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Chapter 1

Preliminaries

1.1 Dirichlet’s Theorem on Primes in Progression

Theorem 1.1: Dirichlet

Given a, q ∈ N with (a, q) = 1, there are infinitely many primes p such that p ≡ a
(mod q).

We begin by considering Euler’s proof of the infinitude of primes. Recall that the zeta
function,

∞∑
n=1

n−s

converges absolutely for s > 1 (for now we will work with real s), and diverges for n = 1.
Moreover, consider the product

∏
p

(1− p−s)−1 =
∏
p

∞∑
k=0

p−ks

Since we still have absolute convergence, we may rearrange the generic terms in the product.
Each such term is of the form (pk1

1 · · · pkm
m )−s, and by unique factorization thsi means the

term n−s shows up exactly once for each n. Hence

∏
p

(1− p−s)−1 =

∞∑
n=1

n−s

for Re(s) > 1. Taking s→ 1, the right hand side diverges so the left hand side does as well.
Hence it is clear that there are infinitely many primes. So our goal will be to use a similar
strategy which demonstrates that ∑

p≡a (mod m)

1

p
= ∞
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To do this, consider the ring Z/mZ, as well as its group of units (Z/mZ)∗. Recall that the
totient function is

ϕ(m) =
∣∣(Z/mZ)∗

∣∣ = # {numbers ≤ m rel. prime to m}

We will work with the space of functions f : (Z/mZ)∗ → C. The goal is to define a sense of
Fourier expansion for this vector space. We define

e(z) := e2πiz

For R/Z, we can perform such an expansion by observing that the set of e(mx) for m ∈ Z
defines an orthonormal basis for L2(R/Z → C). More generally, if G is a finite abelian group,
then we denote by Ĝ the group of its characters; that is, homomorphisms χ : G→ C∗. Since
every element in G has finite order, each character maps into the roots of unity.

Remark

We denote additive characters by ψ and multiplicative ones by χ.

Proposition 1.2

G ∼= Ĝ.

Proof. First suppose G is cyclic. Then we can assume we are working with (Z/rZ,+). Any
additive character is determined by ψ(1), and ψ(1) is necessarily an rth root of unity. So
the characters are precisely those of the form

ψν(x) = e
(νx
r

)
for ν ∈ Z/rZ. So clearly

∣∣∣Ĝ∣∣∣ = |G|. Also, ψνψµ = ψν+µ, so the map ν 7→ ψν is an onto

homomorphism from G to Ĝ, hence an isomorphism.

TODO: in the general case, use the classification of finite groups, and apply this to G =
((Z/mZ)∗, ·).

Note that this isomorphism is not canonical, however the isomorphism G ∼= ˆ̂
G is.

Suppose χ ∈ Ĝ, and f : G → C is a function. Then we define the Fourier transform
f̂ : Ĝ→ C of f on G by

f̂(χ) =
∑
g∈G

f(g)χ(g)
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Proposition 1.3

If χe denotes the trivial character which takes all elements to 1 ∈ C, then

∑
g∈G

χ(g) =

{
|G|, χ = χe

0

∑
χ∈Ĝ

χ(g) =

{∣∣∣Ĝ∣∣∣ = |G|, g = e

0

Proof. For the first, the formula is obvious when χ = χe. Otherwise, there is an element a
where χ(a) ̸= 1. But then

S =
∑
g∈G

χ(g) =
∑
g∈G

χ(ag) = S = χ(a)S

But χ(a) ̸= 1, so we must have S = 0. A similar proof holds for the second formula.

Theorem 1.4: Fourier Inversion

For any f : G→ C,
f(g) =

1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g)

Proof.

1

|G|
∑
χ∈Ĝ

f̂(χ)χ(g) =
1

|G|
∑
χ∈Ĝ

∑
h∈G

f(h)χ(h)χ(g) =
1

|G|
∑
h∈G

f(h)
∑
χ∈G

χ(g)χ(h)

Now, we want to calculate the transform of the indicator function Ia for some a ∈ G.
Then by fourier inversion,

Îa(χ) =
∑
g∈G

Ia(g)χ(g) = χ(a)

Ia(g) =
1

|G|
∑
χ∈Ĝ

Îa(g)χ(g) =
1

|G|
∑
χ∈Ĝ

χ(a)χ(g)

Definition 1.1

Let m ∈ N and χ ∈ ̂(Z/mZ)∗. Then the Dirichlet L-function associated with χ is
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the function L(·, χ) : C → C, where

L(s, χ) =

∞∑
n=1

χ(n)

ns

where we extend χ to the integers by defining

χ(n) =

{
0, (n,m) > 1

χ(n (mod m))

Note that because |χ| ≤ 1, the series converges absolutely for Re(s) > 1, and the Euler
product is given by

L(s, χ) =
∏
p

(1− χ(p)p−s)−1

because χ(mn) = χ(m)χ(n). Actually, we can make do with a slightly weaker assumption
so an alternate form of the Euler product holds.

Definition 1.2

Let f : N → C. Then f is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n)
whenever (m,n) = 1. It is called totally multiplicative if f(mn) = f(m)f(n) for
all m,n.

For any multiplicative f ,∏
p

(1 + f(p)p−s + f(p2)p−2s + . . .) =

∞∑
n=1

f(n)

ns

Proposition 1.5

1. L(s, χ) converges absolutely on Re(s) > 1, and is analytic there. If χ ̸= χ0 then
it is analytic on Re(s) > 0 as well, though it converges conditionally (L(s, χe)
has a pole at 0).

2. L(s, χ) is nonzero on Re(s) > 1.

3. L(s, χe) = ζ(s)
∏

q|m(1− q−s).

Proof. 1) Convergence is easy since |χ(n)| ≤ 1. If χ ̸= χe,

m∑
n=1

χ(n) = 0

so ∣∣∣∣∣
T∑

n=1

∣∣∣∣∣χ(n) ≤ m

6



for any T . Then we employ summation by parts:

∑
n≤T

χ(n)n−s =
∑
n≤T

∑
ν≤n

χ(ν)

 [n−s − (n+ 1)−s] =
∑
n≤T

∑
ν≤n

χ(ν)

 s

n−(s+1)

Since the factor
∑

ν≤n χ(ν) is bounded, this sum converges for Re(s) > 0.

2) For Re(s) > 1, the Euler product

L(s, χ) =
∏
p

(1− χ(p)p−s)−1

converges. But no factor is zero, so the whole product is not either.

TODO: 3

For Re(s) > 1, we then have

logL(s, χ) = −
∑
p

log(1− χ(p)p−s) =
∑
p

∞∑
k=1

χ(pk)

pks
=

∑
p

χ(p)

ps
+

∑
p

∞∑
k=2

p−ksχ(pk)

The second term is uniformly bounded on Re(s) ≥ σ0 > 1/2. Therefore∑
χ∈Ĝ

χ(a) logL(s, χ) = |G|
∑

p≡a(m)

p−s +Om,σ0
(1)

The notation Om,σ0
means that the last quantity is uniformly bounded, but the constant

depends on m,σ0. Now we extract the trivial character as

|G|
∑

p≡a(m)

p−s = logL(s, χe) +
∑
χ̸=χe

χ(a) logL(s, χ)

Here we would like to take the limit s→ 1+. However, in order to conclude divergence, we
need to know that L(1, χ) ̸= 0 if χ ̸= χ0, so that the second term of the right hand side is
finite.

Result (3) suggests that we should look at analytic continuations of ζ(s). Recall that

ζ(s) = 1 + 2−s + 3−s + . . .

Consider
A(s) := 1− 2−s + 3−s − . . .

Then
ζ(s)−A(s) = 21−s(1 + 2−s + 3−s + . . .) = 21−sζ(s)

Thus

ζ(s) =
[
1− 2−(s−1)

]−1

A(s)

A(s) is analytic for Re(s) > 0, and the factor in front only has a pole at s = 1. Thus ζ(s)
may be continued to Re(s) > 0 so that it has a simple pole at s = 1 only.
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Returning to the formula in terms of L-functions, we have

logL(s, χe) = log ζ(s) +O(1)

as s→ 1 for s > 0 ∈ R. Since we know s = 1 is a simple pole, we can expand ζ about 1 as

ζ(s) = A(s− 1)−1 +B + C(s− 1) + . . .

Then
log ζ(s) +O(1) = − log(s− 1) +O(1) → ∞

Combining with oour previous work, we get

|G|
∑

p≡a(m)

p−s =
∑
χ∈Ĝ

χ(a) logL(s, χ) +O(1) = − log(s− 1) +
∑
χ̸=χe

χ(a) logL(s, χ) +O(1)

We still need to show that L(1, χ) ̸= 0 for χ ̸= χe. Indeed, note that if L(1, χ) = 0 then
L(1, χ) = 0 as well. So if χ ̸= χ and L(1, χ) = 0, then we write

L(s, χ) = A(s− 1)ν

Here ν is the order of the zero at 1. Then χ also has the same order zero.

Let us briefly assume that a = 1, so that we are looking for primes which have remainder 1
mod m. Then χ(1) = 1 for all χ, which simplifies to

|G|
∑

p≡1(m)

p−s = − log(s− 1) +
∑
χ̸=χ0

logL(s, χ) +O(1)

In this case, if χ ̸= χ and L(s, χ) vanishes with order ν at 1, then the sum at least contains
the term

2ν log(s− 1)

On the right hand side the term − log(s− 1) tends to +∞, but the terms in the sum may
only diverge to −∞ (since they can only have zeroes, not poles). Indeed, if ν ≥ 1 for at
least one nonreal, nontrivial character, then the RHS tends to −∞, but the left hand side is
nonnegative. Thus no such character vanishes at s = 1. Note that this is the case regardless
of a; we simply use a = 1 in order to generate a contradiction.

So we have reduced to

|G|
∑

p≡a(m)

p−s = − log(s− 1) +
∑

χ=χ̸=χe

χ(a) logL(s, χ) +O(1)

and merely need to show that L(1, χ) ̸= 0 for real characters χ = χ, χ ̸= χe. We form the
function

F (s) =
∏
χ∈Ĝ

L(s, χ)

This function is analytic on Re(s) > 1. On Re(s) > 0, it is analytic except possibly at s = 1.
Here, if L(s, χ) ̸= 0 for χ ̸= χe, then there is a simple pole. Otherwise, F (1) is finite. Since
F is a product of Dirichlet series, we can write

F (s) =

∞∑
n=1

ann
−s
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Proposition 1.6

an ≥ 0 for all n. Moreover, n 7→ an is multiplicative (but not necessarily totally
multiplicative).

Note that this is because F (s) shows up as the Dedekind zeta function ζK(s) of a
number field K, but we don’t need that for this proof, since we compute the coefficients
directly.

Proof. Write

∞∑
n=1

an
ns

=
∏
p

(1 + app
−s + ap2p−2s + . . .)

∏
χ∈Ĝ

(1− χ(p)p−s)−1

For (p,m) = 1, ∏
χ∈Ĝ

(1− χ(p)p−s)−1 = (1− (p−s)f(p))−g(p)

where f(p) is the order of p in (Z/pZ)∗ and

g(p) =
ϕ(m)

f(p)

and expanding this gives a series with nonnegative coefficients by the binomial theorem.

Recall that for a power series
∞∑

n=0

cnz
n

with cn ≥ 0, there is a pole at z = ρ0, where ρ0 is the radius of convergence.

Definition 1.3

For a Dirichlet series
∞∑

n=1

an
n−s

the abscissa of absolute convergence is

σ0 = inf

{
σ ∈ R :

∞∑
n=1

∣∣∣ an
n−s

∣∣∣ <∞(Re(s) > σ)

}

Lemma 1.7

Let

f(s) =

∞∑
n=1

an
ns
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with an ≥ 0, and let σ = ρ0 be the abscissa of absolute convergence. If f is analytic
for Re(s) > ρ then ρ0 ≤ ρ.

In other words, the above lemma says that the first pole of a Dirichlet series with
nonnegative coefficients is on the real axis.

Now suppose that F has no pole at s = 1. Then our Dirichlet series representation of F
must converge absolutely for Re(s) > 0. Now note that

(1− pf(p)s)−g(p) ≥ 1 + p−ϕ(m)s + p−2ϕ(m)s + . . .

So
∞∑

n=1

ann
−s ≥

∞∑
n=1

n−ϕ(m)s

for s > 0. But taking s = 1/ϕ(m) > 0, F must diverge, which is a contradiction. This
concludes the proof of Dirichlet’s theorem.

The proof of Dirichlet’s theorem made use of the fact that ζ(1) ̸= 0. In fact a stronger
theorem is true, which uses the results on nonnegative coefficient Dirichlet series we derived.

Theorem 1.8

ζ(s) ̸= 0 for Re(s) = 1.

Proof. For ν ∈ C we define

σν(n) =
∑
d|n

dν

For t0 = Im(s) ̸= 0 (we showed this for t0 = 0 already) we also define

F (s) =

∞∑
n=1

[σit0(n)]
2

ns

This is equal to
ζ2(s)ζ(s+ it0)ζ(s− it0)

ζ(2s)

But since this is a Dirichlet series with positive coefficients, we just need to show that there
is no pole at s = 1. Suppose for contradiction that there is a zero at ζ(1 + it0). Then there
is also a zero at ζ(1− it0), which cancels with the order 2 pole for ζ2(s). Moreover, since ζ
only has poles at s = 0, 1, and it is nonzero for Re(s) > 1, this represents the series for all
Re(s) > 1/2. At s = 1/2 the denominator forces F (1/2) = 0. But by inspection it is plainly
untrue that F (1/2) = 0.
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1.2 Class Number Field

Consider F a finite field. Then (F,+) and (F∗, ·) are finite abelian groups, so we may consider
their dual groups. Since both structures are in place, we may think about the additive
properties of multiplicative characters, or multiplicative properties of additive characters.

Definition 1.4

Given ψ ∈ (̂F,+), χ ∈ (̂F∗, ·), the Gauss sum of ψ, χ is

G(ψ, χ) =
∑
a∈F∗

ψ(a)χ(a) = χ̂(ψ) = ψ̂(χ)

Example 1.1

Let F = R. Then the additive characters are those of the form

ψ(x) = e(αx)

for α ∈ C, and the multiplicative characters are

χ(a) = as|a|

for s ∈ C, a ∈ R∗. Since R∗ is infinite, we will need to convert our sum to an integral
over an appropriate measure. If we try to assign a “translation invariant” measure
to a group, we will need to look at the measure

da

a

which is called the Haar measure. So the Gauss sum becomes

G(α, s) =

∫ ∞

0

eαxxs
dx

x

which is the Gamma function.

Over finite field Fp, p > 2, then there is an additive group isomorphism Fp → F̂p given
by

a 7→ ψa(x) = e

(
ax

p

)
Note that the choice of pth root of unity implicit in this statement shows why the isomor-

phism is noncanonical. So then for b ∈ Z/pZ and χ ∈ ̂(Z/pZ)∗, the Gauss sum is given
by

τ(b, χ) =

p−1∑
a=1

χ(a)e

(
ab

p

)
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Proposition 1.9

For χ ∈ ̂(Z/pZ)∗,

• τ(a, χ) = χ(a)τ(1, χ),

• For τ(χ) := τ(1, χ), |τ(χ)|2 = p.

• Proof. If a ̸= 1, then writing ca = w,

τ(a, χ) =

p−1∑
c=1

χ(c)e

(
ca

p

)
=

p−1∑
c=1

χ(wa−1)e

(
w

p

)
= χ(a)τ(1, χ)

We have

|τ(χ)|2 =
∑
a∈F∗

χ(a)ψ(a)
∑
b∈F∗

χ(b)ψ(b)

=
∑

a,b∈F∗

χ(a)χ(b)ψ(a)ψ(b) =
∑
a,b

χ(ab−1)ψ(a− b)

Set ab−1 = w. Then this becomes∑
b,w

χ(w)ψ(b(w − 1))

If w = 1, then each term is 1 and the sum over b is p− 1. If w ̸= 1, then the sum over
b is ∑

b∈F∗

ψ(b(w − 1)) =
∑
b∈F

ψ(b(w − 1))︸ ︷︷ ︸
=0

−ψ(0) = −1

So the sum is now
−

∑
w∈F∗

χ(w)

Definition 1.5

Let p > 2. Then define the Legendre symbol as

χ(n) =

(
n

p

)
=

{
1, n = x2, x ∈ Fp

−1

This is a real multiplicative character of Fp.
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Proposition 1.10

If χ is the Legendre symbol for Fp, p > 2,

τ(x)2 =

{
p, p ≡ 1 (mod 4)

−p, p ≡ 3 (mod 4)

Proof. We write out the Gauss sum:

τ(χ) =

p−1∑
n=1

(
n

p

)
e

(
n

p

)
=

p−1∑
n=1

[(
n

p

)
+ 1

]
e

(
n

p

)
−

p−1∑
n=1

e

(
n

p

)
︸ ︷︷ ︸

=−1

=

p−1∑
n=0

e

(
n

p

)[{
2, n = x2

0

]

The Legendre symbol factor turns this sum into twice the sum over the quadratic residues,
and since half the numbers are quadratic residues, we can double count by simply summing:

τ(χ) =

p−1∑
n=0

e

(
n2

p

)

Theorem 1.11: Gauss

• Let p be an odd prime. Then

p−1∑
n=0

e

(
n2

p

)
=

{
p ≡ 1 (mod 4)

p ≡ 3 (mod 4)

• If p, q are odd primes, (
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

For instance, a consequence of this is that if p ≡ q ≡ 1 (mod 4), then p has a square root
mod q if and only if q has a square root mod p. To prove this theorem, we will introduce
Poisson summation.

Typically, we are looking at R and the subgroup Z, so that we want to consider the quotient
R⧸Z = [0, 1). We will consider S(R), the Schwartz space of functions which are smooth

and for which all derivatives decay at ∞ faster than |x|−A
.
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Definition 1.6

Let f ∈ S(R). Then define the Fourier transform of f to be f̂ : R → C given by

f̂(ξ) =

∫ ∞

−∞
f(x)e(−xξ) dx

Proposition 1.12

f̂ ∈ S(R).

Proof. To see that f̂ is bounded, integrate by parts, which brings a factor of 1
ξ . The

boundary terms vanish because of the decay condition, and repeatedly differentiating gives
decay for derivatives.

Theorem 1.13: Poisson Summation

For f ∈ S(R), ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m)

Proof. Define

F (x) =
∑
n∈Z

f(x+ n)

The sum converges absolutely because of the decay of f , so F is smooth and has period 1.
Thus we can expand it as a Fourier series:

F (z) =
∑
m∈Z

F̂ (m)e(mx)

where

F̂ (m) =

∫ 1

0

F (x)e(−mx) dx =

∫ 1

0

e(−mx)
∑
k∈Z

f(x+ k) dx =

∫ ∞

−∞
f(x)e(−mx) dx = f̂(m)

So
F (x) =

∑
m∈Z

f̂(m)e(−mx) dx

Substitute x = 0: ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m)

The following proof instead uses the functional analysis fact that an operator’s trace is
invariant under change of basis.
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Alternate Proof of Poisson Summation. Let K(x, y) : S × S → C, and define the operator
TK on L2(S) by

TKf(x) =

∫ 1

0

K(x, y)f(y) dy

If K is continuous, then TK is a compact operator. In this case we define

tr(TK) =

∫ 1

0

K(x, x) dx

If ϕ1, ϕ2, . . . are an orthonormal eigenbasis for L2(S) and TK , we can also compoute the
trace by diagonalization as

tr(TK) =
∑
j

λj

Now, to prove Poisson summation, let f ∈ S(R), and define

Kf (x, y)
∑
m∈Z

f(x− y +m)
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