > α}) ≤ 3n

α
∥f − g∥L1

so

λ ({Af > 2α}) ≤ λ ({Mλ(f − g) > α}) + λ ({|f − g| > α}) ≤ 3n + 1

α
∥f − g∥L1 <

3n + 1

α
ε

Taking ε → 0 shows that λ ({Af > 2α}) = 0 for any α > 0, and hence λ ({Af > 0}) = 0.
Thus Af = 0 λ-a.e. and the result follows.

The significance of the differentiation theorem is that it provides a method to calculate
the Radon-Nikodym derivative with respect to λ:

Corollary 4.5

Let µ : B(Rn)→ C satisfy µ Î λ. Then

dµ

dλ
= Dλµ

λ-a.e.

Proof. µ Î λ, so dµ
dλ exists and is L1. By the Lebesgue differentiation theorem, λ-almost-all

points in Rn are Lebesgue points. Let x ∈ Rn be such a point. Then

dµ

dλ
(x) = lim

ε→0+

1

λ(Bε)

∫
Bε(x)

dµ

dλ
dλ︸ ︷︷ ︸

µ(Bε(x))

= (Dλµ)(x)

Theorem 4.6: Fundamental Theorem of Calculus I

Let f ∈ L1(R→ C, λ). If x ∈ R is a Lebesgue point of f , then(
∂

∫ ∗

−∞
f dλ

)
(x) = f(x)

66



Proof. We write the difference quotient (note all the integrals are finite since f ∈ L1):

lim
ε→0+

∣∣∣∣∣
∫ x+ε
−∞ f dλ−

∫ x
−∞ f dλ

ε
− f(x)

∣∣∣∣∣ ≤ lim
ε→0+

1

ε

∣∣∣∣∫ x+ε

x

f dλ− εf(x)
∣∣∣∣

≤ lim
ε→0+

1

ε

∫ x+ε

x

|f(y)− f(x)| dλ(y) ≤ 2 lim
ε→0+

1

2ε

∫ x+ε

x−ε
|f(y)− f(x)|dλ(y)

= 2 lim
ε→0+

1

λ (Bε(x))

∫
Bε(x)

|f(y)− f(x)|dλ(y) = 0

since x is a Lebesgue point.

Note that this proof required us to use the fact that half intervals take up half the
measure of the balls around x. This idea allows us to generalize this notion to use sets other
than balls centered at x.

Definition 4.5

Let {En} be a sequence of sets and x ∈ Rn (we do not assume x ∈ En). We
say that {En} shrinks nicely to x if there exists α > 0 and a sequence of balls
{Bn = Brn(x)} centered at x such that rn → 0, En ⊆ Bn and m(En) ≥ αm(Bn).

In other words, the En shrink toward x in such a way that the density of En around x
is bounded below, allowing us to replicate the above proof.

Corollary 4.7

Let {En} shrink nicely toward x a Lebesgue point of f ∈ L1(R→ C, λ). Then

f(x) = lim
n→∞

1

λ(En)

∫
En

f dλ

To prove the other half of the fundaemntal theorem of calculus, we need to place more
restrictions on f . Recall that the Riemann integral version of this theorem assumes that
f is differentiable and that f ′ is continous. In this case, we can significantly reduce the
assumptions we make.

Theorem 4.8: Fundamental Theorem of Calculus II

Let f : [a, b] → C be absolutely continuous. Then f is differentiable λ-a.e., f ′ ∈
L1([a, b]→ C), and

f = f(a) +

∫ ∗

a

f ′ dλ

We do not provide the proof here. One can show this by first proving that the con-
clusion is equivalent to the hypothesis of absolute continuity if f is monotonic (which is
demonstrated by showing that both are equivalent to the condition that f takes measure
zero sets to measure zero sets). This is then extended to arbitrary functions by using the

67



total variation function (which measures the variation of f over [a, x]) to decompose f into
two monotonic functions.

4.1 Change of Variables in Rn

Now that we have developed tools to calculate derivatives of measures more explicitly, we will
return to the question of the change of variables formula so that it can be more practically
useful for computation. Here we consider the case where (X,M, µ) is a measure space,
(Y,N ) a measurable space, and φ : X → Y, f : Y → C. Previously we found that∫

X

f ◦ φ dµ =

∫
Y

f dµφ

where µφ : N → C is defined by µφ(A) = µ(φ−1(A)). Also we saw that if φ was injective
then it was moreover true that ∫

A

f ◦ φ dµ =

∫
φ(A)

f dµφ

Assume φ is bijective and φ−1 measurable. If we write η = φ−1, g = f ◦ φ, then for
B = η−1(A) it is true that ∫

η(B)

g dµ =

∫
B

g ◦ η dµη−1

If we additionally know that µη−1 Î ν, with ν : N → [0,∞] σ-finite, then∫
B

g ◦ η dµη−1 =

∫
B

g ◦ η
dµη−1

dν
dν

Now, in the case µ, ν = λ on X,Y = Rn, then we find (in agreement with multivariable
analysis) that

dλη−1

dλ
=
∣∣det(Dη−1)

∣∣
To show this, we need to prove some scaling properties of λ under linear transformations. We
have had the tools to prove this locally, which we will produce now, but the Radon-Nikodym
derivative allows us to connect this with the global change of variables formula.

Proposition 4.9

Let T : Rn → Rn be an invertible linear transformation. Then there exists a (unique)
positive constant cT such that

λ(T ·) = cTλ

Proof. By linearity and translation invariance, we observe that

λ(M(S + x)) = λ(MS +Mx) = λ(MS)

so λ(M ·) is a translation invariant Borel measure and hence equal to λ, up to a constant.
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Corollary 4.10

If T is orthogonal then cT = 1. Hence λ is invariant under orthogonal transforma-
tions.

Proof. The unit ball is fixed under T and has finite measure.

Proposition 4.11

Let M be an n× n matrix. Then

λ(M ·) = |det(M)|λ

Proof. The proof is clearly true if M is not invertible since both sides are zero.

If M is invertible then λ(M ·) is translation invariant by linearity, so the measure

µ :=
λ(M ·)

λ(M [0, 1]n)

is a normalized, translation invariant Borel measure on Rn and hence equal to λ. Now it
just remains to show |det(M)| = λ(M [0, 1]n). This is clear for diagonalizable M and in the
general case it is proved using singular value decomposition since orthogonal transformations
preserve measure.

Lemma 4.12

Let E ⊆ Rn have measure zero. Let φ : E → Rn be such that

lim sup
y→x
y∈E

∥φ(x)− φ(y)∥
∥x− y∥

<∞

for each x ∈ E. Then λ(φ(E)) = 0.

Proof. The point is to use the hypothesis to bound the behavior of φ on small balls. Specif-
ically, fix m, p ∈ N and define

Em,p =
{
x ∈ E : ∥φ(x)− φ(y)∥ ≤ m∥x− y∥, y ∈ B 1

p
(x) ∩ E

}
Then by assumption, E =

⋃
m,pEm,p, so it suffices to show Em,p has measure zero. For

ε > 0, we can cover Em,p by a countable collection of balls {Bi = Bri(xi)} such that
xi ∈ Fm,p, ri <

1
p , and

∑
i λ(Bi) < ε (note this is done by covering Em,p with a small

measure open set, decomposing the open set into almost disjoint small cubes, and covering
those cubes which intersect Fn,p with a ball of the appropriate radius).

Now by the construction of the Bi, φ(Bi) ⊆ Bmri(φ(xi)), so it follows that

λ(φ(E)) ≤
∑
i

λ(φ(Bi)) ≤
∑
i

λ(Bmri(φ(xi))) = mn
∑
i

λ(φ(Bi)) < mnε

Taking ε→ 0, we conclude.
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Lemma 4.13

Let f : Rn ⊇ B1(0)→ Rn be continuous, and let ε ∈ (0, 1) be such that

∥f(x)− x∥ < ε

on Sn−1 = ∂B1(0). Then
f(B1(0)) ⊇ B1−ε(0)

The conclusion of this lemma is somewhat geometrically intuitive.

Proof. Suppose not. Then pick a point a ∈ B1−ε such that a /∈ f(B1(0)). By assumption
∥f(x)∥ > 1 − ε for x ∈ Sn−1, so also a /∈ f(Sn−1). In other words, a /∈ f(B1(0)), so the
map G : B1(0)→ B1(0) defined by

G(x) =
a− f(x)
∥a− f(x)∥

is continuous. In particular, by Brouwer’s fixed point theorem, it has at least one fixed
point. But if x is this fixed point, we must have x ∈ Sn−1 since ∥G(x)∥ = 1. Thus it follows
that ⟨x, x⟩ = 1, so

⟨x, a− f(x)⟩ = ⟨x, a⟩+⟨x, x− f(x)⟩−⟨x, x⟩ < ∥x∥∥a∥+∥x∥∥x− f(x)∥−1 < ∥a∥+ε−1 < 0

In particular, ⟨x,G(x)⟩ < 0 so x is in fact not a fixed point of G, contradiction.

Theorem 4.14

Let φ : V → Rn be continuous with V ⊆ Rn open. If φ is differentiable at x ∈ V
then

lim
ε→0+

λ(φ(Bε(x)))

λ(Bε)
= |det(Dφ)x|

Proof. Assume by applying translation operators before and after that x = φ(x) = 0. Set
M = Dφ(0). We split the proof into two cases.

Case 1: If M is invertible, then we can assume that M = In by taking Φ =M−1 ◦φ, since
we already showed that constant linear transformations respect scaling:

λ(φ(Bε)(0)) = λ(MΦ(Bε)(0)) = |det(M)|λ(Φ(Bε)(0))

Thus we assume that M = In and aim to show that limit is 1.

Indeed, by the definition of differentiation, for each ε > 0 we can pick δ > 0 such that when
∥x∥ ∈ (0, δ),

∥φ(x)− Inx− 0∥
∥x∥

< ε =⇒ ∥φ(x)− x∥ < ε∥x∥

Then for any r ∈ (0, δ) (small enough that Br(0) ⊆ V ), the conditions of Lemma 4.13 are
satisfied. Also it is clear from the above that φ(Br(0)) ⊆ Br(1+ε)(0). So

Br(1−ε)(0) ⊆ φ(Br(0)) ⊆ Br(1+ε)(0)
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which gives

(1− ε)n ≤ λ(φ(Br(0)))

λ(Br(0))
≤ (1 + ε)n

Taking ε→ 0 gives the result.

Case 2: if M is not invertible, then imM has measure zero. In particular for any ε > 0
there is η > 0 such that

λ {x ∈ Rn : d(x,MB1(0)) < η} < ε

(This follows from regularity and approximation by open sets). By the definition of differ-
entiability, there is δ > 0 such that when ∥x∥ ∈ (0, δ),

∥φ(x)−Mx∥ < η∥x∥

Then for r < δ, we know that

φ(Br(0)) ⊆ {x ∈ Rn : d(x,MBr(0)) < rη} = r {x ∈ Rn : d(x,MB1(0)) < η}

Thus
λ(φ(Br(0))) ≤ rkε

So

lim sup
r→0+

λ(φ(Br(0)))

λ(Br(0))
≤ lim sup

r→0+

rkε

rkφ(B1(0))
≤ ε

λ(B1(0))

Taking ε→ 0, we conclude.

Theorem 4.15

Let V ⊆ Rn be open. Let φ : V → Rn be continuously differentiable and injective
such that φ−1 is also continuously differentiable. Then λφ Î λ and

dλφ
dλ

= |det(Dφ)|

so that for f ∈ L1(λ), A ∈ B(Rn),∫
φ(A)

f dλ =

∫
A

f ◦ φ|det(Dφ)|dλ

Proof. Since φ is differentiable everywhere, Lemma 4.12 tells us that φ takes measure zero
sets to measure zero sets. Thus λφ Î λ. Then it follows that the Radon-Nikodym derivative
is given by the symmetric derivative, which we just showed is

dλφ
dλ

= lim
r→0+

λ(φ(Br(x)))

λ(Br(x))
= |det(Dφ)(x)|
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Chapter 5

Probability Theory

Now we discuss one of the chief applications of measure theory, which is probability. Mea-
sures allow us a way of defining the notation of ”probability” which is by definition com-
patible with the boolean operations AND (disjoint unions) and NOT (complements). Note
that in order to ensure compatibility with complements we need to assume that the entire
space has finite measure. Thus probability theory emerges as the study specifically of finite
measure spaces.

5.1 Preliminaries

Definition 5.1

A probability space is a measure space (Ω,M,P) such that P(Ω) = 1.

Note that we can assume from the outset that the measure of the entire space is 1, since
otherwise we simply normalize the measure. Note also that the convention is to use Ω to
denote the underlying set, and P as the measure. The measurable sets take the interpretation
of observable events, or events where we can calculate a probability.

Definition 5.2

A measurable function f : Ω → C for a probability space (Ω,M,P) is called a
random variable.

Definition 5.3

Let (Ω,M,P) be a probability space. Then the expectation of a random variable
X is

E[X] =

∫
Ω

X dP
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Definition 5.4

Let (Ω,M,P) be a probability space, X a random variable, and A ∈ B(C). Then
the probability of X ∈ A, denoted P(X ∈ A), is given by the pushforward measure:

P(X ∈ A) = P(X−1(A)) = PX(A)

In the case that X is a real valued random variable, we have a natural ordering on R:

Definition 5.5

LetX : Ω→ R be a random variable. Then the cumulative distribution function
of X is given by

cdf(X)(t) = PX [(−∞, t]]

Moreover if PX Î λ then the probability density function of X is given by

pdf(X) =
dPX
dλ

Clearly if the pdf exists then

cdf(X)(t) =

∫ t

−∞
pdf(X) dλ

Definition 5.6

Let X : Ω→ C be a random variable. Then the variance of X is defined as

Var(X) = E[(X − E[X])2]

The standard deviation is defined as

σ =
√
Var(X)

If X,Y : Ω→ C are two random variables, their covariance is defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

Definition 5.7

Let P be a probability measure on R. Then the nth moment of P is defined as

Mn(P) =
∫
R
xn dP

The nth moment of a random variable XΩ→ C is

Mn(X) = E[Xn]
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The moment generating function of X is defined as

MX(t) := E[exp(tX)]

The characteristic function of X is defined as

φX(t) := E[exp(itX)]

The cumulant generating function of X is defined as

KX(t) := log(Mx(t))

The nth cumulant is defined as

K
(n)
X (t) = ∂nt

∣∣∣∣
t=0

log(E[exp(tX)])

The point of the moment generating function is that

M
(n)
X (0) = E[Xn] =Mn(X)

recovers the nth moment of X.

One way to construct random variables with prescribed pdfs is to set X to be the identity
on the probability space (R,B(R), f dλ), where f is the prescribed pdf.

Example 5.1

A random variable X is said to be standard normal, written X ∼ N (0, 1), if X is
the identity on the probability space (Ω,M,P) = (R,B(R), f dλ) with

f(x) =
1√
2π

exp

(
−1

2
x2
)

Example 5.2

A random variable X is standard Cauchy, written X ∼ Cauchy(0, 1), if X is the
identity on the probability space (R,B(R), f dλ) with

f(x) =
1

π

1

x2 + 1

Note that no moments of X are finite.
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Example 5.3

X is uniform on [a, b], written X ∼ U(a, b), if it has pdf

f(x) = χ[a,b](x)
1

b− a

5.2 Independence

So far we have only worked with one random variable at a time, but one of the most
important aspects of probability theory is its ability to analyze linked random variables.
Here we will develop the notion of independent random variables.

Intuitively independence means that the outcome of one variable does not affect the other.
In other words, the likelihood of the two variables assuming some given values is just given
by finding the likelihood that each assumes its given value individually, and multiplying the
results.

Definition 5.8

Let (Ω,M,P) be a measure space and {Eα}α∈A ⊆M be a collection of events. This
collection is said to be independent if for any subcollection of indices S ⊆ A, we
have

P

(⋂
α∈S

Eα

)
=
∏
α∈S

P(Eα)

A collection {Xα : Ω→ C}α∈A of random variables is independent if for any choice
of Borel sets {Bα}α∈A ⊆ B(C), the collection {X−1

α (Bα)}α∈A is independent.

There is a more convenient way to characterize independence in terms of distributions.
For instance, consider two random variables X,Y : Ω→ C. Since they are defined together
on the same domain, we can package them into a new function (X,Y ) : Ω→ C2, which is a
vector-valued random variable.

Definition 5.9

Let X,Y : Ω→ C be random variables. Then the joint probability distribution
of X,Y is defined as

P(X,Y ) = P ◦ (X,Y )−1

The definition is similar for any finite collection of variables.

Proposition 5.1

Let {Xα : Ω → C}α∈A be a collection of random variables. Then this collection is
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independent if and only if for any finite subcollection Xα1 , . . . , Xαn ,

P(Xα1
,...,Xαn ) =

n∏
i=1

PXαi

where the right side is the product measure on Cn.

Proposition 5.2

If {Xα} is a collection of independent random variables, then for any subcollection
Xα1

, . . . , Xαn
,

E[Xα1
· · ·Xαn

] = E[Xα1
] · · ·E[Xαn

]

Proof. Fubini’s.

Proposition 5.3

If X,Y are independent then Cov(X,Y ) = 0.

Proof. E[XY ] = E[X]E[Y ] so Cov(X,Y ) = 0.

Proposition 5.4

If X1, . . . , XN : Ω → Rni are vector-valued independent random variables, and
fi : Rni → R are Borel measurable, then the variables Yi = fi(Xi) : Ω → R are
also independent.

One of the useful aspects of phrasing probability theory in terms of measure theory is
that probability theoretic notions such as expectation, variance, and measure can be easily
connected with ideas such as function spaces.

Proposition 5.5

If X,Y are independent and both L1, then XY is also L1 and

E[XY ] = E[X]E[Y ]

If X,Y are nonnegative random variables then being L1 is the same as having finite first
moment. Note that it is crucial that we assume independence.

Proof. We use Tonelli’s theorem to establish that XY ∈ L1, then Fubini’s to show the
equality.
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Proposition 5.6

If X,Y are both L2, then X + Y is also L2 and

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Proof. In this case the triangle inequality on L2 demonstrates that f + g ∈ L2. Now, we
have

Var(X + Y ) = E[(X + Y )2]− (E[X + Y ])2 = E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= (E[X2]− E[X]2) + (E[Y 2]− E[Y ]2) + 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2Cov(X,Y )

In particular if X,Y are independent then the covariance term disappears, so we see that
variances of independent variables add.

5.3 Asymptotic Analysis

Next we investigate how sequences of independent random variables display emergent order
properties. This is phrased through the limit theorems.

The first goal we have is the central limit theorem, which characterizes the distribution of
running average of independent variables. Essentially what it says is that if {Xn : Ω→ R}
is a collection of independent and identically distributed (IID) random variables, with

E[Xn] = µ Var(Xn) = σ2

Then we define

An :=
1

N

N∑
n=1

Xn

Then by linearity of expectation and independence,

E[AN ] = µ

Var(AN ) =
1

N2
Var

(
N∑
n=1

Xn

)
=

1

N2

N∑
n=1

σ2 =
σ2

N

N→∞−→ 0

Since the variance disappears in the limit, we would expect that AN tends to the constant
value µ. However, there are stronger ways that we can quantify exactly how AN tends to
the mean. In other words, we want to classify PAN

given the distribution ν = PXn . To
universalize our analysis it is helpful to standardize AN as

ZN :=
AN − µ
σ/
√
N
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so that
E[ZN ] = 0 Var[ZN ] = 1

Then it turns out that the distribution of ZN converges to the standard normal distribution,
regardless of the input distribution (though we have not yet specified what it means for a
sequence of distributions to converge).

PZN

N→∞−→ N (0, 1)

The first mode of convergence that we will study is called convergence in probability.

Definition 5.10

Let {YN}n∈N be a sequence of random variables. Then we say that Yn converges

to Y in probability, denoted Yn
P−→ Y , if for any ε > 0,

P(|Yn − Y | ≥ ε)
N→∞−→ 0

Proposition 5.7

If Yn
P−→ Y and f is a continuous function, then f(Yn)

P−→ f(Y ).

Proof. Let ε > 0 and let δ > 0 be such that |Yn − Y | < δ =⇒ |f(Yn)− f(Y )| < ε. Thus

{|f(Yn)− f(Y )| ≥ ε} ⊆ {|Yn − Y | ≥ δ}

so
P (|f(Yn)− f(Y )| ≥ ε) ≤ P (|Yn − Y | ≥ δ)

N→∞−→ 0

Theorem 5.8: Markov’s Inequality

Let X : Ω → R be a random variable and φ : R → [0,∞) nondecreasing such that
φ ◦X ∈ L1. Then for any a ∈ R,

φ(a)P(X ≥ a) ≤ E[φ(X)]

Proof. By definition,

E[φ(X)] =

∫
w∈R

φ(X(w)) dP(w) =
∫
x∈R

φ(x) dPX(x)

For any a ∈ R we will split this integral:∫
x∈R

φ(x) dPX(x) =

∫
x<a

φ(x) dPX(x)︸ ︷︷ ︸
≥0

+

∫
x≥a

φ(x) dPX(x)

≥
∫
x≥a

φ(a) dPX(x) = φ(a)

∫
x∈a

dPX(x) = φ(a)P(X ≥ a)
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Theorem 5.9: Chebyshev’s Inequality

Let X : Ω→ R be an L1 random variable. Then for any ε > 0,

P(|X − E[X]| ≥ ε) ≤ Var(X)

ε2

Proof. We take Y = (X − E[X])2 and φ = id, with a = ε2. Then by Markov’s inequality,

ε2P(|X − E[X]| > ε) ≤ E[(X − E[X])2] = Var(X)

Theorem 5.10: Weak Law of Large Numbers

Let {Xn : Ω→ R} be a collection of IID L2 random variables with mean µ and

AN :=
1

N

N∑
n=1

Xn

Then An
P−→ µ.

Proof. By Chebyshev’s inequality,

P(|AN − µ| ≥ ε) ≤
σ2

ε2N2

N→∞−→ 0

There are ways to weaken the assumptions of the theorem by dropping the L2 assump-
tion, or the identically distributed assumption.

Theorem 5.11

Let {Xn : Ω→ R} be a collection of independent L2 random variables with E[Xj ] =
µj , Var(Xj) = σ2

j . If

1

N2

N∑
j=1

σ2
j
N→∞−→ 0

then

1

N

N∑
j=1

(Xj − µj)
P−→ 0

In particular this assumption is satisfied when the Xn are identically distributed.

Proof. The sum

SN =
1

N

N∑
j=1

(Xj − µj)
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has zero expectation linearity and by additivity of variances,

Var(SN ) =
1

N2

N∑
j=1

σ2
j

By Chebyshev’s inequality,

P (|SN | ≥ ε) ≤
1

ε2N2

N∑
j=1

σ2
j
N→∞−→ 0

Theorem 5.12

Let (Ω,M,P) be a probability space, {Xn : Ω → R} a sequence of IID random
variables such that

lim
x→∞

xP(|Xn| > x) = 0

and write
AN − E[Xχ[−N,N ](X)]

P−→ 0

Definition 5.11

Let {Yn} be a sequence of random variables and Y another random variable. We say

that Yn converges to Y almost surely, written Yn
a.s.−→ Y , if

P
(
lim
n→∞

Yn(x) = Y (x)
)
= 1

This is the same as a sequence of measurable functions converging pointwise almost
everywhere.

Proposition 5.13

If YN
a.s.−→ Y then YN

P−→ Y .

Proof. Suppose YN
a.s.−→ Y . It suffices to show that for any ε > 0 we have

P(|YN − Y | ≥ ε)
N→∞−→ 0

Fix ε > 0 and define
An :=

⋃
m≥n

{|Ym − Y | ≥ ε}

Then {An} defines a decreasing sequence of sets, so by approximation from the outside
(which is always valid on a probability space),

lim
n→∞

P(An) = P

( ∞⋂
n=1

An

)
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By monotonicity,

P(An) = P

 ⋃
m≥n

{|Ym − Y | ≥ ε}

 ≥ P (|Yn − Y | ≥ ε)

So in the limit,

lim
n→∞

P (|Yn − Y | ≥ ε) ≤ P

( ∞⋂
n=1

An

)
We just need to show the right hand side is zero. Indeed, pick w ∈ {limn→∞ Yn = Y }. Then
we have N such that for any n ≥ N ,

|Yn(w)− Y (w)| < ε

Then by definition, w /∈ An. So
∞⋂
n=1

An ⊆
{

lim
n→∞

Yn = Y
}c

The right hand side has measure zero by assumption, so we are done.

Lemma 5.14: Borel-Cantelli

Let {En}n ⊆M be a sequence such that∑
n∈N

P(En) <∞

Then

P

⋂
n∈N

⋃
k≥n

Ek

 = 0

Informally, the Borel-Cantelli lemma says that if a collection of events has finite total
probability then with probability one only finitely many of them occur.

Proof. Set FN :=
⋃
n≥N En. Then

FN ↘
⋂
n∈N

⋃
k≥n

En =
⋂
N∈N

FN

so by approximation from the outside and subadditivity,

P

( ⋂
N∈N

FN

)
= lim
N→∞

P(FN ) ≤ lim
N→∞

∑
n≥N

P(En)

Since the series converges by assumption, the limit of the tails is zero and we are done.
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Lemma 5.15: Second Borel-Cantelli

Let {En}n ⊆M be an independent sequence such that∑
n∈N

P(En) =∞

Then

P

⋂
n∈N

⋃
k≥n

Ek

 = 1

Proof. We use the complement:

1− P

⋂
n∈N

⋃
k≥n

Ek

 = P

⋂
n∈N

⋃
k≥n

Ek

c
= P

⋃
n∈N

⋂
k≥n

Eck


= lim
n→∞

P

⋂
k≥n

Eck


Since the Ek are independent, we can take a finite subset and turn the intersection into a
product. Taking the limit to infinity and applying approximation from the outside, we have

lim
n→∞

P

⋂
k≥n

Eck

 = lim
n→∞

lim
N→∞

P

(
N⋂
k=n

Eck

)

= lim
n→∞

lim
N→∞

N∏
k=n

(1− P(Ek))

= lim
n→∞

∏
k≥n

(1− P(Ek))

= lim
n→∞

exp

∑
k≥n

log (1− P(Ek))


≤ lim
n→∞

exp

−∑
k≥n

P(Ek)


= e−∞

= 0
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Lemma 5.16: Kolmogorov’s Inequality

Let {Xn}n be a sequence of independent random variables such that E[Xn] = 0. Let
Sn := X1 + . . .+Xn. Then for any ε > 0, n ∈ N,

P
((

max
k∈{1,...,n}

|Sk|
)
≥ ε
)
≤ Var(Sn)

ε2

Proof. Fix ε > 0 and define

Ak := {|Sk| ≥ ε, |Sj | < ε∀j < k}

In other words, Ak is the set of ω ∈ Ω where k is the first time that the random walk
(Sn(ω))n leaves (−ε, ε).

Then {(
max
k≤n
|Sk|

)
≥ ε
}

=

n⊔
k=1

Ak

so

P
((

max
k≤n
|Sk|

)
≥ ε
)

=

n∑
k=1

P(Ak) =
n∑
k=1

E[χAk
] ≤ ε−2

n∑
k=1

E[χAk
S2
k]

Now we have

E[S2
n] ≥

n∑
k=1

E[S2
nχAk

] =

n∑
k=1

E[χAk
(Sk − (Sn − Sk))2]

=

n∑
k=1

E[χAk
S2
k] + 2E[χAk

Sk(Sn − Sk)] + E[χAk
(Sn − Sk)2]

The third term is nonnegative. The second term is zero, because χAk
Sk is independent of

Sn − Sk, and E[Sn − Sk] = 0. Thus

Var(Sn) = E[S2
n] ≥

n∑
k=1

E[χAk
S2
k] ≥ ε2P

((
max
k≤n
|Sk|

)
≥ ε
)
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Theorem 5.17: Strong Law of Large Numbers (Kolmogorov)

Let (Ω,M,P) be a probability space and {Xn : Ω→ C} a collection of independent
L2 random variables such that

∞∑
n=1

Var(Xn)

n2
<∞

Then defining

AN =
1

N

N∑
n=1

Xn

we have

An −
1

N

N∑
n=1

E[Xn] =
1

N

N∑
n=1

Xn − E[Xn]
a.s.−→ 0

Proof. Define

BN = AN −
1

N

N∑
n=1

E[Xn]

Fix ε > 0 and k ∈ N. Then by monotonicity and Kolmogorov’s inequality,

P
(

max
n∈[2k−1,2k]

|Bn| ≥ ε
)
≤ P

 max
n∈[1,2k]

n|Bn|︸ ︷︷ ︸
=|∑n

j=1Xn|

≥ ε2k−1

 ≤ (ε2k−1)−2
2k∑
n=1

Var(Xn)

Summing over all k, we have

∞∑
k=1

P
(

max
n∈2k−1,2k

|Bn| ≥ ε
)
≤

∞∑
k=1

1

(ε2k−1)2

2k∑
n=1

Var(Xn)

=

∞∑
n=1

Var(Xn)

∞∑
k=log2 n

4

ε222k
=

8

ε2

∞∑
n=1

1

n2
Var(Xn) <∞

So by the first Borel-Cantelli lemma,

P
(
lim sup

k

{
max

n∈[2k−1,2k]
|Bn| ≥ ε

})
= 0

The limsup of these sets is the set such that infinitely many of the running averages are
outside of (−ε, ε). Taking ε → 0, we obtain the complement of the set on which BN → 0,
so

BN
a.s.−→ 0

The law of large numbers (in both weak and strong forms) describes the zeroth-order
asymptotic behavior of the running averages. The first-order behavior is calculated by the
central limit theorem and the normal distribution.
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We first note that by the law of large numbers, we can write AN in terms of fluctuations
about the mean by some variable which has variance tending to 0 as N →∞. If we remove
a square-root scaling factor in N analogous to standard deviation, we write this as

AN = µ+
σ√
N
ZN

where we want to argue that ZN is asymptotically independent of N . In fact, we will see
that

Zn
N→∞−→ N (0, 1)

PZN

N→∞−→ 1√
2π

exp

(
−1

2
x2
)
dλ

The mode of convergence is the in which this occurs is the weakest which we have studied
so far.

Definition 5.12

Let {Yn}n be a sequence of random variables and Y another random variable. We

say Yn converges in distribution to Y , written Yn
d−→ Y , if for any bounded

continuous function f : R→ R,

E[f(YN )]
N→∞−→ E[f(Y )]

or equivalently ∫
f dµn →

∫
f dµ

where µn is the distribution of Yn and µ is the distribution of Y . This is also known
as vague convergence or weak∗ convergence.

The intuition for convergence in distribution is that the shape of the distribution is
converging. Note this in general is not dependent on the sample space, and there is no
relation to the joint distributions of any of the Yn or Y .

Proposition 5.18

If Yn
P−→ Y then Yn

d−→ Y .

Proof. Let f be continuous and bounded. Then f(Yn)
P−→ f(Y ). Let |f | ≤ M and ε > 0

be arbitrary. Then

lim
n→∞

E[|f(Yn)− f(Y )|] = lim
n→∞

∫
Ω

|f(Yn)− f(Y )| dP

= lim
n→∞

[∫
{|f(Yn)−f(Y )|≥ε}

|f(Yn)− f(Y )| dP+

∫
{|f(Yn)−f(Y )|<ε}

|f(Yn)− f(Y )| dP

]
≤ lim
n→∞

[2MP (|f(Yn)− f(Y )| ≥ ε) + ε] = ε
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(Since f(Yn)
P−→ f(Y ), limn→∞ P(|f(Yn)− f(Y )| ≥ ε) = 0.) Taking ε → 0, we conclude

that E[f(Yn)]
N→∞−→ E[f(Y )], so Yn

d−→ Y .

It follows then that Yn
a.s.−→ Y =⇒ Yn

P−→ Y =⇒ Yn
d−→ Y .

The next theorems characterize convergence in distribution in a manner that will make it
easier to prove the central limit theorem.

Theorem 5.19

The image of L1(R) under the Fourier transform F is dense in C0(R).

Proof. The proof of this is well outside the scope of this course and is omitted.

Theorem 5.20: Levy’s Continuity Theorem

If
E[eitYn ]→ E[eitY ]

converges pointwise in t if and only if Yn
d−→ Y .

Proof. If f : R→ R is any continuous bounded function, we can take a sequence of functions
fk ∈ F(L1(R)) tending to f . Since each fk is the image of the Fourier transform of some
L1 function gk, we can write

fk(y) =

∫
ψ∈R

eiyψgk(ψ) dλ(ψ)

Then applying Fubini’s theorem,

lim
n→∞

E[fk(Yn)] = lim
n→∞

E
[∫

ψ∈R
eiYnψgk(ψ) dλ(ψ)

]
= lim
n→∞

∫
ψ∈R

E[eiYnψ]gk(ψ) dλ(ψ)

We then apply the dominated convergence theorem since the integrand is bounded by |gk| ∈
L1, and conclude that

lim
n→∞

E[fk(Yn)] = E[fk(Y )]

Now, we take the limit in k on both sides.
TODO: show we can switch the limit
Each fk is in C0(R), so they are all bounded. Moreover since they converge to f , they

are uniformly bounded by some constant, which is in L1 since we are in a probability space.
Then by dominated converence,

lim
k→∞

E[fk(Yn)] = E[f(Yn)]
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and the same holds for Y . Thus

lim
n→∞

E[f(Yn)] = lim
n→∞

lim
k→∞

E[fk(Yn)] = lim
k→∞

lim
n→∞

E[fk(Yn)] = lim
k→∞

E[fk(Y )] = E[f(Y )]

The converse is obvious by taking the bounded continuous function y 7→ exp(eity).

Theorem 5.21

If {Yn}n and Y are real random variables then Yn
d−→ Y if and only if the cumulative

distribution functions converge pointwise in t everywhere the cdf for Y is continuous:

P(Yn ≤ t)→ P(Y ≤ t)

Theorem 5.22: Central Limit Theorem (IID)

Let {Xn : Ω → R}n be an IID sequence of L2 random variables with mean µ and
standard deviation σ, and define

ZN =
AN − µ
σ/
√
N

Then
ZN

d−→ N (0, 1)

Proof. We will use Levy’s continuity theorem, so that it suffices to show that

φ(ZN )(t) = E[exp(itZN )]→ φZ(t) = exp

(
−1

2
t2
)

pointwise in t, where Z ∼ N (0, 1). We will then write

Yn =
Xn − µ
σ

so that

E[Yn] = 0

Var(Yn) = 1

ZN =
1
N

∑N
n=1Xn − µ
σ/
√
N

=

∑N
n=1Xn −Nµ
σ
√
N

=

∑N
n=1 Yn√
N

This allows us to separate the exponential and apply independence:

E[exp(itZN )] = E

[
exp

(
itN− 1

2

N∑
n=1

Yn

)]

= E

[
N∏
n=1

exp
(
itN− 1

2Yn

)]
=

N∏
n=1

E
[
exp

(
itN− 1

2Yn

)]
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We evaluate the expectation by Taylor expanding the exponential:

E
[
exp

(
itN− 1

2Yn

)]
= E

[
1 + itN− 1

2Yn −
1

2

t2

N
Y 2
n +O

(
N− 3

2

)]
= 1− t2

2N
+O

(
N− 3

2

)
Thus we have

E [exp (itZN )] = exp

(
N∑
n=1

log

(
1− t2

2N
+O

(
N− 3

2

)))

Applying the Taylor expansion of log(1− x), we obtain

exp

(
N∑
n=1

− t2

2N
+O

(
N− 3

2

))
= exp

(
− t

2

2
+O

(
N− 1

2

))

Note that the O(1/
√
N) term contains dependence on t and the moments of Yn; however

pointwise in t this term vanishes as N →∞.

The importance of this is that because we did not make any assumptions on the dis-
tribution of Yn, we can use analysis of the Gaussian in order to study arbitrary random
variables. One way that we will do this is to study tail bounds of the averages:

P [|AN − µ| > t] = P
[∣∣∣∣ σ√

N
ZN

∣∣∣∣ > t

]
= P

[
|ZN | >

√
Nt

σ

]

However, because there is N dependence on the right side, we cannot easily apply the central
limit theorem on the distribution of ZN to make arguments about this value (since we don’t
know anything about the asypmtotic convergence of ZN → Z). One way to address this is
to ask questions about small deviations from the mean:

P
[
|AN − µ| >

t√
N

]
= P

[
|ZN | >

t

σ

]
In this case the central limit theorem tells us that

Φ
( s
σ

)
∼ 1√

2π
exp

(
−1

2

s2

σ2

)
In order to return to the original question we need to study patterns of large deviation.

Another question that we can investigate is the higher-order asymptotic behavior of AN .
Such an expansion is called an Edgeworth expansion.
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5.4 Large Deviations

In this section we are motivated by considering asymptotic analysis on probability measures.
If {PN}N is a sequence of probability measures and X is a random variable which is not
dependent on N . If the measures PN have a density which is also a Laplace transform, then

EN [X] =

∫
Ω

X(ω) dPN (ω) =

∫
Ω

X(ω)Z−1
N e−NI(ω) dλ(ω)

This is a setup which can be analyzed with existing techniques.

Theorem 5.23: Laplace Asymptotic

Let f : Rn → R, g : Rn → C. Assume f has continuous Hessian Hf : Rn →Mn×n(R)
at some point x0 ∈ Rn, where

• g is continuous and nonvanishing at x0,

• (∇f)(x0) = 0,

• (Hf)(x0) is positive definite,

• There exists η∗ > 0 such that∫
x∈Rn

e−η∗f(x)g(x) dλ(x) <∞

Then it follows that

lim
η→∞

∫
x∈Rn e

−ηf(x)g(x) dλ(x)

η−
n
2 e−ηf(x0)

=
g(x0)√

det
(

1
2π (Hf)(x0)

)
The goal of large deviations principles is to understand how this analysis can be adapted

for distributions where the densities are not Laplace transforms, or where a density does
not exist.

The setting that we study this is on a fixed measurable space (Ω,B(Ω)), where Ω is a
complete separable metric space, and a family of probability measures {Pε}ε∈(0,∞).

Definition 5.13

A rate function is a map I : Ω → [0,∞] which is lower semicontinuous such that
for any ℓ ∈ (0,∞), I−1([0, ℓ]) ⊆ Compact(Ω).

Then the large deviation principles tell us under which rate functions we have an expo-
nential decay relation
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Definition 5.14

A sequence of probability measures {Pε}ε∈(0,∞) obeys a large deviation principle
with rate function I : Ω→ [0,∞] if:

• For all F ⊆ Ω closed,

lim sup
ε→0+

ε log (Pε(F )) ≤ − inf
ω∈F
I(ω)

• For all U ⊆ Ω open,

lim inf
ε→0+

ε log (Pε(U)) ≥ − inf
ω∈U
I(ω)

Proposition 5.24

Let {Pε}ε>0 be a family of probability measures obeying a large deviation principle
with rate function I. If A ∈ B(Ω) is such that

inf
ω∈intA

I(ω) = inf
ω∈A

I(ω) = inf
ω∈A

I(ω)

then
lim
ε→0+

ε log(Pε[A]) = − inf
ω∈A

I(ω)

Lemma 5.25: Varadhan’s Lemma

Let {Pε}ε>0 satisfy an LDP with rate function I. Then for any bounded continuous
random variable X : Ω→ R,

lim
ε→0+

ε log

(
Eε
[
exp

(
1

ε
X

)])
= sup
ω∈Ω

(X(ω)− I(ω))

Schilder’s theorem tells us that Brownian motion {Bt}T>0 obeys a large deviation prin-
ciple. The Feynman-Kac formula then tells us that

exp(−T (−∆+ V ))(x, y) = E

[
δ(B0 − x)δ(BT − y) exp

(
−
∫ T

0

V ◦Bt dt

)]

where ∆ is the Laplacian operator on L2(R) and the exponential of the operator is defined
in the typical way. This gives a nice connection between PDEs and probability.

5.5 Kolmogorov Extension Theorem

Consider some fixed probability space (Ω,M,P) and sequence of random variables {Xn :
Ω → R}n. Then for any tuple of distinct indices α1, . . . , αn, the pushforward measure
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defines a new probability measure on Rn by

P(Xα1 ,...,Xαn ) = P ◦ (Xα1
, . . . , Xαn

)−1

In the reverse direction, we consider how we can build a probability space given a collection
of prescribed joint distributions, such that the joint distributions indeed are the distributions
of random variables on the space.

Note that the joint distribution naturally satisfies the properties

P(X,Y )[A×B] = P(Y,X)[B ×A]
P(X,Y )[A× R] = PX [A]

so certainly our prescribed distributions must satisfy this as well.

To formalize this idea, we let A be an arbitrary index set. For any set of distinct tuples (an
injective map α : {1, . . . , n} → A), we are prescribed a probability measure µα : B(Rn) →
[0, 1]. Then we want to produce a probability space (Ω,M,P) and a collection of random
variables {Xβ : Ω→ R}β∈A such that for any α : {1, . . . , n} → A injective,

µα = P(Xα1 ,...,Xαn )

The Kolmogorov consistency conditions tell us when this assembly is possible. Essentially
we need the joint distributions to be compatible with each other under permutations and
marginalization.

Definition 5.15

Let A be an index set. Let {µα}α be a collection of Borel measures on Rn, where
α : {1, . . . , n} → A is injective and n ranges over all finite n ≤ |A|. We say that
{µα}α satisfies the Kolmogorov consistency conditions if for any π ∈ Sn and
B1, . . . , Bn ∈ B(R),

µα(B1 × · · · ×Bn) = µα◦π(Bπ(1) × · · · ×Bπ(n))

and whenever k < n, the restriction α|k of α to the first k indices satisfies

µα(B1 × · · · ×Bk × Rn−k) = µα|k(B1 × · · · ×Bk)

Theorem 5.26: Kolmogorov’s Extension Theorem

If {µα}α satisfes the Kolmogorov consistency conditions, then there exists a unique
probability space (Ω,M,P) such that for any α,

µα = P ◦ (Xα1
, . . . , Xαn

)−1

and Ω = (R ∪ {∞})A. Moreover P is Radon.

Proof. If |A| = n is finite, then we can simply take the product measure space (Rn,B(Rn)),
with Xi the projection onto the ith coordinate and P = µαmax

, where αmax is the unique
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map from {1, . . . , n}. For arbitrary A we require more caution since we have yet to make
sense of the infinite product of a measure.

We first set Ω = RA = {f : A→ R} to be the space of A-indexed real tuples. We take the
σ-algebra to be the A-indexed product algebra

⊗a∈AB(R) = σ
({
π−1
β (Eβ) : Eβ ∈ B(R), a ∈ A

})
Note that this equivalent to the σ-algebra

σ

({∏
a∈A

Ea : Ea ∈ B(R) and Ea ̸= R for only finitely many a

})

For any finite subcollection of indices S ⊆ A, we define

Fs := σ

({∏
a∈A

Ea : Ea ∈ B(R) and Ea ̸= R only for a ∈ S

})

We then let
A :=

⋃
S⊆A
|S|<∞

FS

Now, we define a premeasure p : A → [0, 1]. For any E ∈ A , by definition there is a finite
index set S ⊆ A such that E ∈ FS . We suppose that α : {1, . . . , |S|} → A enumerates S.
Let πS : Ω→ RS be the projection map. Then we define

p(E) := µα (πS(E))

We claim without proof that A is an algebra, and also that this definition of p is well-defined
as a result of the Kolmogorov consistency conditions.

Then by the Caratheodory extension theorem, there exists a unique probability measure
µφρ on σ(A ) = B(Ω) (which is defined by the product topology on Ω = RA). We take P to
be µφρ . By construction the marginal distributions agree with those prescribed. We extend
this measure to (R∪{∞})A by setting (R∪{∞})n \Rn to have measure zero for any n.

Note that the above proof does not make it clear that µφρ
is regular. A proof by Folland

using the Kakutani-Markov-Riesz theorem more directly develops this fact.

We can use the Kolmogorov extension theorem to define stochastic processes such the simple
random walk. First, we define µ0 : B(R) = [0, 1] to be some probability measure, for
instance the Bernoulli measure µ0 = 1

2 (δ−1 + δ1). Then we take A = N and for any
α : {1, . . . , n} → N injective, we specify µα = µn0 . The result of applying the Kolmogorov
extension theorem to this initial data is Ω = RN , Xn = πn, and {Xn}n are IID RVs, each
with distribution µ0. Then the sum

SN =

N∑
n=1

Xn
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is called a simple random walk with measure µ0.

To define Brownian motion, we take A = [0,∞) and for any α : {1, . . . , n} → A with
(t1, . . . , tn) = (α1, . . . , αn), we specify the density for µα

dµα
dλ

(x ∈ Rn) =
1

(2π)
n
2

√
det(K)

exp

(
−1

2

〈
x,K−1x

〉
Rn

)
where the covariance matrix K is positive definite and defined by Ki,j = min({ti, tj}). The
result of the Kolmogorov extension theorem on this data is a stochastic process (Bt)t≥0.
(Bt) has the property that for any finite sequence of times 0 ≤ t1 < . . . < tn, (Bt1 , . . . , Btn)
is a random vector in Rn which by construction has the above distribution. From this we
conclude that:

1. B0 = 0 almost surely.

2. {Btj −Btj−1
}nj=2 an independent sequence with Btj −Btj−1

∼ N (0,
√
tj − tj−1).

93



Definitions

absolutely continuous, 47
algebra, 27

Banach space, 44, 45
Borel

measure, 33
σ-algebra, 8
sets, 8

bounded operator, 46

characteristic function, 74
complete, 26
concentrated, 48
conjugate pairs, 45
convergence almost surely, 80
convergence in distribution, 85
convergence in probability, 78
counting measure, 14
covariance, 73
cumulant, 74
cumulant generating function, 74
cumulative distribution function, 73

Dirac delta measure, 14

Edgeworth expansion, 88
elementary family, 29
expectation, 72
extended real line, 9

Fσ, 8

Gδ, 8

Hahn decomposition, 60
Hardy-Littlewood maximal function, 62
Hausdorff space, 33

Hilbert space, 45

independent, 75

joint probability distribution, 75
Jordan decomposition, 57

Kolmogorov consistency conditions, 91

Lp space, 44
L1 space, 19
large deviation principle, 90
Lebesgue

integral, 15
measurable, 31
measure, 31
premeasure, 31

Lebesgue point, 65
locally compact, 34
lower semicontinuous, 63

µ-inner regular, 33
µ-outer regular, 33
measurable

function, 6
φ-measurable, 24
set, 6
space, 6

measure
complex, 13
locally finite, 34
nonnegative, 13

measure space, 13
measure zero, 4
moment, 73
moment generating function, 74
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monotone class, 38
generated, 38

mutually singular, 48

norm, 43

operator norm, 46
orthogonal, 46
outer measure, 23

parallelogram law, 46
polarization identity, 46
premeasure, 27
probability, 73
probability density function, 73
probability space, 72
product σ-algebra, 35
product space, 35
pure point, 52
pushforward measure, 41

Radon-Nikodym derivative, 50
random variable, 72
rate function, 89
rectangular subset, 35
regular, 33

σ-algebra, 6

generated, 7
σ-compact, 33
σ-finite, 28
second countable, 33
section, 37
shrinks nicely, 67
signed measure, 57
simple function, 11
simple random walk, 93
singular continuous, 52
standard Cauchy, 74
standard deviation, 73
standard normal, 74
symmetric derivative, 62
symmetric difference, 60

topology, 6
total variation, 64
translation, 22

invariant, 22

uniform, 75

vague convergence, 85
variance, 73
variation, 54

weak∗ convergence, 85
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