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Introduction

This document contains notes taken for the class MAT 345: Algebra I at Princeton Univer-
sity, taken in the Fall 2024 semester. These notes are primarily based on lectures and lecture
notes by Professor Jakub Witaszek. Other references used in these notes include Algebra
by Michael Artin, Abstract Algebra by David Dummit and Richard Foote, Contemporary
Abstract Algebra by Joseph Gallian, and A Book of Abstract Algebra by Charles Pinter.
Since these notes were primarily taken live, they may contains typos or errors.
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Chapter 1

Elementary Number Theory

This course will study algebraic structures, primarily groups, rings, and fields. These objects
serve as abstractions of objects which we are familiar with performing algebra over, such
as Z, Q, R, and C. As such, we will begin with a brief survey of algebraic operations over
these familiar objects, before progressing to their abstracted counterparts.

1.1 The Euclidean Algorithm

The most important theorem of the structure of the integers is the following:

Theorem 1.1: Fundamental Theorem of Arithmetic

Let n ∈ N. Then there is a unique representation of n as a product of powers of
primes (up to ordering), as

n = pα1
1 · . . . · pαk

k

Another important operation to abstract is that of division. This requires phrasing it in
terms that are easily generalized to other objects:

Theorem 1.2: Division Algorithm

Let n, d ∈ Z with d > 0. Then there exist unique q, r ∈ Z such that

n = qd+ r

and
0 ≤ r < d

Proof. Existence: Define

S = {n− dx|x ∈ Z, n− dx ≥ 0}
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Let r = minS and let q ∈ Z be the corresponding value such that n− qd = r. Suppose that
r ≥ d. Then

n− (q + 1)d = n− qd− d = r − d ≥ 0

so r − d ∈ S, contradicting r = minS. So 0 ≤ r < d. Thus we have shown existence.

Uniqueness: Let n = qd+ r = q′d+ r′. Then

d(q − q′) + r − r′ = 0

so d|r− r′. But we also have −d < r− r′ < d, so r− r′ = 0 and thus r = r′. It follows that
q = q′.

We call d the divisor, q the quotient, and r the remainder. Explicitly, we have

n =
⌊n
d

⌋
d+ (nmod d)

The proof of the Fundamental Theorem of Arithmetic requires the proof of some other
lemmas:

Definition 1.1

Let a, b ∈ Z. We write a|b if there exists c ∈ Z such that ac = b.

Lemma 1.3: Euclid’s lemma

Let p be prime and a, b ∈ Z. If p|ab, then p|a or p|b.

This, in turn, relies on another identity.

Definition 1.2

Let a, b ∈ N. Then define gcd(a, b) to be a common divisor which divides any other
common divisor.

We should note that we have not shown that gcd(a, b) exists and is unique. However,
consideration of the extended Euclidean algorithm shows both of these, and moreover that
gcd(a, b) is the largest common divisor of a and b.

Proposition 1.4: Bezout’s Identity

Let a, b ∈ Z be nonzero. Then there exist k, l ∈ Z such that

ka+ lb = gcd(a, b)

5



Example 1.1

if a = 9 and b = 24, then

3 · 9 + (−1) · 24 = 3 = gcd(9, 24)

Bezout’s Identity follows from the extended Euclidean Algorithm.

The extended Euclidean algorithm takes two nonzero integers a, b and an integer m which
is divisible by gcd(a, b), and produces integers k, l such that

ka+ lb = m

First, we define the standard Euclidean algorithm. Note that we have the following:

gcd(a, b) =

{
gcd(a− b, b), a ≥ b

gcd(a, b− a), a < b

This holds since if k|a and k|b, then k|a − b and k|b − a. If k|a − b and k|b, then k|a, so
the top equality is proved. Similarly the second is true. Thus we proceed by applying the
above equality repeatedly, until we have either gcd(a, a) = a.

Example 1.2

We have

gcd(24, 9) = gcd(15, 9) = gcd(6, 9) = gcd(6, 3) = gcd(3, 3) = 3

We can also skip steps by using the rule

gcd(a, b) =

{
gcd(amod b, b), a ≥ b

gcd(a, bmod a), a < b

which holds by repeated application of the previous rule. This would give

gcd(24, 9) = gcd(6, 9) = gcd(6, 3) = gcd(3, 3) = 3

To extend the algorithm, we use the Euclidean algorithm and apply it to the following:

■ · x+■ · y = m

■ · (xmod y) +■ · y = m

...

■ · gcd(x, y) +■ · 0 = m

We can then solve the bottom equality and pass back up the chain of equalities, preserving
values which are unchanged in each step of the Euclidean algorithm.
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Example 1.3

Let x = 9, y = 24 and m = 12. We have

■ · 9 +■ · 24 = 12

■ · 9 +■ · 6 = 12

■ · 3 +■ · 6 = 12

■ · 3 +■ · 3 = 12

■ · 3 +■ · 0 = 12

We can then fill in the bottom line:

■ · 9 +■ · 24 = 12

■ · 9 +■ · 6 = 12

■ · 3 +■ · 6 = 12

■ · 3 +■ · 3 = 12

4 · 3 + 0 · 0 = 12

To move up to the next line, since the right term was changed when progressing
down, the coefficient should stay the same when progressing up. In fact, the left
hand coefficient stays the same as well:

4 · 3 + 0 · 3 = 12

⇑
4 · 3 + 0 · 0 = 12

In the next line, we again change the left hand coefficient and keep the right hand
(once again this changes nothing):

4 · 3 + 0 · 6 = 12

⇑
4 · 3 + 0 · 3 = 12

Now, we keep the left hand coefficient and switch the right hand:

4 · 9 + (−4) · 6 = 12

⇑
4 · 3 + 0 · 3 = 12

and finally:

12 · 9 + (−4) · 24 = 12

⇑
4 · 9 + (−4) · 6 = 12

So we have found k = 12, l = −4.
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Proof of Euclid’s Lemma. If p|a, then we are done. So suppose it doesn’t. Then gcd(p, a) =
1. By Bezout’s identity, there exist k, l ∈ Z such that

kp+ la = 1

So kpb+ lab = b. p divides the left hand side since it is in the product, and divides the right
hand side since it divides ab.

1.2 Modular Arithmetic

Definition 1.3

Let a, b ∈ Z, and let n > 0 be an integer. Then a is congruent to b modulo n
(denoted a ≡ b (mod n)) if

n|a− b

It follows that congruence modulo n is an equivalence relation for any n, dividing the
integers into n classes based on their remainders after dividing by n.

We may equivalently define this congruence as follows:

Proposition 1.5

a ≡ b (mod n) if and only if amodn = bmodn (where amodn represents the
remainder of a when divided by n.)

A convenient example of modular arithmetic is the use of a 12-hour clock system, where
the hour hand resets after each multiple of 12. We may similarly visualize modular arith-
metic for any n as movement around a circle with n distinct positions.

Lemma

Let a, b, c, d ∈ Z and let n ∈ N. Suppose that{
a ≡ c (mod n)

b ≡ d (mod n)

Then {
a+ b ≡ c+ d (mod n)

ab ≡ cd (mod n)

Essentially, the above lemma says that we may replace any number by another number
which is equivalent modulo n (for addition and multiplication).
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Example 1.4

We have

7 · 22 ≡ 1 · 4 ≡ 4 (mod 6)

Similarly,

(5 + 12)8 + 13 ≡ (5 + 5)1 + 6 ≡ 3 · 1 + 6 ≡ 2 (mod 7)

Theorem 1.6

Let p be prime and let k ∈ Z, and suppose p does not divide k. Then

kmod p, 2kmod p, . . . , (p− 1)kmod p

is a permutation of
1, 2, . . . , p− 1

Proof. Suppose that not all of these values are different, such that there exist 1 ≤ n1, n2 ≤
p − 1 but n1kmod p = n2kmod p. But this means that (n2 − n1)kmod p = 0, so p divides
(n2 − n1)k. It doesn’t divide k, so it divides n2 − n1. But −p < n2 − n1 < p. The only
number in this range which p divides is 0, so n1 = n2.

Thus the list
kmod p, . . . , (p− 1)kmod p

is a list of p− 1 distinct numbers between 1 and p− 1. So each number occurs at least once,
and we have just shown that they are distinct, so each number occurs exactly once.

One interpretation of this is that if you repeatedly take k steps around a circle with p
positions, then if p does not divide k, we will not repeat spaces until we have covered all of
them.

Corollary 1.7

Let p be prime and a ∈ Z such that p does not divide a. Then there exists b ∈ Z
such that

ab ≡ 1 (mod p)

For any b which satisfies the above, we call b a multiplicative inverse of a.

Proof. By Theorem 1.6, there exists some n with 1 ≤ n ≤ p− 1 such that nkmod p = 1

Note that multiplicative inverses found this way are not unique. Thus it is improper to
write an expression of the form 1

a (mod p).
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Remark

A multiplicative inverse may be found using the extended Euclidean algorithm.

Theorem 1.8: Fermat’s Little Theorem

Let p be prime and a ∈ Z such that p does not divide a. Then

ap−1 ≡ 1 (mod p)

Example 1.5

With a = 2, p = 7 we have

20 = 1 ≡ 1 (mod 7)

21 = 2 ≡ 2 (mod 7)

22 = 4 ≡ 4 (mod 7)

23 = 8 ≡ 1 (mod 7)

24 = 16 ≡ 2 (mod 7)

25 = 32 ≡ 4 (mod 7)

26 = 64 ≡ 1 (mod 7)

Note that 7− 1 = 6 is not the first b with ab ≡ 1 (mod p). However, the remainders
do occur in cycles, and the period of this cycle divides p− 1.

Lemma

Suppose n does not divide k. If

ak ≡ bk (mod n)

then
a ≡ b (mod n)

Proof. We have n|(a− b)k, so by Euclid’s Lemma n|a− b. Thus a ≡ b (mod n).

Proof of Fermat’s Little Theorem. Take the product

a · 2a · . . . · (p− 1)a ≡ ap−1(p− 1)! (mod p)

(Note that this is a simple equality). But Theorem 1.6 tells us that modulo p, these factors
are a rearrangement of 1, . . . , p− 1. So we have

(p− 1)! ≡ a · 2 . . . · (p− 1) (mod p)

Combining these two congruences and applying the Lemma, we have

ap−1 ≡ 1 (mod p)
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1.3 Fields

We recall the definition of a field:

Definition 1.4

A field is a nonempty set F together with two operations + : F × F → F and
· : F × F → F as well as distinct elements 0 ̸= 1 ∈ F such that

• + and · are commutative.

• + and · are associative.

• 0 is an additive identity and 1 a multiplicative identity.

• Additive inverses exist (denoted −α).

• Multiplicative inverses exists for any α ̸= 0 (denoted α−1).

• · distributes over +.

Some familiar examples of fields are Q,R,C. A nonexample is Z (which does not have
multiplicative inverses.)

Definition 1.5

Let p be prime. Then we define Fp = {. . . ,−2,−1, 0, 1, 2, . . .}, where the elements k
are defined such that

a = b ⇐⇒ a ≡ b (mod p)

We define
a+ b = a+ b

and
a · b = ab

Example 1.6

With p = 5, we have
2 · 3 = 6 = 1

Equivalently, since we identify numbers congruent modulo p, Theorem 1.6 we can simply
write

Fp = {0, . . . , p− 1}

all of which are distinct. Moreover, Corollary 1.7 assures us of the existence of multiplicative
inverses. The remaining axioms are simpler to check, but this demonstrates that Fp is in
fact a field.
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Definition 1.6

The set Z⧸nZ is defined similarly to Fp (where n is not necessarily prime), with only
the operation of addition defined.

We can use this to prove the following theorem:

Theorem 1.9

Let p be prime with p ≡ 1 (mod 4). Then p = x2 + y2 for some x, y ∈ Z.

We can check the first few cases by hand:

5 = 12 + 22

13 = 22 + 32

17 = 12 + 42

29 = 22 + 52

For the cases p ≥ 37, we will develop a bit more theory.

Proof.

Definition 1.7

a ∈ Fp is called a quadratic residue if a = x2 for some x ∈ Fp.

Equivalently:

Definition 1.8

a ∈ Z is a quadratic residue mod p if a ≡ x2 (mod p) for some x ∈ Z.

Example 1.7

With p = 5, we have 

02 ≡ 0

12 ≡ 1

22 ≡ 4

32 ≡ 4

42 ≡ 1

(mod 5)

so the quadratic residues are 0, 1, 4 (note that 0 is always a quadratic residue.)

The necessary result is as follows:
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Lemma

−1 (or p− 1) is a quadratic residue mod p if and only if p ≡ 1 (mod 4).

Proof. Skipped.

We can now return to the previous proof.

Proof of Theorem 1.9. Claim 1: There exists x, y ∈ Z with 0 < x, y < p and

x2 + y2 ≡ 0 (mod p)

To show this, by the Lemma we have that −1 is a quadratic residue, so there exists a ∈ Z
with

a2 ≡ −1 (mod p)

or
12 + a2 ≡ 0 (mod p)

Now let x = 1, y = amod p. Claim 1 is proved.

Claim 2: There exist x, y ∈ Z with x2 + y2 < 2p and x2 + y2 ≡ 0 (mod p).

To show this, apply Claim 1 to produce x, y with x2 + y2 ≡ 0 (mod p). Then let S be the
set

S = {(x0, y0), . . . , (xp−1, yp−1)} ⊆ Z2

where
(xi, yi) = (ixmod p, iymod p)

This set may be seen as the set of integer multiples of the point (x, y), modulo p.

Now, we claim that there exists 0 ≤ i < j ≤ p− 1 such that

d((xi, yi), (xj , yj)) <
√

2p

To show this, we draw circles of radius
√
2p

2

around. If the claim is false then the circles do not overlap. All the circles are subsetes of[
−
√
2p

2
, p+

√
2p

2

]2
If they do not overlap, then the total area is less than that of the square. But

1.57 ≈ π

2
p2 = pπ(

√
2p

2
)2 ≤ (p+

√
2p)2 = p(1 +

√
2

p
) ≤ p(1 +

√
2

37
)2 ≈ 1.51

We checked the lower cases, so the claim is proved. Then pick

(x′, y′) = (|xj − xi|, |yj − yi|)

We then show that p divides (x′)2+(y′)2, but also this number is less than 2p, so it is p.
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Chapter 2

Elementary Group Theory

In this chapter, we will introduce our first algebraic structure: the group. This will take
some of the ideas we have discovered about number theory and translate it to the setting of
an arbitrary set with one operation, sbuject to certain axioms which ensure the operation

is ”nice enough.” Some motivating examples, then, will be the groups Z and Z⧸nZ, where
we have already proved a few results in the preceding chapter.

2.1 Binary Operations

Definition 2.1

A binary operation on a set S is a function ∗ : S × S → S.

In other words, ⋆ takes in two inputs in S and returns another. We typically denote
⋆(a, b) as a ⋆ b.

Example 2.1

• If S = R, then we may define a ⋆ b = a+ b, or a ⋆ b = a · b.

• If S is the set of functions f : X → X for some setX, we may define f⋆g = f◦g.

• If S is the set of n× n matrices over a field, then the operation may be taken
as addition or multiplication.

Certain operations possess properties which make them particularly nice to work with.
In particular, we say that an operation ⋆ is commutative if a⋆b = b⋆a for all a, b ∈ S, and
it is associative if (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for all a, b, c ∈ S. In the case that ⋆ is associative,
then any finite combination of elements may be written without parentheses, as the order
is irrelevant, so we may simply denote this as a1 ⋆ a2 ⋆ . . . ⋆ an.

14



Example 2.2

• Addition and multiplication are both commutative and associative on R.

• Function composition is only associative.

• Matrix addition is commutative and associative, but multiplication is only
associative.

As we see from the example above, commutativity is nice but not always present, but
associativity is an extremely common property of operations that we work with often. How-
ever, for arbitrary binary operations it is not necessarily the case.

Example 2.3

Define a binary operation ⋆ on the set S = {0, 1} by
0 ⋆ 0 = 1

0 ⋆ 1 = 1

1 ⋆ 0 = 1

1 ⋆ 1 = 0

Then
(0 ⋆ 1) ⋆ 1 = 1 ⋆ 1 = 0

but
0 ⋆ (1 ⋆ 1) = 0 ⋆ 0 = 1

so this operation is not associative.

Definition 2.2

Let ⋆ be a binary operation on S. An element e ∈ S is called an identity for ⋆ if

e ⋆ x = x ⋆ x = x

for all x ∈ S.

Proposition 2.1

Every binary operation has at most one identity.

Proof. Suppose e1, e2 are identities for ⋆ on S. Then

e1 = e1 ⋆ e2 = e2

so e1 = e2.
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Definition 2.3

Let ⋆ be a binary operation on S with identity e. Then for x ∈ S, we say that y ∈ S
is an inverse of x if

x ⋆ y = y ⋆ x = e

If x has an inverse we say it is invertible.

Proposition 2.2

For x ∈ S with ⋆ an associative binary operation on S with identity e,

1. x has at most one inverse y ∈ S.

2. If la = e and ar = e, then l = r.

3. If a, b are invertible, then a ⋆ b is invertible and (a ⋆ b)−1 = b−1 ⋆ a−1.

4. An element may have (multiple) left inverse(s) or right inverse(s), but not be
invertible (but not both).

Proof. 1. Suppose y1, y2 are both inverses for x. Then

y1 = y1e = y1xy2 = ey2 = y2

so y1 = y2.

2. Similarly
l = le = lar = er = r

3. We have
(b−1 ⋆ a−1) ⋆ (a ⋆ b) = b−1 ⋆ (a−1 ⋆ a) ⋆ b = b−1 ⋆ b = e

and
(a ⋆ b) ⋆ (b−1 ⋆ a−1) = a ⋆ (b ⋆ b−1) ⋆ a−1 = a ⋆ a−1 = e

4. Let f : N → N by x 7→ 2x. Then let g : N → N be any function which halves the even
naturals and assigns any value to the odd naturals. Then

g ◦ f = id

but f ◦ g is not necessarily the identity. So f has left inverses (many of them), but
not right inverses.

If an element has left and right inverses, it is invertible by 2), the inverses are equal
by 2), and they are unique by 1).

2.2 Groups

We will now use our definition of binary operations to study sets equipped with the structure
imposed by such an operation.

16



Definition 2.4

A group (G, ⋆) consists of a nonempty set G with a binary operation ⋆ on G such
that

1. ⋆ is associative.

2. There exists e ∈ G which is an identity for ⋆.

3. For each g ∈ G, there exists an inverse element h ∈ G for g under ⋆.

Under a slight abuse of notation, we will typically refer to (G, ⋆) as G when the
operation is clear.

Noting that we only required that ⋆ be associative, but not commutative, we give a
special name for groups where ⋆ is commutative.

Definition 2.5

(G, ⋆) is called abelian if ⋆ is commutative on G.

Let us make a few comments about notation. In general, e represents the identity of ⋆.
However, we may sometimes write + to denote a commutative operation and 0 its identity,
and · an arbitrary operation with identity 1. When ⋆ is abelian we may write −g to denote
the inverse of g, and g−1 otherwise. We will also denote the n-fold repeated composition
g ⋆ . . . ⋆ g︸ ︷︷ ︸
n times

as ng for abelian groups and gn for arbitrary groups.

Example 2.4

The following are examples of abelian groups:

• (Z,+)

• (F,+)

• (F \ {0},×)

• (Mn×m(F),+)

The following are examples of nonabelian groups:

• (GLn(R),×), where GLn(R) is the set of n× n invertible real matrices.

• (SLn(Z),×), where SLn(Z) is the set of n×n matrices with determinant 1 and
integer entries.

• Sn, where Sn is the group of permutations (a permutation on S is a bijection
f : S → S) on n elements.

• Dn, where Dn is the group of symmetries of the n-gon.a

aThis is sometimes referred to as D2n, since it has 2n elements.
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Some other important matrix groups, which will not necessarily be important in this
class, are:

• On, which is the set of real orthogonal matrices.

• SOn, which is the set of real orthogonal matrices with determinant 1.

• Un which is the set of complex orthogonal matrices.

• SUn, which is the set of complex orthogonal matrices with determinant 1.

• SP2n, which is the set of P ∈ GL2n(R) such that PTSP = S.1

• O3,1 (the Lorentz group), which is the set of P ∈ GL4(R) with PT I3,1P = I3,1.

Definition 2.6

The order of an element g ∈ G is the smallest natural number n ∈ Z>0 such that

gn = e

If no such number exists, then g has infinite order.

Definition 2.7

The order of a group G is the number of elements in G.

Although the word order appears to be used for different notions here, we will see that the
order of g ∈ G is the order of the subgroup ⟨g⟩ generated by g.

Consider the set Z⧸nZ. Under addition, it is an abelian group, but under multiplication it is
not, since there are inverses missing. However, removing {0} is not sufficient. For instance,

consider 4 ∈ Z⧸24Z. Every multiple of 4 mod 24 is a multiple of 4, so 1 is not equal to n4 for
any n ≥ 1. This only works when n is prime, which is why Fp is only a group for p prime.
Alternatively, we can fix the set as follows:

Definition 2.8

Define
(
Z⧸nZ

)×
:= {a|a ∈ Z, gcd(a, n) = 1}.

Then

((
Z⧸nZ

)×
,×
)

is a group. Moreover, its order is ϕ(n), where ϕ(n) is Euler’s

totient function.

1Here, S is the matrix of a certain nondegenerate skew-symmetric bilinear form in a certain basis.
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Example 2.5

For n = 5,
(
Z⧸5Z

)×
= {1, 2, 3, 4}. In particular, if p is prime then

(
Z⧸pZ

)×
contains

all nonzero elements.

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

The orders of of 1, 2, 3, 4 are 1, 4, 4, and 2, respectively.

Note that the interior of the table above resembles a Sudoku board, in the sense that
each row and column contains each of the elements 1, 2, 3, 4 exactly once.

Lemma 2.3

Let G be a finite group G = {g1, . . . , gn}. Then the elements gg1, gg2, . . . , ggn are a
permutation of g1, . . . , gn.

Proof. We need to show that ϕg : G → G given by ϕg(x) = gx is a bijection. But if we
consider ϕg−1 , we have

(ϕg ◦ ϕg−1)(x) = gg−1x = x

and
(ϕg−1 ◦ ϕg)(x) = g−1gx = x

so ϕg has an inverse and is thus a bijection.

Corollary 2.4

Let G be a finite abelian group of order n. Then for g ∈ G, gn = e.

Proof. Since G is abelian,

(gg1)(gg2) . . . (ggn) = gn(g1g2 . . . gn)

and by Lemma 2.3,
(gg1)(gg2) . . . (ggn) = g1g2 . . . gn

so gn = e by cancellation.

Though the above proof is only valid for abelian groups, the conclusion is actually true
of all groups. We will see that this follows from Lagrange’s Theorem.

Note that the above corollary applied to
(
Z⧸pZ \ {0},×

)
recovers Fermat’s Little Theorem,

and applied to

((
Z⧸nZ

)×
,×
)

for arbitrary n recovers Euler’s Theorem.
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Definition 2.9

A subgroup of a group (G, ⋆) is a group (H, ⋆|H), where H ⊆ G and ⋆H is the
restriction of ⋆ to H ×H. We will sometimes write H ⩽ G.

Equivalently, we have the following condition, which will allow for easier verification of
subgroups.

Proposition 2.5

H ⊆ G is a subgroup of G if and only if

1. a, b ∈ H implies that a ⋆ b ∈ H.

2. e ∈ H.

3. a ∈ H implies a−1 ∈ H.

Proof. The other axioms are inherited from the fact that (G, ⋆) is a group.

Note that if H is nonempty, then 2 follows from 1 and 3.

Example 2.6

• 2Z is a subgroup of Z under +.

• SLn(R) ⩽ GLn(R).

• {0, 2} ⩽ Z⧸4Z.

Definition 2.10

Let (G, ⋆G), (H, ⋆H) be groups. Then the (external) direct product of G and H
is the Cartesian product G×H, with the operation

(g1, h1) ∗ (g2, h2) = (g1 ⋆G g2, h1 ⋆H h2)

Example 2.7

The multiplication table for Z⧸2Z× Z⧸2Z is

(0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (0,1) (0,0) (1,1) (1,0)
(1,0) (1,0) (1,1) (0,0) (0,1)
(1,1) (1,1) (1,0) (0,1) (0,0)
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2.3 Special Groups

Here we will develop some theory of the groups Z, Dn, and F×
p .

Theorem 2.6

The only subgroups of Z are {0} and aZ for some a ∈ N.

Proof. Suppose S ⩽ Z. Pick some a ∈ S to be the smallest positive number in S. Then
aZ ⊆ S by closure. Now pick any n ∈ S. Then apply Euclidean division to write n = aq+ r
where q, r are integers. But aq ∈ S, so r ∈ S, but 0 ≤ r ≤ a − 1, and a was chosen to be
the smallest positive number, so r = 0 and thus n = aq. So S ⊆ aZ. Thus S = aZ.

This allows us to reprove Bezout’s identity in the setting of groups.

Corollary 2.7: Bezout’s Identity

If a, b ∈ Z then ra+ sb = gcd(a, b) admits a solution r, s ∈ Z.

Proof. Observe that the set aZ + bZ = {ra + sb|r, s ∈ Z} is a subgroup of Z. Then by
Theorem 2.6, S = dZ for some d.

Claim: d = gcd(a, b). To see this, note that a ∈ S = dZ and b ∈ dZ so d is a common
divisor of a, b. Moreover, d ∈ aZ + bZ so d = ra + sb and thus any common divisor of
a, b divides d. So gcd(a, b) = d. It follows that ra + sb = gcd(a, b) has a solution with
r, s ∈ Z.

Recall that Dn is the set of symmetries of the n-gon, which consist of rotations by 2π/n,
reflection, and combinations thereof.

Example 2.8

D3 is the symmetry group of the triangle, whose elements are the identity, rotation
by 2π/3, and rotation by 4π/3, as well as reflections over the lines between each
vertex and the opposite side.

Example 2.9

D4 has rotation by 0, π2 , π,
3π
2 . The reflections are those over lines between opposing

vertices, and between midpoints of opposing sides.

Note that the reflections are slightly different when n is odd and when n is even. Recall
also that a reflection over ℓ followed by a reflection over ℓ′ is a rotation by 2α, where α is
the angle between ℓ and ℓ′. It follows that reflection over ℓ followed by rotation by α is
reflection over ℓ′, where ℓ and ℓ′ make an angle of α/2. As a result, we adopt the following
notation: we write reflγ to denote reflection over the line through the origin which makes
an angle of γ/2 with the x-axis.
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Thus
D3 = {rot0, rot2π/3, rot4π/3, refl0, refl2π/3, refl4π/3}

Then we have

Proposition 2.8

1. rotβ ◦ reflγ = reflβ+γ

2. reflγ ◦ rotβ = reflγ−β

3. reflkα = (rotα)
k ◦ refl0

It follows that Dn may be written as {e, x, x2, . . . , xn−1, y, xy, x2y, . . . , xn−1y}, where
x = rot2π/n and y = refl0. Thus we say that Dn is generated by x, y under the relations
xn = e, y2 = e, xyx = y.

Theorem 2.9

For (Fp)× = {1, . . . , p − 1}, there exists an element g ∈ (Fp)× such that F×
p =

{1, g, g2, . . . , gp−1}.

Proof. We will prove this later.

Example 2.10

For F5, the choices 2, 3 both work. Then we say that Fp is generated by g with the
relation g4 = 1.

2.4 Elliptic Curves (∗)

Definition 2.11

An elliptic curve over R is a set E of the form

E = {(x, y) ∈ R2|y2 = x3 + ax+ b} ∪ {∞}

where a, b ∈ R satisfy 4a3 + 27b2 ̸= 0 and ∞ is a point at infinity in the projective
plane (for now, we may just take it symbolically).

The requirement 4a3 + 27b2 ̸= 0 ensures that no cusps form, so the curve is smooth.

The key point about elliptic curves is that we may endow them with a group structure
according to the following:
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Definition 2.12

Let P,Q ∈ E be points which are not ∞. Let P = (xP , yP ) and Q = (xQ, yQ). The
define the following operations:

1. −P is defined as (xP ,−yP ). Since E is symmetric over the x-axis, this is in E.

2. If P ̸= Q, then the line through P +Q intersects the curve in three locations.
Let R be the third point of intersection. Then P +Q := −R.

(a) If P = Q, then we take this line to be the tangent line of E at P .

(b) If this line is vertical, then it only intersects E twice, so we take P+Q = ∞.

3. For any P , ∞+ P := P .

Theorem 2.10

The set E with the operation as defined above is a group, and moreover it is abelian.

Proof. The main thing to prove is that the operation here is associative. This follows from
the Cayley-Bacharach theorem (see the MAT 217 notes).

Example 2.11

Consider the curve y2 = x3 − 5x. Then take the points (0, 0) and (−1, 2). The line
through them is the line y = −2x or 2x+ y = 0. Then the simultaneous solutions to
this and E are

4x2 = x3 − 5x =⇒ x(x2 − 4x− 5) = 0 =⇒ x = 0,−1, 5

so our potential points are (0, 0), (−1, 2), (5,−10). Since the first two points are P,Q,
we have R = (5,−10) and P +Q = −R = (5, 10).

We can also consider the same definition of the operation, but work in a field other than
R.

Example 2.12

Let y2 = x3 + 3x + 4 be a curve in Z⧸7Z. By checking all pairs, the only points in
this curve is

(0, 2), (0, 5), (1, 1), (1, 6), (2, 2), (2, 5), (5, 2), (5, 5), (6, 0),∞

so E is a group of order 10.

We now discuss an application of elliptic curves to cryptography. Pick some elliptic
curve E and a point P ∈ E, and consider the map from k ∈ N to kP ∈ E. This can be
calculated in log k time using binary addition. Consider the reverse question: if we know Q
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is a multiple of P , then how do we find k such that Q = kP? This turns out to be a very
difficult problem, which makes elliptic curves powerful for encryption.

Example 2.13

Consider the following encryption scheme. Alice and Bob together pick a public
elliptic curve E and public point P ∈ E. Each picks a point QA = dAP,QB = dBP ,
where dA, dB ∈ N are both private but QA, QB are public. Then Alice can calculate
dAQB = dAdBP , and Bob can calculate dBQA = dBdAP , so Alice and Bob can
both find the x-coordinate of dAdBP , but this is nearly impossible to solve without
finding one of dA, dB .

The above algorithm serves as a powerful encryption scheme which is both faster and
stronger than RSA.

2.5 Group Homomorphisms

In this section, we investigate homomorphisms, which can generally be seen as structure
respecting maps. We will see that studying the homomorphisms between groups will allow
us to better understand their underlying structures.

Definition 2.13

If (G, ⋆G), (H, ⋆H) are groups, then ϕ : G → H is a group homomorphism if for
all a, b ∈ G we have

ϕ(a ⋆G b) = ϕ(a) ⋆H ϕ(b)

Example 2.14

• det : GLn(R) → R×.

• exp : R → R×.

• |·| : C× → R×.

• tr :Mn×n(R) → R.

• Z → Z⧸nZ defined by x 7→ x.

• σ : Dn → {±1} which takes α to +1 if it preserves orientation and −1 other-
wise.

Example 2.15

The function det : Mn×n(R) → R is not a homomorphism when R is an additive
group, since det(A+B) ̸= det(A) + det(B).
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We can prove some basic facts about homomorphisms:

Proposition 2.11

If G,H are groups with respective identities eG, eH , and ϕ : G → H is a homomor-
phism, then

1. ϕ(eG) = eH .

2. ϕ(a−1) = [ϕ(a)]−1

Proof. 1. eHϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG) so eH = ϕ(eG) by cancellation.

2. eH = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1) so ϕ(a−1) = [ϕ(a)]−1.

Example 2.16

If V is a vector space, then any linear map from V → V is a homomorphism on
(V,+).

Definition 2.14

Given a homomoprhism ϕ : G → H, the kernel of ϕ is the preimage of eH , defined
as

kerϕ = {g ∈ G|ϕ(g) = eH} ⊆ G

Proposition 2.12

ϕ : G→ H is injective if and only if kerϕ = {eG}.

Proof. ( =⇒ ) Let a ∈ kerϕ. Then ϕ(a) = eH = ϕ(eG) so a = eG.

( ⇐= ) Suppose kerϕ = {eG}. Then let a, b be such that ϕ(a) = ϕ(b). Since ϕ is a
homomorphism,

ϕ(ab−1) = ϕ(a)ϕ(b−1) = ϕ(a)[ϕ(b)]−1 = eH

So ab−1 = eG and thus a = b.

We will now begin to prove results that highlight the close relationships between group
homomorphisms and subgroups.

Proposition 2.13

Let ϕ : G→ H be a group homomorphism. Then kerϕ ⩽ G.

Proof. ϕ(eG) = eH so eG ∈ kerϕ.

Let g1, g2 ∈ kerϕ. Then ϕ(g1g2) = ϕ(g1)ϕ(g2) = eHeh = eH , so g1g2 ∈ kerϕ.
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Let g1 ∈ kerϕ. Then ϕ(g−1
1 ) = [ϕ(g1)]

−1 = e−1
H = eH so g−1

1 ∈ kerϕ. Thus kerϕ is a
subgroup.

Example 2.17

Using the homomorphisms listed in Example 2.14,

• det : GLn(R) → R× has kernel SLn(R).

• exp : R → R× has kernel {0}.

• |·| : C× → R× has kernel S1.

• tr :Mn×n(R) → R has kernel sln(R).

• Z → Z⧸nZ defined by x 7→ x has kernel nZ.

• σ : Dn → {±1} which takes α to +1 if it preserves orientation and −1 otherwise
has kernel given by the rotations in Dn.

• For a homomorphism Z → G given by n → gn for fixed g, the kernel is 0 if g
has infinite order, or ord(g)Z if ord(g) is finite.

Proposition 2.14

Let ϕ1 : G → H1 and ϕ2 : G → H2 be homomorphisms. Then g 7→ (ϕ1(g), ϕ2(g)) is
a homomorphism from G to H1 ×H2.

The concept of homomorphisms allow for a convenient proof of the Chinese Remainder
Theorem (proved in homework using modular arithmetic).

Theorem 2.15: Chinese Remainder Theorem

Let n,m ∈ Z>0 with gcd(n,m) = 1, and let ϕ1, ϕ2 be the canonical quotient maps

ϕ1 : Z⧸nmZ → Z⧸nZ and ϕ2 : Z⧸nmZ → Z⧸mZ, whereϕ1
(
aZ⧸nmZ

)
= aZ⧸nZ

ϕ2

(
aZ⧸nmZ

)
= aZ⧸mZ

Then we construct a homomorphism ϕ : Z⧸nmZ → Z⧸nZ× Z⧸mZ using Proposition
2.14. ϕ is a bijection.

Proof. Note that Z⧸nmZ and Z⧸nZ × Z⧸mZ have the same number of elements. Thus it
suffices to prove that kerϕ = 0, since if ϕ is injective it must be bijective by the pigeonhole
principle.

Let aZ⧸nmZ
∈ kerϕ. Then ϕ

(
aZ⧸nmZ

)
= (0, 0). Thus aZ⧸nZ

= aZ⧸mZ
= 0. So n|a,m|a. Since
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n,m are coprime, nm|a. Thus aZ⧸nmZ
= 0. So we are done.

Definition 2.15

Let ϕ : G→ H be a group homomorphism. Then define the image of ϕ to be

imϕ = ϕ(G) = {ϕ(g)|g ∈ G} ⊆ H

Proposition 2.16

If ϕ : G→ H is a homomorphism, then imϕ ⩽ H.

Proof. ϕ(eG) = eH so imϕ contains the identity. Let x, y ∈ imϕ. Then x = ϕ(a), y = ϕ(b)
for some a, b ∈ G. Then ϕ(ab) = ϕ(a)ϕ(b) = xy so xy ∈ imϕ, and ϕ(a−1) = [ϕ(a)]−1 = x−1

so imϕ contains inverses.

2.6 Isomorphisms

Having discussed homomorphisms (maps which respect the underlying group structure), we
will now discuss isomorphisms (maps that preserve the underlying group structure).

Definition 2.16

ϕ : G → H is an isomorphism if it is a group homomorphism and a bijection.
We say that G,H are isomorphic (denoted G ∼= H) if there exists an isomorphism
between them.

Example 2.18

The set of rotations by k · π2 for k ∈ Z has an isomorphism with zmod4. To see

this, send k 7→ rotkπ/2. This is well defined, since if k = l, then k ≡ l (mod 4),

and thus rotkπ/2 = rotlπ/2. It is also a homomorphism, since k + l 7→ rot(k+l)π/2 =
rotkπ/2 ◦ rotlπ/2. It is a bijection since both groups have four elements.

To justify why it makes sense to speak of G,H be isomorphic with no reference to
direction, we show the following:

Lemma

If ϕ : G→ H is an isomorphism, then ϕ−1 : H → G is an isomorphism.

Proof. Clearly ϕ−1 is bijective. Let x, y ∈ H. Then x = ϕ(a), y = ϕ(b) for appropriate a, b.
Since ϕ is a homomorphism, ϕ(ab) = ϕ(a)ϕ(b). So

ϕ−1(xy) = ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ϕ(ab)) = ab = ϕ−1(x)ϕ−1(y)
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The intuition behind isomorphic groups is that although the elements themselves are
not necessarily equal, they can be renamed in such a way that the multiplication tables
look the same. Thus, the groups have the same group structure. As long as we are making
statements about the structure of groups, it suffices to prove something up to isomorphism.

Example 2.19

Let us show that
(
Z⧸8Z

)× ∼= Z⧸2Z× Z⧸2Z.

The elements which have gcd of 1 with 8 are precisely the odd elements. So Z⧸8Z =
{1, 3, 5, 7}. Define a map by

1 7→ (0, 0)

3 7→ (0, 1)

5 7→ (1, 0)

7 7→ (1, 1)

Referring to the composition tables shows this is a homomorphism, and isomorphism
follows since they have the same number of elements.

We can isolate the group structure of a given group by using group presentations,
which list the relations between generators which determine the structure of a group.

Example 2.20

In the above example, if we write e = (0, 0), x = (0, 1), y = (1, 0), then this group
is subject to (and completely determined by) the relations 2x = e, 2y = e, x + y =

y + x. The group
(
Z⧸8Z

)×
is also subject to these relations. Thus the groups are

isomorphic.

Example 2.21

The torus is bijective to S1 × S1. This induces a group structure on the torus.

Example 2.22

Consider a complex elliptic curve EC defined by y2 = x3+1. If x = a+bi, y = c+di,
then EC ⊆ C2 ∼= R4. We can split this into two equations on a, b, c, d, using the real
and imaginary parts, respectively. Then EC should be a two dimensional locus. One
can show that EC is bijective with the torus, but moreover that it is isomorphic in the
category of groups. (We can see this by considering real elliptic curves as horizontal
cross sections of a complex curve. Looking at the shape generated in projective space
this way shows that it is vaguely torus-like.)
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2.7 Cyclic Groups

In this section, we consider cyclic groups, which are particularly simple groups that allow
for easy calculations.

Proposition 2.17

Every subgroup of Z⧸nZ is of the form
〈
d
〉
= {kd|k ∈ Z} where d|n. Moreover, the

order of d is n
d .

Definition 2.17

The generated subgroup of G generated by g ∈ G is the subgroup

⟨g⟩ = {gn|n ∈ Z}

Example 2.23

The generated subgroup 〈[
1 1
0 1

]〉
⊆ GLn(R)

has infinite order, since [
1 a
0 1

] [
1 b
0 1

]
=

[
1 a+ b
0 1

]
so this is isomorphic to Z.

Definition 2.18

A group G is cyclic if G = ⟨g⟩ for some g ∈ G.

Theorem 2.18

Let ⟨x⟩ ⊆ G be finite. Then there exists d ∈ N such that xd = e and ⟨x⟩ =
{e, x, x2, . . . , xd−1} where xi, 0 ≤ i < d are distinct.

Proof. If ⟨x⟩ is finite then there exists n < m ∈ Z with xn = xm. Then xm−n = e. Set d to be
the smallest positive integer such that xd = e. Pick some xa ∈ ⟨x⟩. We may write a = dq+r
by the division algorithm, and xa = xdq+r = (xd)q ·xr = xr.Thus ⟨x⟩ = {e, x, . . . , xd−1}. To
see that they are distinct, suppose xi = xj for 0 ≤ i ≤ j < d. Then xj−i = e. But d is the
smallest positive integer for which this is true, and j − i < d, so j − i = 0. Thus i = j.
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Corollary 2.19

If G is cyclic of order d, then G ∼= Z⧸dZ.

Proposition 2.20

If G is cyclic of infinite order, then G ∼= Z.

Proof. Let g be a generator of G. Then every element of G may be written uniquely as gn

for some n (if gn = gm, then gn−m = e so n = m). Then define ϕ(gn) = n. This is clearly
bijective. It is a homomorphism since

ϕ(gn) + ϕ(gm) = n+m = ϕ(gn+m)

This important result means that when considering cyclic groups, the structure is com-
pletely determined by the order of the group.

2.8 Permutations

Definition 2.19

A permutation on n elements is a bijection from {1, 2, . . . , n} to itself. The set of
all permutations on n elements is denoted Sn.

Proposition 2.21

|Sn| = n!.

We will notate permutations in a few ways. To be completely explicit, we may write(
1 2 . . . n
k1 k2 . . . kn

)
where i 7→ ki. Alternatively, we may write

(a1a2 . . . at)

where a1 7→ a2, a2 7→ a3, and so on, with at 7→ a1. Note that if an element is fixed by a
permutation, we do not list it in this notation.

Definition 2.20

A transposition or 2-cycle is a permutation of the form (ab).

Since permutations are functions, we can juxtapose them to denote composition.
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Example 2.24

Consider the permutation (135)(27) ∈ S7. By following where each element goes:

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7
this permutation is (

1 2 3 4 5 6 7
3 7 5 4 1 6 2

)

Example 2.25

Given the permutation (
1 2 3 4 5 6 7
3 6 1 2 4 7 5

)
we may use cycle notation to write this as (26754)(13).

Example 2.26

The group S3 contains the cycles

S3 = {e, (12), (23), (13), (123), (132)}

Note that (123) = (231).

Proposition 2.22

Every permutation can be written as a composition of disjoint cycles (where disjoint
cycles have no elements in common). Moreover, disjoint cycles commute.

To write a permutation in disjoint cycle notation, we can use the following process:
begin by writing the number 1. Evaluate the permutation to see where 1 is mapped to, and
write down that number. See where that number is mapped to, and write down the next.
Continue until we return to 1. Then, in a new cycle, write the next number which wasn’t
listed in the first cycle. Continue until all numbers have been exhausted. This not only
proves that disjoint cycle decomposition exists, but also that it is unique (up to ordering).
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Proposition 2.23

Every permutation can be written as a product of (not necessarily disjoint) transpo-
sitions.

Proof. Let (a1a2 . . . an) be a cycle. Then (a1a2 . . . an) = (a1a2) . . . (an−2an−1)(an−1an).
Reading right to left, each element ak will get transposed once into ak+1, except an, which
moves in all the transpositions and ends up at a1.

Proposition 2.24

Let π be the identity permutation on n elements. If τ1, . . . , τ, are transpositions and
π = τ1 . . . τl, then l is even.

Proof. It suffices to prove that π may be written as l−2 transpositions. Then if l were odd,
we could write π as a single transposition, which is clearly false.

Pick any i ∈ {1, . . . , n} which is in one of the transpositions other than τ1. Let τm = (ij) be
the last transposition where it appears, such that τm+1, . . . , τl do not permute i. Consider
τm−1.

1. If τm−1 = τm, then we can cancel them and we are done.

2. If τm−1 = (ik), where k ̸= i, j, then

π = τ1 . . . (ik)(ij) . . . τl = τ1 . . . (ij)(kj) . . . τl

So we have moved the last transposition where i appears to position m− 1.

3. If τm−1 = (kj), where k ̸= i, j, then

π = τ1 . . . (kj)(ij) . . . τl = τ1 . . . (ik)(kj)

and again we have moved up the last transposition.

4. If τm−1 = (ab) for a, b ̸= i, j, then disjoint cycles commute so

π = τ1 . . . (ab)(ij) . . . τl = τ1 . . . (ij)(ab) . . . τl

In any of Cases 2, 3, 4, we simply repeat the process with our new decomposition at π. At
some point we must reduce to Case 1, otherwise i only appears in one transposition, which
is impossible since π is the identity. Thus the claim is proved.

Proposition 2.25

If σ ∈ Sn and σ = τ1 . . . τk = τ ′1 . . . τ
′
j for τi, τ

′
i transpositions, then k, j have the

same parity.
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Proof. We have
π = σσ−1 = τ1 . . . τk(τ

′
j) . . . (τ

′
1)

(since transpositions are their own inverses). But this implies that j + k is even, which
means they have the same parity.

Then we may define

Definition 2.21

If τ ∈ Sn is written as a product of an even number of transpositions, it is called an
even permutation. The same is true for an odd permutation. Then the sign of
τ is +1 if τ is even and −1 if it is odd.

Definition 2.22

The set An ⊆ Sn is the set of all even permutations.

Note that An = ker(sgn), so An ⩽ Sn.

Example 2.27

A3 consists of {e, (123), (132)}, which is isomorphic to Z⧸3Z and also the group of
rotations of a triangle.

2.9 Cosets and Lagrange’s Theorem

In this section, we will prove Lagrange’s Theorem, a powerful result that will reveal many
facts about the structure of subgroups. In doing so, we will also cover cosets, which will
allow us to consider quotient groups later. First, we will make a few observations about
equivalence relations, which are not specific to the setting of groups.

Definition 2.23

A equivalence relation on a nonempty set X is a relationa ∼ such that ∼ is:

1. Reflexive: a ∼ a for all a ∈ X

2. Symmetric: a ∼ b =⇒ b ∼ a.

3. Transitive: a ∼ b and b ∼ c implies a ∼ c.

aRecall that a relation is a subset R of X ×X, where we write a ∼ b when (a, b) ∈ R
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Definition 2.24

If ∼ is an equivalence relation on X and a ∈ X, then the equivalence class of a
under ∼ is

Ca := {x ∈ X : x ∼ a}

Example 2.28

The relation a ≡ b (mod n) is an equivalence relation on Z. If we take n = 3, then
the equivalence classes are

C0 = 3Z
C1 = 1 + 3Z
C2 = 2 + 3Z

C3 = 3 + 3Z = 3Z = C0

C4 = 4 + 3Z = 1 + 3Z = C1

...

Thus we see that the equivalence class of any k is either C0, C1, C2.

Proposition 2.26

If a, b ∈ X then either Ca = Cb or Ca ∩ Cb = ∅. Moreover, Ca = Cb if and only if
a ∼ b. As a result, X is the disjoint union of equivalence classes.

An equivalent idea is that if we know that X is the disjoint union of some sets Xi, then
this induces an equivalence relation (where a ∼ b if and only if a, b are in the same Xi).
Thus we see that partitions of a set are intrinsically linked with equivalence relations on a
set.

Definition 2.25

Let K ⩽ G. Then define the left and right K-cosets of b to be

bK = {bk : k ∈ K}
Kb = {kb : k ∈ K}

The intuition here is that a K-coset is a copy of K, translated by a. This is similar to
the cosets of a subspace in a vector space.

Example 2.29

Let G = D3, and let K be the subgroup of rotations. Let y be reflection along the
x-axis. Then G = K ⊔ yK.
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Example 2.30

Let G = Z and let K = 3Z. Then the cosets are 3Z, 1 + 3Z, 2 + 3Z (left and right
cosets clearly coincide when G is abelian.)

Proposition 2.27

Let K ⩽ G. Then the following are equivalent:

1. aK = bK.

2. b−1aK = K.

3. b−1a ∈ K.

4. aK ∩ bk ̸= ∅.

Proof. (1 ⇐⇒ 2) This is clear by multiplying on the left by b−1.

(2 =⇒ 3) b−1a ∈ b−1aK = K.

(3 =⇒ 2) Sudoku rule.

(3 =⇒ 4) If b−1a ∈ K then b(b−1a) ∈ bK, but this is also a ∈ aK.

(4 =⇒ 3) Suppose ak = bk′ for k, k′ ∈ K. Then we have b−1a = k′k−1 ∈ K.

Corollary 2.28

If X,Y are left cosets for K ⩽ G then they are either equal or disjoint. The same
holds for right cosets.

Corollary 2.29

The left K-cosets define a partition of G:

G =
⋃
a∈G

aK

where either aK = bK or aK ∩ bK = ∅. The same holds for right cosets.

Thus we have produced a partition of G, which from above we have shown induces an
equivalence relation on G. In particular, we write

a ∼L b ⇐⇒ aK = bK ⇐⇒ b−1a ∈ K

or b − a ∈ K using additive notation. We can similarly define the right coset equivalence
relation a ∼R b ⇐⇒ ab−1 ∈ K.
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Proposition 2.30

If aK, bK are left cosets in a finite group G, then

|aK| = |bK|

The same is true for right cosets.

Proof. It suffices to show that |aK| = |K|. We have K = {k1, . . . , km} with |K| = m. By
definition, aK = {ak1, . . . , akm}. But each aki is distinct, since aki = akj =⇒ ki = kj .
Thus |aK| = m.

This discussion leads us to the following powerful theorem:

Definition 2.26

Let K ⩽ G and define [G : K]L to be the number of left K-cosets. Similarly define
[G : K]R.

Theorem 2.31: Lagrange’s Theorem

If K ⩽ G and G is finite, then

|G| = [G : K]L|K| = [G : K]R|K|

Proof. Since G partitions into distinct cosets, let L be the set of all left K-cosets. Then

|G| =
∑
L∈L

|L| = |K|
∑
L∈L

1 = [G : K]L|K|

The same is true for right cosets.

Corollary 2.32

Lagrange’s Theorem has the following immediate consequences:

1. |K| divides |G|.

2. [G : K]L = [G : K]R (thus we will only write [G : K]).

3. If g ∈ G and |G| = n, then ord(g)|n.

4. gn = e for all n ∈ G.

5. If |G| is prime, then G is cyclic.

Proof. (1) and (2) are obvious from the equation.

For (3), ⟨g⟩ = {e, g, . . . , gm−1}. This is a subgroup of G, so m divides |G|.
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(4) follows immediately.

Take some g ∈ G which is not e. Then ord(g) divides |G| prime. Thus ord(g) is 1 or p, but
g ̸= e so ord g = p. Thus G = ⟨g⟩.

Note that (4) recovers Fermat’s Little Theorem and Euler’s Theorem.

2.10 Group Actions

While studying isomorphisms, we noted that the actual elements of a group are less im-
portant than the role they serve in the group’s structure. We also saw that multiplication
on the left or right by a certain element is a bijective mapping from G into itself. Thus,
specifying the binary operation on a group is equivalent to specifying a composition rule
between these maps.

In this way, it is possible to understand the entire structure of G by simply looking at these
maps. We could similarly define a structure similar to this on maps from sets other than G
to themselves. Now we have fully removed the elements G from this discussion, and merely
consider the maps they represent and the way those maps combine.

Definition 2.27

Let (G, ⋆) be a group. Let X be a set. Then a group action of G on X is a function
· : G×X → X which obeys the following axioms:

1. e · x = x.

2. h · (g · x) = (h ⋆ g) · x.

We may also use the notation G ü X to denote that G acts on X by some group
action ·.

Definition 2.28

Let G ü X and x ∈ X. Then define the orbit of X to be the set

O(x) = {g · x|g ∈ G} ⊆ X

Example 2.31

Let Sn ü {1, . . . , n}. If n = 3 and τ = (12), then τ · 1 = 2, τ · 2 = 1, τ · 3 = 3.

Example 2.32

Let Z⧸nZ act on S1 by rotation by 2π/n. Then

k = eiθ = ei(θ+k
2π
n )
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Example 2.33

Dn acts on the n-gon in the natural way.

We would like to be able to speak of when this specification loses some information
about G. As we cannot use isomorphisms, since X is not necessarily a group, we make the
following definition:

Definition 2.29

A group action G ü X is faithful if the only element g ∈ G such that g · x = x for
every x ∈ X is g = e.

Example 2.34

Suppose Z⧸4Z ü Z⧸2Z by

kZ⧸4Z
+ lZ⧸2Z

:= k + lZ⧸2Z

This is not faithful, since 2 acts as the identity for all l ∈ Z⧸2Z.

Example 2.35

Let D4 ü {1, 2, 3, 4} as vertices of a square. Then refl13 ·1 = 1 and refl13 ·3 = 3, but
refl13 ·2 = 4 and refl13 ·4 = 2.

In other words, a group action is faithful if every map moves some element of x.

Definition 2.30

Let G ü X. Let Bij(X) = Bij(X,X) be the set of bijections from X to itself. Then
define the adjoint to be the map g 7→ ad g, where ad g is the map x = g · x.

Example 2.36

Let D3 ü {1, 2, 3} and denote D3 = {e, x, x2, y, xy, x2y}, where x is rotation and y
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is reflection over the line through 1. Then

ad e =


1 7→ 1

2 7→ 2

3 7→ 3

adx =


1 7→ 2

2 7→ 3

3 7→ 1

adx2 =


1 7→ 3

2 7→ 1

3 7→ 2

ad y =


1 7→ 1

2 7→ 3

3 7→ 2

adxy =


1 7→ 2

2 7→ 1

3 7→ 3

adx2y =


1 7→ 3

2 7→ 2

3 7→ 1

We make the following observations:

Proposition 2.33

Let G ü X. Then

1. ad e = id.

2. If g, h ∈ G, then ad g ◦ adh = ad gh.

3. [ad g]−1 = ad g−1 (this shows that each ad g is indeed a bijection).

4. ad : G → Bij(X) is a homomorphism (where Bij(X) is a group under compo-
sition).

5. ad is injective if and only if G ü X is faithful.

Proof. 1, 2, and 3 are straightforward from the axioms. 4 follows from 2. For 5, note that
ker ad = {g ∈ G : ad g = id}. But G ü X is faithful if and only if the only g such that
ad g = id is e. So ker ad is trivial if and only if G ü X is faithful.

The language of group actions allows us to prove the following:

Theorem 2.34

Every finite group is isomorphic to a subgroup of Sn, where n = |G|.

Proof. Let (G, ⋆) be a group. Define a group action G ü G using g·h = g⋆h. This is faithful,
because if ad g = id, then e = ad ge = g · e = g and thus e = g. Thus ad : G → Bij(G) is
injective. Note that Bij(G) is naturally isomorphic to Sn (say under some map ϕ), so then
ϕ ad : G→ Sn is an injective homomorphism and thus G ∼= ϕ adG ⩽ Sn.

We can use similar logic to show that if G ü H is a faithful action on another group
H, where the group action also respects the operation on H, then G is isomorphic to a
subgroup of H.
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Example 2.37

Z⧸nZ and Dn are isomorphic to subgroups of O2. They are also isomorphic to
subgroups of SO3 (not SO2, since reflections are not orientation preserving in only
two dimensions.) There are also the subgroups T,O, I, where T is the tetrahedral
symmetry group of order 12, O the octahedral symmetry group if order 24, and I
the icosahedral group of 60 symmetries. These are the platonic solids. Note that the
cube and octahedron have the same symmetries, as well as the dodecahedron and
icosahedron.

Theorem 2.35: Orbit Theorem

Let X be a finite set, and let G ü X. Then

|X| = |O1|+ . . .+ |Ok|

where the Oi are the distinct orbits of the group action.

Proof. Define the relation x ∼ y when x ∈ O(y). We claim that ∼ is an equivalence relation.
e·x = x so x ∼ x. If x ∼ y, then x = g·y. But then g−1·x = g−1·(g·y) = (g−1⋆g)·y = e·y = y
so y ∼ x. Lastly, if x ∼ y and y ∼ z, then x = g ·y and y = h·z. Then x = g ·(h·z) = (g⋆h)·z
and thus x ∼ z. So membership in an orbit is an equivalence relation. Therefore, X is
partitioned into disjoint orbits. The claim follows.

Example 2.38

Take a group {e, refl13} and let it act on {1, 2, 3, 4}. Then O(1) = {1} and O(3) =
{3}, but O(2) = O(4) = {2, 4}. So

|X| = 4 = 1 + 1 + 2 = |O(1)|+ |O(3)|+ |O(2)|

Definition 2.31

Let G ü X and let x ∈ X. Then the stabilizer of x is the set

Stab(x) = {g ∈ G : g · x = x} ⊆ G

Example 2.39

If D4 acts on {1, 2, 3, 4}, Stab(2) = Stab(4) = {id, refl24}, and Stab(1) = Stab(3) =
{id, refl13}. Rotations are never in the stabilizer (besides id).

Proposition 2.36

Stab(x) ⩽ G for all x ∈ X.
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Proof. e ∈ Stab(x) since e · x = x. If g, h ∈ Stab(x), then (g ⋆ h) · x = g · (h · x) = g · x = x.
Lastly, if g ∈ Stab(x), then g−1 ·x = g−1 ·(g·x) = (g−1⋆g)·x = e·x = x. So Stab(x) ⩽ G.

Theorem 2.37: Orbit-Stabilizer Theorem

Let G ü X where G is finite. Then for all x ∈ X,

|G| = |O(x)| · | Stab(x)|

In particular, |O(x)| divides |G|.

The above formula resembles Lagrange’s Theorem. Thus, the proof proceeds by finding
a way to embed O(x) into G.

Proof. Let x ∈ X and consider the set G/Stab(x) of left Stab(x)-cosets. Define a map
G/Stab(x) → O(x) by

g Stab(x) 7→ g · x

This map is well defined, since if g Stab(x) = g′ Stab(x), then g−1g′ ∈ Stab(x) and thus
g · x = g · (g−1g′ · x) = g′ · x.

Clearly this map is well defined, since the orbit is by definition the set of all g · x. To
show injectivity, let g · x = g′ · x. Then g−1 · (g · x) = x. But then g−1g ∈ Stab(x)
so g Stab(x) = g−1 Stab(x). Thus we have a bijection between O(x) and G/Stab(x), so
|O(x)| = [G : Stab(x)] and the conclusion follows by Lagrange’s Theorem.

Example 2.40

Let I be the group of symmetries of the icosahedron. Let it act on the faces of
the icosahedron. Then let f be a face and consider Stab(f). Each element is a
rotation around the face, and there are five of them (since each face is a pentagon),
so |Stab(f)| = 5. Thus |I| = |O(f)| · |Stab(f)|. But f can be mapped to any other
face (of which there are 12), so |O(f)| = 12. Thus |I| = |O(f)|·| Stab(f)| = 12·5 = 60.

Example 2.41

Let Dn act on the n-gon. For any vertex, the stabilizer is the identity and the unique
reflection passing through that vertex. The orbit is n. So |Dn| = n · 2.

The following is a theorem due to Cauchy. This result will be one of the first steps
toward our classification of finite groups.

Theorem 2.38

Let G be a finite group and let p prime divide |G|. Then there exists an element
g ∈ G of order p.
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Proof. Consider the set X of p-tuples that multiply to the identity:

X =
{
(g1, . . . , gp)

∣∣∣∏ gi = e
}

For each choice of g1, . . . , gp−1, there is exactly one choice of gp. Thus |X| = |G|p−1.

Let Z⧸pZ act on X cyclically, such that 1 maps (g1, . . . , gp) 7→ (gp, g1, . . . , gp−1). By the

orbit formula, |G|p−1 = |X| =
∑
O(x) |O(x)|. Each orbit is either of length 1 (if all gi are

the same), or length p. We also see this using the orbit stabilizer theorem: |O(x)| divides∣∣∣Z⧸pZ∣∣∣, so it must be either 1 or p. By the orbit formula,

|G|p−1 = |X| = (# of orbits of size 1) · 1 + (# of orbits of size p) · p

Now, p divides |G|, so it divides the right side. Thus p divides the number of orbits of size
1. Since {(e, . . . , e)} is one such orbit, there are at least p of them, so there exists some
other element such that {(g, . . . , g)} is an orbit. Then gp = e by construction.

The above theorem is certainly not true if p is not prime: consider the Klein four-group,
which is of order 4 but has no element of order 4.

2.11 Quotient Groups

Recall that in linear algebra, the quotient space of a vector space V by a subspace W is the
set of allW -cosets in V , with operations defined by picking an arbitrary representative. This
was justified by the fact that the operation does not depend on the choice of representative.
Unfortunately, the following is not true in general for groups. Instead, we must restrict
ourselves to specific subgroups:

Definition 2.32

A subgroup H ⩽ G is called normal if gH = Hg for all g ∈ G. This can be denoted
H ⊴ G.

Proposition 2.39

A subgroup H ⩽ G is normal if and only if gHg−1 = H for all g ∈ G, if and only if
ghg−1 ∈ H for all g ∈ G, h ∈ H.

The operation ghg−1 is called conjugation by g. Roughly speaking, the condition above
says that g is invariant under a change of coordinates by g.

Recall that a and b belong to the same left H-coset if and only if aH = bH, if and only if
b−1a ∈ H.
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Definition 2.33

Let H ⩽ G. Then the quotient G⧸H is defined as the set of all left H-cosets.

We can take another approach here: for each g ∈ G, define a formal symbol g, and
declare g = g′ if and only if g and g′ are in the same left H-coset. We would like to endow
G/H with a natural group structure. We might first define the following operation:

Definition 2.34

Let H ⩽ G. Let · be the operation on G. Define an operation ⋆ on G⧸H by

gH ⋆ g′H := (g · g′)H

For the above to make any sense, we must show that the above definition is independent
of the choice of representative. This occurs if H ⊴ G:

Suppose aH = a′H and bH = b′H. The normality condition lets us switch bH = Hb and
b′H = Hb′. So

abH = ab′H = aHb′ = a′Hb′ = a′b′H

To check the other axioms, we have associativity inherited from G:

(aH ⋆ bH) ⋆ (cH) = abH ⋆ cH = (ab)cH = a(bc)H = aH ⋆ bcH = aH ⋆ (bH ⋆ cH)

Inverses and identity are also easy to check:

eH ⋆ gH = egH = gH = geH = gH ⋆ eH

gH ⋆ g−1H = (gg−1)H = eH

Example 2.42

If G = Z⧸6Z, then 3
(
Z⧸6Z

)
is a subgroup. The cosets are 3

(
Z⧸6Z

)
, 1 +

3
(
Z⧸6Z

)
, 2 + 3

(
Z⧸6Z

)
.

Example 2.43

Sn⧸An
∼= Z⧸2Z, and the cosets are the sets of even permutations and odd permuta-

tions.
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Example 2.44

Consider

(
Z⧸25Z

)×
⧸〈7〉: 〈

7
〉
= {1, 7, 24, 18}

2
〈
7
〉
= {2, 14, 23, 11}

3
〈
7
〉
= {3, 21, 22, 4}

4
〈
7
〉
= 3
〈
7
〉

6
〈
7
〉
= {6, 17, 19, 8}

7
〈
7
〉
= 1
〈
7
〉

8
〈
7
〉
= 6
〈
7
〉

9
〈
7
〉
= {9, 13, 16, 12}

So our cosets are (
Z⧸25Z

)×
⧸〈7〉 = {

〈
7
〉
, 2
〈
7
〉
, 3
〈
7
〉
, 6
〈
7
〉
, 9
〈
7
〉
}

Example 2.45

Consider S3⧸{e, (12)}. {e, (12)} is a not a normal subgroup, and this is a nonexample.

We have
(123){e, (12)} = {(123), (13)} = (13){e, (12)}

Now,
(123)(123){e, (12)} = (132){e, (12)}

but‘
(13)(13){e, (12)} = {e, (12)}

so our operation is not well defined.

There are some conditions which allow us to skip checking for normality:

Proposition 2.40

If H ⩽ G and G is abelian, H ⊴ G.

Proposition 2.41

If H ⩽ G and [G : H] = 2, H ⊴ G.
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Proposition 2.42

If ϕ : G→ G′ is a group homomorphism, then kerϕ ⊴ G.

2.12 The First Isomorphism Theorem

We conclude this chapter with an important result that unifies many of the ideas we have
discussed up to this part. This is know as the first isomorphism theorem.

Definition 2.35

Let K ⊴ G. Then the canonical projection map, denoted can, is the map g 7→ gK.

Theorem 2.43: First Isomorphism Theorem

Let ϕ : G→ G′ be a surjective homomorphism, and let K = kerϕ. Then there exists

an isomorphism ψ : G⧸K
∼=−→ G′ such that the following diagram commutes:.

G G⧸K G′can

ϕ

ψ

Proof. We know from homework that defining ψ(gK) = ϕ(g) is well defined. This map is
surjective since ϕ is surjective. It is also injective (again from homework), so ψ is a bijection.
To see that it is a homomorphism, since K is normal we have ψ(gKg′K) = ψ(gg′K) = gg′ =
ψ(gK)ψ(g′K). From our definition of ψ it follows that ψ ◦ can = ϕ.

Corollary 2.44

Let ϕ : G → G′ be a homomorphism and K = kerϕ. Then im(ϕ) ∼= G⧸K, and
|G| = |K| · | imϕ|.

Proof. Consider the corresponding map ψ : G→ imG. ψ is a surjective homomorphism, so

by the first isomorphism theorem, imG ∼= G⧸K. By Lagrange’s Theorem, |G| = |K|·[G : K],

and [G : K] =
∣∣∣G⧸K∣∣∣.

Theorem 2.45: Product Theorem

If G is a group andM,N ⊴ G, withM ∩N = {e} and G =MN (meaning that every
g ∈ G can be written as mn for m ∈ M,n ∈ N). Then G ∼= M ×N . In particular,
if G is finite, it suffices to show that |G| = |M | · |N |.

Proof. Homework.
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In this case, G is called the (internal) direct product of M,N .

Example 2.46

Consider
(
Z⧸15Z

)×
. We wish to show it is congruent to Z⧸2Z× Z⧸4Z. Pick

N = {1, 2, 4, 8} ∼= Z⧸4Z

and
M = {1, 11} ∼= Z⧸2Z

These are disjoint and 4× 2 =
∣∣∣Z⧸15Z∣∣∣, so G ∼=M ×N ∼= Z⧸2Z× Z⧸4Z.

Corollary 2.46

If |G| = pq where p, q are distinct, and G is abelian, then G ∼= Z⧸pqZ.

Proof. Homework.

The above theorem is true for nonabelian groups under mild conditions, which we will
prove later:

Theorem

If |G| = pq where p < q are distinct and not equal to exactly 2, 3, and q ̸≡ 1 (mod p),

then G ∼= Z⧸pqZ.
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Chapter 3

Advanced Group Theory

One of the important results in group theory is the complete classification of finite simple
groups. In general, it is of interest to us to classify and understand group structure as much
as possible. For instance, one theorem that we will see later is the following:

Theorem: Classification of Finite Abelian Groups

Let G be finite and G be abelian. Then there exist n1, . . . , nk such that

G ∼= Z⧸n1Z× Z⧸n2Z× . . .× Z⧸nkZ

A similar statement holds for abelian groups which are only finitely generated.

3.1 The Class Equation

Definition 3.1

Define the conjugation action of (G, ⋆) on itself by

G×G→ G (h, g) 7→ h ⋆ g ⋆ h−1

Proposition 3.1

The conjugation action is indeed a group action G ü G.

For any given h, the image of G under conjugation by h is an isomorphism. Roughly
speaking, conjugating the group in this way may be seen as a kind of change of variables.
Thus we have the following:
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Proposition 3.2

Let g, h ∈ G. Then ord(hgh−1) = ord(g).

Proof. For all k we have (
hgh−1

)k
= hgkh−1

which equals the identity if and only if gk is the identity.

We will give special names to the orbits and stabilizers of G under the conjugation action.

Definition 3.2

The centralizer of an element x ∈ G is the set

Z(x) := {g ∈ G|gxg−1 = x} ⩽ G

Note that the centralizer of x is just the stabilizer of x under conjugation.

Definition 3.3

The conjugacy class of an element x ∈ G is the set

C(x) = {gxg−1|g ∈ G}

The conjugacy class of x is the orbit of x under conjugation.

Then by applying the Orbit-Stabilizer theorem, we note that for all x ∈ G we have

|G| = |Z(x)| · |C(x)|

Proposition 3.3

The following are true:

1. Z(x) ⩽ G.

2. x ∈ C(x).

3. z ∈ Z(x).

Proof. 1. EXERCISE.

2. x = exe−1.

3. xxx−1 = x.
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Definition 3.4

The center of a group G is the set of elements which commute with all elements of
G:

Z(G) := {g ∈ G : ∀x ∈ G, xg = gx}

Notice that the notation for the center and the centralizer are very similar. In particular,
note that xgx−1 = g if and only if xg = gx; that is, if and only if g, x commute. Thus the
center of a group is the set of elements that commute with all elements of G, and the
centralizer of x is the set of elements that commute with specifically x (which therefore
includes the center).

Proposition 3.4

For all x ∈ G, Z(G) ⊆ Z(x).

Proof. Follows from the observation above.

Proposition 3.5

The center is the intersection of all centralizers; that is,

Z(G) =
⋂
x∈G

Z(x)

Proof. Both sides are the set of all elements which commute with all x ∈ G.

Proposition 3.6

x ∈ Z(g) if and only if C(x) = {x}.

Proof. If x ∈ Z(g), then for all g ∈ G, gxg−1 = gg−1x = x so C(x) = {x}. The reverse
implication is similar.

Now, we may use the fact that conjugation is an action to show the following:

Proposition 3.7

G is the disjoint union of its conjugacy classes, and in particular,

|G| =
∑

conjugacy classes

|C|

Proof. Orbit formula.
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In particular, by Proposition 3.6, the number of conjugacy classes of size 1 is the size of
|Z(G)|. Thus we have the following:

Theorem 3.8: Class Equation

Let C1, . . . , Ck be the distinct conjugacy classes which are of size greater than one.
Then

|G| = |Z(g)|+ |C1|+ . . .+ |Ck|

This is called the class equation for G.

Example 3.1

Consider S3. The class equation is 6 = 1 + 2 + 3. To see this, observe the following:

1. If x is a 2-cycle, say (12), then

C((12)) = {e(12)e−1, (13)(12)(13), (12)(12)(12), (23)(12)(23), . . .}
= {(12), (23), (12), (13), . . .}

Now recall that the order of a transposed element will be the order of (12)
and thus must also be a 2-cycle. Thus the remaining transposed elements have
been enumerated and

C((12)) = {(12), (23), (13)}

2. Similarly, if y is a 3-cycle,

C(y) = {(123), (132)}

3. The conjugacy class of e is {e}.

Thus we have one element in the center, a conjugacy class of size 2, and a conjugacy
class of size 3. So the class equation is

6 = |S3| = |Z(g)|+ |C(x)|+ |C(y)| = 1 + 3 + 2 = 1 + 2 + 3

Example 3.2

The class equation for SL2

(
Z⧸3Z

)
is

24 = 1 + 1︸ ︷︷ ︸
Z(G)

+4 + 4 + 4 + 4 + 6

with |Z(G)| = 2.

50



Theorem 3.9

Let ρ, ρ′ be permutations. Then ρ, ρ′ are conjugate if and only if their cycle decom-
position has the same order. This means the cycles in the decomposition have the
same orders: they have the same number of 2-cycles, 3-cycles, and so on.

Example 3.3

Using the above theorem, the conjugacy classes in S4 are

{e} (identity)

{(12), (13), (14), (23), (24), (34)} (2-cycles)

{(123), (132), (124), (142), (123), (143), (234), (243)} (3-cycles)

{(12)(34), (13)(24), (14)(23)} (Disjoint 2-cycles)

{(1234), (1243), (1324), (1342), (1423), (1432)} (4-cycles)

Thus the class equation is

24 = |S4| = 1 + 3 + 6 + 6 + 8

Example 3.4

(135)(246) are conjugate: let τ = (12)(34)(56). Then

τ(135)τ−1 = (12)(34)(56)(135)(12)(34)(56) = (246)

The above example shows why the theorem is true: if a two permutations permute the
same number of elements in the same number of ways, then we apply a renaming such that
each element is permuted in the same way. Because cycle decomposition guarantees disjoint
cycles, we can always apply this renaming.

Example 3.5

Consider the permutations (123)(45) and (67)(89a) (where a = 10). Using the re-
naming intuition, we let τ = (18)(29)(3a)(46)(57).

3.2 p-Groups

Definition 3.5

Let p be a prime. Then a p-group is a group whose order is a power of p.
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Lemma 3.10

The center of a p-group is nontrivial.

Proof. Let |G| = pn. The class equation shows that

pn = |Z(G)|+ |C1|+ . . .+ |Ck|

Now, by the Orbit-Stabilizer formula, the size of each conjugacy class divides |G| (note that
it is not necessarily a subgroup). The Ci have order greater than 1, so each is divisible by
1. Thus p divides |Ci| for each i, and thus p divides |Z(G)|, so Z(G) is nontrivial.

Corollary 3.11

Every group of order p2 is abelian.

Proof. By the previous lemma, |Z(G)| is either p or p2. If it is p2 we are done, so assume
|Z(G)| = p. Then pick some x /∈ Z(G). We know that Z(G) ⊆ Z(x), and x ∈ Z(x), so
Z(G) is a proper subset of Z(x). Thus |Z(x)| > p, and it is a subgroup, so by Lagrange’s
Theorem |Z(x)| = p2. But this implies x commutes with all elements of g and thus x ∈ Z(G),
contradiction. Thus Z(G) = G and G is abelian.

Corollary 3.12

Every group G of size p2 is isomorphic to Z⧸p2Z or Z⧸pZ× Z⧸pZ.

Proof. If there exists an element of order p2, then G is cyclic and isomorphic to Z⧸p2Z.
Otherwise, assume that every nontrivial has order p. Pick some such x ∈ G and consider
⟨x⟩. This is of order p, so pick another nontrivial y /∈ ⟨x⟩. Then ⟨x⟩, ⟨y⟩ are subgroups, and
⟨x⟩∩⟨y⟩ = {e}: this is because the intersection is a strict subgroup of both ⟨x⟩, ⟨y⟩ and thus
has order 1. Now, G is abelian, so these are normal subgroups and by the product theorem

G ∼= ⟨x⟩ × ⟨y⟩ ∼= Z⧸pZ× Z⧸pZ

3.3 Simple Groups

Definition 3.6

A simple group is a group G which has no normal subgroups other than {e} or G.

It turns out that every finite group is built from simple groups using semidirect products
and group cohomologies, which motivates the study of simple finite groups.

Moreover, one finds that many simple groups fall naturally into a family of related simple
groups.
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Example 3.6

Some examples of families of simple groups are An, n ≥ 5 and PSLn(Fp), n > 2

(where PSLn(F) = SLn(F)⧸{±In}).

In fact, the only families of simple groups are the alternating groups, n ≥ 5, cyclic groups
Z⧸pZ, and 16 families of Lie type.

Example 3.7

The sporadic groups are those which do not fall in one of the infinite families of simple
groups. The smallest sporadic group is the Mathieu group M11, and the largest is
the Monster group, which has order ≈ 8× 1052.

Lemma 3.13

Let N ⊴ G. Then

1. If x ∈ N then C(x) ⊆ N .

2. N is the union of some conjugacy classes of G.

3. The order of N is the sum of the orders of conjugacy classes it contains.

Proof. 1 is clear since N is closed under conjugation. 2 follows from 1, and 3 follows from
2 since conjugacy classes are disjoint.

Example 3.8

Let us show that A5 is simple.

We first write the class equation of A5 as

60 = 1 + 20 + 12 + 12 + 15

1 corresponds to the conjugacy class {e}, 20 corresponds to the classes of 3-cycles
{(xyz)}, 12+12 corresponds to the classes of 5-cycles {(xyzwe)}, and 15 corresponds
to the class of pairs of transpositions {(xy)(zw)}.
Note that although we previously showed that equal order permutations are in the
same conjugacy class. However, this only holds in S5; and thus 5-cycles split into
two conjugacy classes in A5 (because the only elements that conjugate between these
classes lie in S5 \A5.)

Now, we apply Lemma 3.13. We know that any normal subgroup must have order
dividing 60, but it also has to be the sum of some conjugacy classes. Moreover, the
normal group must have the identity element. This requirement means that adding
any other combination of 12, 12, 15, 20 does not result in a proper divisor of 60. Thus
there is no normal subgroup. So A5 is simple.
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3.4 Sylow’s Theorems

In this section we demonstrate three important results due to Sylow, which are known as
Sylow’s Thoerems. These theorems serve as powerful tools to produce subgroups of a given
group.

In particular, subgroups of orders which are maximal possible prime orders are important
enough that we give them a name:

Definition 3.7

A Sylow p-subgroup is a subgroup H ⩽ G such that |H| = pk, pk divides |G|, and
pk+1 does not divide |G|.

Theorem 3.14: First Sylow Theorem

Let G be finite and p prime. Then there is a Sylow p-subgroup.

Proof. The theorem is only interesting if p divides |G|, as otherwise the trivial subgroup is
a Sylow p-subgroup.

We will progress by defining an appropriate group action G ü X, and we want to have our
Sylow p-subgroup to be a stabilizer of some x ∈ X. By the Orbit-Stabilizer Theorem, we
would have |G| = |Stab(x)| · |O(x)|. If |G| = pkm where gcd(p,m) = 1, then we would need
|O(x)| = m, which is in particular not divisible by p. Then if we choose X in such a way
that p does not divide |X|, this will guarantee that at least one orbit size is not divisible by
p.

Let Ω be the set of all subsets of G of size pk. Let G ü Ω by multiplication, such that
ω 7→ gω.

Claim: p does not divide |Ω|.

To see this, note that

|Ω| =
(
pkm

pk

)
=

pk−1∏
j=0

pkm− j

pk − j

Write vp(m) to be the maximum l such that pl|m. Because j ranges over [0, pk−1], vp(p
km−

j) = vp(j). Similarly, vp(p
k − j) = vp(j). Thus we may divide out appropriate powers of p

from the numerator and denominator, and after simplification we see that it is not divisible
by p. So |Ω| is the product of numbers which are not divisible by p and thus not divisible
by p either.

So p does not divide |Ω|, which is the sum of the orbit sizes. Thus there is some ω such that
|O(ω)| is not divisible by p. By the Orbit-Stabilizer theorem, pk divides |Stab(ω)| · |O(ω)|,
so pk divides |Stab(ω)|.

To conclude, we need to show that |Stab(ω)| is exactly equal to pk. To argue this, take
α ∈ ω. Then |Stab(ω)| = |Stab(ω)α|. But since α ∈ ω, each element of Stab(ω)α is in ω.
Thus |Stab(ω)α| ≤ |ω| = pk. So Stab(ω) is a Sylow p-subgroup.

54



Theorem 3.15: Second Sylow Theorem

Suppose P,K ⩽ G are Sylow p-subgroups. Then there exists x ∈ G such that
P = xKx−1.

Proof. Let Ω = {gK|g ∈ G} and let P ü Ω by left multiplication. We know |Ω| = [G :
K] = m (if |G| = pkm = |K|m). Thus p does not divide |Ω|. By the Orbit formula,

|Ω| = 1 + . . .+ 1 + |O1|+ . . .+ |Oj |

where the 1’s correspond to orbits of size 1, and the Oi correspond to orbits of length greater
than 1. Now, the size of each Oi divides |P | = pk, so |Oi| = pki for each i, where ki ≥ 1.
Thus there exists some orbit of length 1, say of gK. Then for all p ∈ P , pgK = gK, meaning
PgK = gK. Then multiplying by g−1 on both sides we have g−1PgK = K. Picking e ∈ K
on the left side, g−1Pg ⊆ K, but they are the same size so g−1Pg = K.

In other words, Sylow p-subgroups are conjugates of one another.

Corollary 3.16

A group G has only one Sylow p-subgroup H (for a particular p) if and only if H ⊴ G.

Proof. ( =⇒ ) Suppose G has just one Sylow p-subgroup H. Then for any x ∈ G, xHx−1 is
another subgroup of the same size, so it is also a Sylow p-subgroup. Then by assumption
xHx−1 = H. This holds for all x so H is normal.

( ⇐= ) Suppose H ⊴ G and H,K are Sylow p-subgroups. Then K = xHx−1 for some
x ∈ G. But H is normal so K = H. Thus there is only one Sylow p-subgroup.

Definition 3.8

Let H ⩽ G. Then the normalizer of H is the set

N(H) = {g ∈ G : gHg−1 = H}

One can show that N(H) ⩽ G. Then essentially by definition we observe that H ⊴
N(H).

Proposition 3.17

Let H ⩽ G. Then

1. H ⊴ N(H).

2. H ⊴ G if and only if N(H) = G.

3. |H| divides |N(H)| and |N(H)| divides G.

Proof. 1 follows by definition, 2 is clear, and 3 follows from Lagrange’s Theorem.
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We can interpret the normalizer as the stabilizer of H under the group action of conju-
gation by G on the set of all subgroups of G.

Theorem 3.18: Third Sylow Theorem

Let np be the number of Sylow p-subgroups. Then np divides |G| and np ≡ 1
(mod p).

Proof. To show that np divides |G|, we let Ω be the set of all Sylow p-subgroups. Let G ü Ω
by conjugation, that is, for any Sylow p-subgroup P we define g ⋆ P := gPg−1. Note that
by the Second Sylow Theorem we know that this action is closed. Moreover, we know that
any two Sylow p-subgroups are conjugates of each other. Thus there is only one orbit and
it is all of Ω.

Pick some P ∈ Ω. By the Orbit-Stabilizer theorem,

|G| = |Stab(P )| · |O(P )| = |Stab(P )| · |Ω| = |Stab(P )| · np

Thus np divides |G|.

For the second part, take P ∈ Ω and let P ü Ω. The size of each orbit divides |P | = pk so
must be a power of p. Of course, O(P ) = {P}. We claim that this is the only orbit of length
1. Indeed, if H ∈ Ω has |O(H)| = 1, then pHp−1 = H for all p ∈ P . So P ⊆ N(H). Now
apply the Second Sylow Theorem to N(H). We know P.H ⊆ NG(H) are Sylow p-subgroups.
So they are conjugate in N(H). But H ⊴ N(H) so H = P by Corollary 3.16.

We now conclude with the Orbit formula:

np = |Ω| = 1 + |O1|+ . . .+ |Oj |

where each Oj has length greater than 1 and a power of p. Thus np ≡ 1 (mod p).

Remark 3.1

Let |G| = pkm where p does not dividem. Then np divides p
km, but np ≡ 1 (mod p)

so np does not divide p (unless np = 1). Thus np|m (even if np = 1).

These results allow us to completely classify all groups of some orders.

Example 3.9

We may see that the only group of size 15 is Z⧸15Z.

We write |G| = 3 · 5. Thus there are Sylow p-subgroups of size 3 and 5. So n3|5
and n3 ≡ 1 (mod 3). n3 = 1, 5 but 5 ̸≡ 1 (mod 3) so n3 = 1. Similarly n5 = 1.
Thus there is one Sylow 3-subgroup and one Sylow 5-subgroup. Then let H,K be
the unique Sylow 3- and 5- subgroups, respectively. Since they are unique they are
normal. Now H ∩K is a subgroup of both H, K. By Lagrange’s Theorem its order
divides both 3 and 5, so it must be 1. By the product theorem we conclude that
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G ∼= H × K. Now H,K have prime order so they are isomorphic to Z⧸3Z,
Z⧸5Z

respectively. Then by the Chinese remainder theorem we have

G ∼= H ×K ∼= Z⧸3Z× Z⧸5Z ∼= Z⧸15Z

Note that the above also follows from our corollary to the product theorem last
chapter.

3.5 Semidirect Products

In this section we will develop the theory of semidirect products, which generalize the direct
products we have already considered. We saw from the product theorem that a group G is
said to be the (internal) direct product of two normal subgroups if every element is written
as a unique product of elements from the subgroups. However, this structure means that
elements from the groups commute with one another, so that they essentially don’t interact.
Put another way, we recall that the operation on the (external) direct product just applies
the individual operations separately, with no interaction. While this works for some groups,
there are many groups which can be built out of two smaller groups, but require those
groups to interact somehow.

A key example of this is the dihedral group Dn. This group may be seen to be built out of
the normal subgroup of rotations and the subgroup {e, y}, where y is a reflection. Moreover,

the rotations are isomorphic to Z⧸nZ and the reflections isomorphic to Z⧸2Z. However, this
does not form a direct product:

Dn ̸= Z⧸nZ× Z⧸2Z

In particular, the left side is not abelian while the right side is. Thus, we need to find a
new, more general way to combine groups that will account for more types of groups.

Definition 3.9

If G is a group then Aut(G) is the set of all automorphisms on G. In particular, it
is a group under composition and is called the automorphism group on G.

Example 3.10

Let k ∈ Z and define ψk : Z⧸nZ → Z⧸nZ by

a 7→ ka

This is easily verified to be a homomorphism. However, it is only an isomorphism if
gcd(k, n) = 1, and in this case its inverse is given by ψk−1 . Moreover, note that if
k ≡ l (mod n) then ψk = ψl.
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Lemma

Aut
(
Z⧸nZ

)
∼=
(
Z⧸nZ

)×
.

Proof. Consider the map Ψ :
(
Z⧸nZ

)×
→ Aut

(
Z⧸nZ

)
defined by k 7→ ψk. We noted in

the example above that this is well defined. We check that this is an isomorphism:

1. Ψ is a homorphism: We have

Ψ(k1 · k2) = Ψ(k1k2) = ψk1k2

Now, note that for x ∈ Z⧸nZ,

ψk1k2x = k1k2x = k1(k2x) = ψk1 ◦ ψk2(x)

so ψk1k2 = ψk1 ◦ ψk2 . Summarizing,

Ψ(k1 · k2) = Ψ(k1k2) = ψk1k2 = ψk1 ◦ ψk2 = Ψ(k1) ◦Ψ(k2)

Thus Ψ is a homomorphism.

2. Ψ is injective: Let k ∈ kerΨ. Then

k = ψk(1) = id(1) = 1

so k = 1 and thus the kernel is trivial.

3. Ψ is surjective: Let φ ∈ Aut
(
Z⧸nZ

)
and let k = φ(1). I claim that Ψ(k) = φ.

Note that φ(1) has order n since 1 does. Thus φ(1) is a generator of Z⧸nZ. Then for

any b ∈ Z⧸nZ there exists l ∈ Z such that b = φ(1) · l. Pick b = 1. Then 1 = φ(1) · l

for some l. So φ(1) has a multiplicative inverse and is therefore in
(
Z⧸nZ

)×
. Now,

φ(a) = aφ(1) = ka = ψk(a)

So φ = ψk = Ψ(k). Thus Ψ is surjective.

Example 3.11

Let us show this by example for n = 3.

Note that
(
Z⧸3Z

)×
has two elements and is isomorphic to Z⧸2Z.

Consider the automorphisms of Z⧸3Z. Let ψ1 = id. Define ψ2 by

0 7→ 0, 1 7→ 2, 2 7→ 1
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These are the only automorphisms since 0 must map to itself. We also have ψ2◦ψ2 =

ψ1 so this group is cyclic and also isomorphic to Z⧸2Z.

We can now use the automorphism group to define our generalized product.

Definition 3.10

Let N,H be groups. Let ϕ : H → Aut(N) be a homomorphism. Then the (exter-
nal) semidirect product of N,H with respect to ϕ, denoted N ⋊ϕ H, is the set
N ×H with the operation ⋆ defined as

(n1, h1) ⋆ (n2, h2) := (n1ϕh1(n2), h1h2)

where ϕh1 = ϕ(h1).

Note that if ϕ maps all elements of H to the identity on N , then N ⋊ϕ H ∼= N ×H.

Example 3.12

Let H = Z⧸2Z and N = Z⧸3Z. We showed previously that Aut(N) ∼= Z⧸2Z. There

are only two subgroups of Z⧸2Z, so there are two choices for ϕ: ϕ1, which maps both
elements of H to idN , and ϕ2, which satisfies

ϕ2(0) = idN

ϕ2(1) =


0 7→ 0

1 7→ 2

2 7→ 1

Now, we noted above that N ⋊ϕ1
H ∼= N ×H. On the other hand N ⋊ϕ2

H is not
even abelian, and is actually isomorphic to D3

∼= S3.

We may use the semidirect product to generalize the product theorem:

Theorem 3.19

Let N ⊴ G and H ⩽ G. Suppose also that N ∩ H = {e} and G = NH. Then
G ∼= N ⋊ϕ H with ϕ mapping h to the automorphism given by conjugation by h;
that is ϕ(h) = φh where φh(n) = hnh−1.

Proof. We construct an isomorphism f : N ⋊ϕ H → G. Noting that N ⋊ϕ H is just N ×H
as a set, we define f(n, h) = nh.

By assumption G = NH so this is surjective.

To show injectivity, if n1h1 = n2h2 then n1n
−1
2 = h2h

−1. The left side is in N and the right
in H, so both are the identity. So n1 = n2 and h1 = h2. Thus f is bijective.
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To check that f is a group homomorphism, we have

f(n1, h1) · f(n2, h2) = n1h1n2h2

On the other hand, we also have

f((n1, h1) ⋆ (n2, h2)) = n1n2h1h2

f((n1, h1) ⋆ (n2, h2)) = f(n1ϕh1(n2), h1h2) = n1h1n2h
−1
1 h2h2 = n1h1n2h2

In the case that G ∼= N ⋊ϕ H as above, with N ⊴ G and H ⩽ G, G is said to be the
(internal) semidirect product of N and H. We also note that as in the case of the
product theorem, if G is finite and |G| = |N | · |H| then we need not verify that G = NH.

Example 3.13

To see that S3 is isomorphic to the external semidirect product of Z⧸3Z,
Z⧸2Z, we

note that Z⧸3Z ∼= ⟨(123)⟩ and Z⧸2Z ∼= ⟨(12)⟩. ⟨(123)⟩ is normal since its index is 2.
Moreover, since their intersection is trivial and their orders multiply to 6 = |S3|, the
semidirect product theorem applies and we have S3

∼= ⟨(123)⟩ ⋊ϕ ⟨(12)⟩ ∼= Z⧸3Z ⋊ϕ
Z⧸2Z.

Example 3.14

This work will allow us to classify all groups up to order 6 up to isomorphism. Let

n = |G|. Clearly if n = 1 then G is trivial. If n = 2, 3, 5, then G ∼= Z⧸nZ since n is

prime. If n = 4 = 22, then Corollary 3.12 says that G ∼= Z⧸4Z or G ∼= Z⧸2Z×Z⧸2Z.

Thus the only new case is n = 6. If n = 6, then Sylow’s Theorem says we have
subgroups N,H of order 3 and 2, respectively. N ⊴ G since it has index 2. Those
subgroups have trivial intersection. So G is the internal semidirect product of N,H,

and the only semidirect products are Z⧸6Z and Z⧸2Z× Z⧸3Z ∼= S3
∼= D3.

We summarize:

n = 1 G ∼= {e}
n = 2 G ∼= Z⧸2Z
n = 3 G ∼= Z⧸3Z
n = 4 G ∼= Z⧸4Z or G ∼= Z⧸2Z× Z⧸2Z
n = 5 G ∼= Z⧸5Z
n = 6 G ∼= Z⧸6Z or G ∼= S3

∼= D3
∼= Z⧸2Z× Z⧸3Z
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Chapter 4

Rings

4.1 Elementary Definitions

Having surveyed the general theory of groups, we now study rings, which are groups be-
stowed with additional structure. Specifically, rings are equipped with two operations,
analogous to addition and multiplication on familiar structures such as integers, rationals,
and reals. In particular, the rationals and reals have a richer multiplicative structure, which
we will encounter further in fields. Thus, the main object which is abstracted by rings is
the set of integers Z.

Definition 4.1

A ring is a nonempty set R together with two binary operations +,× : R×R→ R
such that:

1. +,× are associative.

2. + is commutative.

3. + has an identity, denoted 0R.

4. Each r ∈ R has an additive inverse −r.

5. × has an identity, denoted 1R.

6. × left and right distributes over +; that is,

a× (b+ c) = a× b+ a× c

(a+ b)× c = a× c+ b× c

We denote a ring by (R,+,×).

Essentially, a ring is an abelian group (given by its additive structure), together with
some multiplicative structure, and the multiplication distributes over addition. Although
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we only assume that addition is commutative in R, it is often the case that we work with
rings where multiplication is commutative as well.

Definition 4.2

A ring R such that × is commutative is called a commutative ring.

Some key examples of rings are fields, such as Q,R,C,Fp. In particular, a field is a
commutative ring with the additional assumption that 0R ̸= 1R and every r ∈ R \ {0R}
admits a multiplicative inverse.

Example 4.1

For some examples of rings which are not fields, we have Z, as well as Z⧸nZ for all
n ∈ N.

Given some rings, we can also construct new rings out of them. For instance, polynomials
only consist of additive and multiplicative structure, so they may be defined over rings.
These produce another ring, which is an important application of ring theory.

Definition 4.3

Let R be a ring. Then the polynomial ring R[x] is the set of polynomial expressions
in a single variable x; that is, R[x] := {a0+a1x+ . . .+anxn : ai ∈ R, an ̸= 0R}∪{0}.

Remark

We note that although polynomial expressions are most familiar as functions, the ring
of polynomials is distinct from polynomial functions. Rather, they should be treated
as formal expressions, with multiplication and addition defined analogously to those
of normal polynomials. Of course, any polynomial expression may be evaluated as
though it were a polynomial. However, some polynomials may evaluate to the same
function, yet be distinct formal expressions. For instance x2 + x ≡ 0 as an element

of Z⧸2Z[x], but we consider x2 + x to be distinct from the 0 polynomial.

Definition 4.4

Given two rings R,S, the product ring is the set R × S, with addition and multi-
plication componentwise.

Example 4.2

For some noncommutative examples of rings, the set of all square matrices Mn×n(F)
is a ring. We can also adjoin a square root of −1 to the integers to produce the
Gaussian integers, which are Z[i] := {a+ bi : a, b ∈ Z, i2 = −1}.
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As we noted above, given a ring (R,+,×), we can consider the abelian group (R,+).
Unlike in the case of fields, we cannot necessarily form a multiplicative group of R simply
by removing 0R, since there may be other noninvertible elements. However, we can fix this
by simply removing every noninvertible element:

Definition 4.5

A unit of a ring R is an element x ∈ R such that x has a multiplicative inverse in
R. We write R× to denote the set of all units in R. The set (R×,×) is a group.

Example 4.3

Z× is the set {−1, 1}, which is isomorphic (as a group) to Z⧸2Z.

Example 4.4

(Mn×n(R))× = GLn(R).

For a field F, this reduces to our previous definition of F× = F \ {0}. We also emphasize
that R× is a group and not a ring.

Proposition 4.1

We can immediately apply the ring axioms to observe the following:

1. 0R and 1R are the unique additive and multiplicative identities.

2. Additive and multiplicative inverses (if they exist) are unique.

3. 0R × a = 0R for all a ∈ R.

Definition 4.6

Given a ring R, a subring of R is a nonempty subset S ⊆ R such that (S,+S ,×S)
is a ring, where +S ,×S are the operations on R restricted to S, and moreover that
1R = 1S and 0R = 0S .

Remark

Unlike with subgroups, we do not adopt the notation S ⩽ R for subrings. Instead,
we simply write S ⊆ R.

As in the case of groups, the fact that operations are inherited from a larger group means
that we only need to check a few conditions:
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Proposition 4.2

S ⊆ R is a subring if and only if all of the following are true:

1. 0R, 1R ∈ S.

2. S is closed under +.

3. S is closed under ×.

4. For all s ∈ S, −s ∈ S.

Example 4.5

The following are some examples of subrings:

1. Z ⊆ Q ⊆ R ⊆ C.

2. Z ⊆ Z[i].

3. R ⊆ R[z].

Note that for examples 2 and 3 in 4.5, we identify R with the constant polynomials in
R[x], and Z with the elements a+ 0i ∈ Z[i]. As a nonexample, nZ is not a subring of Z for
n > 1 (since nZ is not even a ring in that case).

4.2 Domains

Beginning in this section, we adopt the convention that all rings are commutative rings.

We often prefer to work in settings which do not admit zero divisors, as this assumption
allows for many algebraic tricks to be valid, even without division.

Definition 4.7

A (commutative) ring R is a domain if 0R ̸= 1R and ab = 0R implies that a = 0R
or b = 0R.

Example 4.6

Any field is a domain. The integers Z are a domain.

Example 4.7

Z⧸6Z is a nonexample, since 2 · 3 = 0.
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Proposition 4.3

If R is a domain and S ⊆ R is a subring, then S is a domain.

Theorem 4.4

Let R be a ring. Then R is a domain if and only if R[x] is a domain.

Proof. ( ⇐= ) Follows since R is a subring of R[x].

( =⇒ ) Let p, q ∈ R[x] be nonzero and suppose

p(x) = p0 + p1x+ . . .+ pnx
n

q(x) = q0 + q1x+ . . .+ qmx
m

with pn, qm ̸= 0R. Then
p(x)q(x) = . . .+ pnqmx

n+m

Since R is a domain, pnqm ̸= 0R. Thus pq is of degree n+m and is not equal (at least as a
formal expression) to the zero polynomial.

Theorem 4.5

Let R be a domain. Then (R[x])
×
= R×.

The above theorem allows us to show some examples of R[x] which are not domains, to
justify the need for Theorem 4.4.

Example 4.8

Take R = Z⧸8Z, which is not a domain. Then

(1 + 4x)(1− 4x) = 1− 16x2 = 1

Thus 1 + 4x is a nonconstant polynomial in R[x] which is a unit, which only occurs
when R is not a domain.

4.3 Ring Homomorphisms

As with group theory, we will see that one way to understand the structure of a ring is to
study structure-respecting maps in and out of the ring.

Definition 4.8

For rings R,S, a function ϕ : R→ S is a ring homomorphism if

1. ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈ R.
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2. ϕ(x× y) = ϕ(x)× ϕ(y) for all x, y ∈ R

3. ϕ(1R) = 1S .

Once again, we can use our understanding of rings as an additive group and a multiplica-
tive group of units to break down ϕ into two group homomorphisms ψ : (R,+) → (S,+)
and φ : (R×,×) → (S×,×).

Example 4.9

The map Z → Z⧸nZ given by a 7→ a is a ring homomorphism, since a+ b = a + b,

ab = ab, and 0 is the identity in Z⧸nZ.

Example 4.10

For any ring R, the map R[x] → R which takes f to the constant term a0 is a ring
homomorphism.

Example 4.11

The embedding map Z → Q which takes a 7→ a
1 is a ring homomorphism. More

generally, if S ⊆ R is a subring, then the embedding map is a ring homomorphism.

As a nonexample, the map Z → Z given by n 7→ 2n is not a ring homomorphism. For

another nonexample, the differentiation operator on polynomials R[x] ∂x−→ R[x] is not a ring
homomorphism as ∂x(x

2) ̸= ∂x(x)∂x(x) (although it is a group homomorphism, since it is
linear).

Recall that in the case of group homomorphisms, any two groups admitted group homo-
morphism φ : G → H where φ(G) = eH . However, this does not work in the case of rings,
due to the requirement that ϕ(1R) = 1S .

Proposition 4.6

Let ϕ : S → T be a ring homomorphism. Then:

1. ϕ(0S) = 0T .

2. −ϕ(x) = −ϕ(−x) for all x ∈ S.

3. If u ∈ S is a unit, then ϕ(u) ∈ T is a unit.

Proof. 1. ϕ(0S) = ϕ(0S + 0S) = ϕ(0S) + ϕ(0S) =⇒ 0T = ϕ(0S).

2. ϕ(−x) + ϕ(x) = ϕ(x− x) = ϕ(0S) = 0T so −ϕ(x) = ϕ(x).
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3. If u ∈ S is a unit, then there exists v ∈ S such that uv = 1S . But then 1T = ϕ(1S) =
ϕ(uv) = ϕ(u)ϕ(v) so ϕ(u) is a unit in T . In particular, ϕ preserves multiplicative
inverses.

Remark 4.1

Observe that if ϕ : R→ S is a function and S is a domain, then condition (3) in the
definition of a ring homomorphism may be replaced by the condition that ϕ is not
the zero map, since

1Sϕ(1R) = ϕ(1R) = ϕ(1R)ϕ(1R)

so ϕ(1R)(1S − ϕ(1R)) = 0S . Since S is a domain, we must have ϕ(1R) = 0 or
1S − ϕ(1R) = 0. If ϕ(1R) = 0 then ϕ is just the zero map. So ϕ is either the zero
map or we recover condition (3).

Analogously to groups, we define the following:

Definition 4.9

ϕ : R → S is a ring isomorphism if it is a bijective ring homomorphism. In this
case, we write R ∼= S.

As in the case of groups, a ring homomorphism should be seen as a structure preserving
map which simply acts to relabel the elements of R,S, with no effect on the underlying
structure. As such, we can often consider rings as essentially the same if they are equal up
to isomorphism.

Example 4.12

We define a ring homomorphism Z⧸6Z → Z⧸2Z×Z⧸3Z by a 7→ (a, a). Moreover, this

is bijective, so Z⧸6Z ∼= Z⧸2Z× Z⧸3Z as rings.

Theorem 4.7

Let ϕ : R→ S be a ring isomorphism. Then ϕ−1 : S → R is a ring isomorphism.

Proof. Bijectivity is automatic, so we just need to check that ϕ−1 is a ring homomorphism.
Let s1, s2 ∈ S. Then

ϕ(ϕ−1(s1 + s2)) = s1 + s2 = ϕ(ϕ−1(s1)) + ϕ(ϕ−1(s2)) = ϕ(ϕ−1(s1) + ϕ−1(s2))

By applying ϕ−1 on both sides, we then have

ϕ−1(s1 + s2) = ϕ−1(s1) + ϕ−1(s2)

Similarly, we have

ϕ(ϕ−1(s1s2)) = s1s2 = ϕ(ϕ−1(s1))ϕ(ϕ
−1(s2)) = ϕ(ϕ−1(s1)ϕ

−1(s2))
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which implies that
ϕ−1(s1s2) = ϕ−1(s1)ϕ

−1(s2)

Lastly,
ϕ(ϕ−1(1S)) = 1S = ϕ(1R) =⇒ ϕ−1(1S) = 1R

In the setting of groups, we check whether a group homomorphism is injective by checking
if its kernel is trivial. For rings, we can apply the same theory to the inherited group
structure.

Definition 4.10

Let ϕ : R→ S be a ring homomorphism. Then the kernel of ϕ is

kerϕ := {r ∈ R : ϕ(r) = 0S}

Theorem 4.8

A ring homomorphism ϕ : R→ S is injective if and only if kerϕ = {0R}.

Proof. ϕ is also a group homomorphism. So ϕ is injective if and only if kerϕ = {0R}.

Definition 4.11

Let R be a ring. Then for n ∈ N, define nR = 1R + . . .+ 1R︸ ︷︷ ︸
n times

.

Definition 4.12

A ring R has characteristic n if n is the smallest positive integer such that nR = 0R.
If no such integer exists, then we say R has characteristic zero.

Example 4.13

char(Z) = 0. char
(
Z⧸nZ

)
= n. charZ⧸6Z× Z⧸8Z = 24.

4.4 Ideals

We now investigate a way to properly define a structure similar to the quotient group
structure. Unlike in the case of groups, it does not necessarily make sense to quotient by
a subring. To see why, consider the following: let S ⊆ R be some additive subgroup of

(R,+) (not necessarily with any multiplicative structure). Then consider the group R⧸S of
all additive cosets of S (note this is a group since (R,+) is abelian). We want multiplication
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on these cosets to be well defined with respect to choice of representatives. In particular,

for x+ S, y + S ∈ R⧸S, we have

(x+ S)(y + S) = xy + xS + yS + SS

For this to be equal to xy + S, we would need to know that (x + y)S = S. We can define
the following structure, which guarantees that this occurs:

Definition 4.13

An ideal of a ring R is a nonempty subset I ⊆ R such that:

1. If x1, x2 ∈ I then x1 + x2 ∈ I.

2. If x ∈ I and r ∈ R, then rx ∈ I.

Note that if 1 ∈ I, then for r ∈ R we have r1 = r ∈ I. Thus I = R.

We can compare the definitions of subrings and ideals, both of which are structured subsets
of a ring:

Subring Ideal
Closed under addition ✓ ✓

Closed under multiplication by itself ✓ ✓

Contains 0 ✓ ✓

Closed under multiplication by elements of R ✗ ✓

Contains 1 ✓ ✗

Notice that ideals contain additive inverses, since if x ∈ I then (−1) ∈ R and (−1)x = −x ∈
I. Thus both ideals and subrings are subgroups under addition of (R,+), but differ in their
multiplicative structure.

Proposition 4.9

The following are true about ideals:

1. Every ideal contains 0.

2. Every ideal contains additive inverses. In particular, (I,+) ⩽ (R,+).

3. If 1 ∈ I then I = R.

4. If R is a field, then every ideal is I = {0} or I = R.

The first three are straightforward or have been discussed.

Proof of 4. Let I ⊆ R be an ideal. Suppose there is some x ∈ I nonzero. Then there exists
x−1 ∈ R. It follows that x−1x = 1 ∈ R. By 3, I = R.
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Example 4.14

The following are ideals:

1. I = {2n : n ∈ Z} ⊆ Z.

2. I = {18a+ 24b : a, b ∈ Z} ⊆ Z.

3. I = {f : f(0) = 0} ⊆ R[x].

4. I = {f = b0 + b1x+ . . .+ bnx
n : n ∈ N, bi even } ⊆ Z[x].

5. I = {0, 3, 6, 9} ⊆ Z⧸12Z.

Example 4.15

The following are not ideals:

1. I = {2n+ 1 : n ∈ Z} ⊆ Z.

2. I = {f : f(0) ̸= 0} ⊆ R[x].

In the case of groups, kernels of homomorphisms were subgroups. In the case of rings,
however, kernels are not necessarily subrings, but ideals.

Proposition 4.10

Let ϕ : R→ S be a ring homomorphism. Then ker(ϕ) ⊆ R is an ideal.

Proof. Let x, x1, x2 ∈ ker(ϕ), and r ∈ R. Then

ϕ(x1 + x2) = ϕ(x1) + ϕ(x2) = 0 + 0 = 0

and
ϕ(rx) = ϕ(r)ϕ(x) = 0

so kerϕ is an ideal.

In fact, if ϕ : R → S is a ring homomorphism and 1S ̸= 0S , then kerϕ is not a subring,
since ϕ(1R) = 1S ̸= 0S . Thus 1R /∈ kerϕ, meaning kerϕ is not a subring.

On the other hand, im(ϕ) is always a subring, but in general is not an ideal (since 1S ∈ imϕ.
If imϕ is an ideal, then imϕ = S).

Definition 4.14

Let r1, . . . , rk ∈ R. Then the ideal generated by r1, . . . , rk is the set

(r1, . . . , rk) := {x1r1 + . . .+ xkrk : x1, . . . , xk ∈ R} ⊆ R

An ideal of the form (r) = Rr is called a principal ideal.
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One may verify that the above structures are indeed ideals.

Definition 4.15

A domain R is called a principal ideal domain, or PID, if every ideal in R is
principal and R is a domain.

Example 4.16

We showed that every additive subgroup of Z is of the form nZ = (n). Any ideal is
an additive subgroup, so all additive subgroups of Z are principal ideals. Thus Z is
a PID.

Proposition 4.11

Let K be a field. Then K[x] is a PID.

Proof. Let I ⊆ K[x] be a nonzero ideal. Let f ∈ I be a nonzero element of minimal degree.
We want to show that I = (f). To prove this, let g ∈ I. Then apply Euclidean division to
write

g = qf + r

where q ∈ K[x] and r ∈ K[x] is zero or deg(r) < deg(f). By the ideal structure, qf ∈ I so

r = g − qf ∈ I

But f is of minimal degree so r = 0. Thus (f) = I. So K[x] is a PID.

Definition 4.16

Let K be a field. Then K[x, y] is the set of all multivariate polynomials in x, y,
defined by

K[x, y] =


n∑
i=0

 i∏
j=0

ai,jx
iyj

∣∣∣∣∣∣n ∈ N, ai,j ∈ K


Example 4.17

Let us consider some rings which are not PIDs.

Let R = K[x, y] for some field K. Then (x, y) ⊆ K[x, y] is not principal. To see this,
suppose (x, y) = (f) for some f ∈ K[x, y]. Then f |x and f |y. This is not possible
unless f is a unit. But (x, y) is the set of all polynomials with no constant term, so
(f) ̸= (x, y).
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Definition 4.17

Let I ⊆ R be an ideal. Then I is called a maximal ideal if I ̸= R and the only
ideal J ∈ R such that I ⊊ J is J = R. An ideal is called prime if for any r, s ∈ R
with rs ∈ I, we have r ∈ I or s ∈ I.

4.5 Symmetric Polynomials

In this section we lay the foundation for some of our later study of Galois theory.

Recall that for R a ring, R[x1, . . . , xn] represents the set of all multivariable polynomials
over R in variables x1, . . . , xn.

Definition 4.18

A polynomial p(x1, . . . , xn) ∈ R[x1, . . . , xn] is a symmetric polynomial if for any
permutation τ ∈ Sn we have

p(xτ(1), . . . , xτ(n)) = p(x1, . . . , xn)

In other words, p is stable under a permutation of the variables.

Example 4.18

x2 + y2 and x2 + 5xy + y2 are symmetric polynomials in R[x, y]. x2, xy + y2, and
x2 + 5xy + 2y2 are not symmetric polynomials in R[x, y].

For some key examples of symmetric polynomials, we have the following:

Definition 4.19

An elementary symmetric polynomial in R[u1, . . . , un] is a polynomial of the
form sm for some 0 ≤ m ≤ n, where

s0 = 1

s1 =
∑
i

ui = u1 + . . .+ un

s2 =
∑
i<j

uiuj = u1u2 + u1u3 + . . .

s3 =
∑
i<j<k

uiujuk

...

sn = u1u2 · · ·un
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Example 4.19

In R[x, y], the symmetric polynomials are 1, x + y, xy. In R[x, y, z], the elementary
symmetric polynomials are 1, x+ y + z, xy + yz + xz, xyz.

Elementary symmetric polynomials are important since they generate the set of all sym-
metric polynomials:

Theorem 4.12: Symmetric Function Theorem

Every symmetric polynomial g(u1, . . . , un) ∈ R[u1, . . . , un] can be written uniquely
(up to ordering) as a multivariable polynomial in the elementary symmetric polyno-
mials s1, . . . , sn.

We do not provide a proof of the Symmetric Function Theorem here; however, the
following examples demonstrate that the general strategy is to reduce the degree and factor
the resulting polynomial:

Example 4.20

x2 + y2 = (x+ y)2 − 2xy = s21 − 2s2

Example 4.21

x3 + y3 + z3 = (z3 + y3 + z3)− 3(x2y + x2z + y2x+ y2z + z2x+ z2y)

= s31 − 3(xy + yz + zx)(x+ y + z) + 9xyz

= s31 − 3s2s1 + 9s3

Remark 4.2

Let p(x) = (x − u1)(x − u2) · · · (x − un) be a polynomial with roots u1, . . . , un. By
Vieta’s formulas, p may be written as

p(x) = xn − s1x
n−1 + s2x

n−2 + . . .± sn

So Vieta’s formulas tell us that the coefficients of a polynomial are the symmetric
functions in the roots of the polynomial.

Example 4.22

(x− u1)(x− u2) = x2 − (u1 + u2)x+ u1u2 = x2 − s1x+ s2
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and similarly

(x− u1)(x− u2)(x− u3) = x3 − s1x
2 + s2x− s3

4.6 Quotient Rings

In this section we investigate a proper definition of quotient rings. As in the case of quotient
groups, quotient rings have the intuition of treating elements as equal up to an element of
the quotienting object. We will also use the intuition we have developed so far, where as
much work as possible in ring theory is delegated to group theory. For instance, a quotient
ring of a ring should also be a quotient group under addition. Thus, the important part is
to consider which choices of subgroup ensure that multiplication is well defined.

First, note that addition is commutative, so we can quotient by any subgroup. Let S ⊆ R
be an additive subgroup. Let x, y ∈ R. Then we have

(x+ S)(y + S) = xy + xS + yS + S2

We want the right side to be equal to xy+ S. This certainly happens when S is an ideal of
R, which was our motivation for defining ideals in the first place. In fact, this only happens
when S is an ideal. Thus the objects which make sense to quotient rings by are not subrings,
but ideals.

Definition 4.20

If I ⊆ R is an ideal and x, y ∈ R, then we write

x ≡ y (mod I) ⇐⇒ x− y ∈ I

Definition 4.21

Let I ⊆ R be an ideal. Then the quotient ring of R by I is the additive group R⧸I,
with the multiplicative operation

(x+ I)(y + I) := xy + I

and additive identity I, multiplicative identity 1 + I.

Proposition 4.13

R⧸I is a ring.

Proof. We check that multiplication is well defined:

Let r′ ≡ r (mod I) and s ≡ s′ (mod I). Write r′ = r + a and s′ = s+ b for a, b ∈ I. Then

r′s′ = (r + a)(s+ b) = rs+ as+ rb+ ab ∈ rs+ I
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Thus multiplication is well defined.

Most of the other properties are inherited from R. The only one we check is distributivity:

Let x, y, z ∈ R⧸I. We have

(x+ y)z = x+ yz − (x+ y)z = xz + yx = xz + yz = xz + yz

Consider the canonical map can : R → R⧸I. From the fact that can is a group homo-
morphism, we know that ker can = I.

As in the case of groups, this shows a deep connection between quotient objects, ideals, and
homomorphisms, which can be summarized in the first isomorphism theorem for rings.

Theorem 4.14: First Isomorphism Theorem for Rings

Let ϕ : R→ S be a surjective ring homomorphism. Let K = kerϕ. Then there exists

an isomorphism ψ : R⧸K
∼=−→ S such that the following diagram commutes:

R R⧸K Scan

ϕ

ψ

Proof. Define ψ such that ψ(r) = ϕ(r). Well-definedness and bijection follow from the first
isomorphism theorem for groups. To check that it is a ring homomorphism, let r, s ∈ R.
Then

ψ(rs) = ψ(rs) = ϕ(rs) = ϕ(r)ϕ(s) = ψ(r)ψ(s)

Also ψ(1) = ϕ(1) = 1.

Example 4.23

Consider the ring R[x] quotiented by the ideal I = (x2+1). We claim that R[x]⧸I ∼= C.
Note that f(x) ≡ r(x) (mod I) when r(x) is the remainder of division by x2 + 1. In

particular, r has degree ≤ 1, so R[x]⧸(x2 + 1) = {a+ bx : ab ∈ R} where x2 ≡ −1

(mod I). Thus the map sending ab+ x 7→ a+bi is an isomorphism R[x]⧸(x2 + 1)
∼=−→

C.

Another way to prove this isomorphism is to consider the homomorphism ϕ : R[x] →
C given by

ϕ(b0 + b1x+ . . .+ bmx
m) = b0 + b1i+ b2i

2 + . . .+ bmi
m

= (b0 − b2 + b4 − . . .) + i (b1 − b3 + b5 − . . .)

This isomorphism is essentialy given by ϕ(f) = f(i). This is surjective. To calculate
kerϕ, pick g(x) ∈ kerϕ. Then g(i) = 0. Since g has real coefficients, g(−i) = g(i) =
0 = 0. Thus (x − i)(x + i) = (x2 + 1)|g(x). So kerϕ ⊆ (x2 + 1). Also, one can
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manually check that (x2 + 1) ⊆ kerϕ. So by the first isomorphism theorem,

R[x]⧸(x2 + 1)
∼= imϕ = C

We observe that a similar construction can be done in other rings, giving

Z[x]⧸(x2 + 1)
∼= Z[i]

and
Q[x]⧸(x2 + 1)

∼= Q[i]

We can also use quotient rings to construct finite fields with non-prime numbers of
elements.

Example 4.24

Consider
K = F2[x]⧸(x2 + x+ 1)

This consists only of polynomials of degree at most 1, so

K = {a+ bx : a, b ∈ F2} = {0, 1, x, 1 + x}

We can also calculate the multiplication table as

0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 x

x+ 1 0 x+ 1 1 x

We can see that K is a nonzero domain where each nonzero element is invertible.
Thus it is a field with four elements.

Definition 4.22

A polynomial f ∈ R[x], where R is a ring, is called monic if the coefficient of the
highest degree term is 1R.

The importance of monic polynomials is that we can run long division by monic poly-
nomials. That is, if f ∈ R[x] is monic and g ∈ R[x] is arbitrary, then we can write
g(x) = q(x)f(x) + r(x) where q, r ∈ R[x] and r = 0 or deg(r) < deg(f).
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Theorem 4.15

Let f ∈ R[x] be monic and of degree n. Then every element of R[x]⧸(f) can be

uniquely written as
r0 + r1x+ . . .+ rn−1xn−1

for r0, . . . , rn−1 ∈ R.

The intuition is that if f(x) = b0 + b1x+ . . .+ bn−1x
n−1 + xn, then R[x]⧸(f) considers

all R-polynomials under the relation xn = −(b0 + . . .+ bn−1x
n−1).

Proof. Existence: every element of R[x]⧸(f) is of the form g for some g ∈ R[x]. Then write

g(x) = q(x)f(x) + r(x)

for q, r ∈ R[x] with r = 0 or deg r < n. It follows that

g(x) = q(x)f(x)︸ ︷︷ ︸
∈(f)

+r(x) = r(x)

Uniqueness: Suppose that

a0 + a1x+ . . .+ an−1xn−1 = b0 + b1x+ . . .+ bn−1xn−1

Then their difference is in (f), so

(a0 − b0) + (a1 − b1)x+ . . .+ (an−1 − bn−1)x
n−1 ∈ (f)

But since f is monic, every nonzero element of (f) has degree at least n. Thus a0 =
b0, . . . , an−1 = bn−1.

Theorem 4.16

Let K be a field and f ∈ K[x] an irreducible polynomial. Then K[x]⧸(f) is a field.

Proof. We just need to show that every nonzero element is invertible. Let g ∈ K[x] such that
g ̸= 0, which is equivalent to assuming that f does not divide g. Since f is irreducible, this
means that gcd(f, g) = 1. So by the Extended Euclidean algorithm, there exist u, v ∈ K[x]
such that

ug + vf = 1 =⇒ ug = 1

So g is invertible.

4.7 Algebraic Number Theory

Because rings are generalizations of Z, we can use results of ring theory to study the structure
of the integers, which is the field of algebraic number theory. Here, we will prove some results
to demonstrate how this may happen.
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Example 4.25

Find all integer solutions of the equation y2 = x3 + 1 with y even.

Write x3 = y2 − 1 = (y + 1)(y − 1). We claim that d = gcd(y + 1, y − 1) = 1. To see
this, we know d|(y+1)− (y− 1) = 2, so d = 1, 2. But y− 1, y+1 are odd so d = 1.

Since y + 1, y − 1 multiply to a cube but share no common factors, they must both
be cubes. So u3 = y + 1, v3 = y − 1 for u, v ∈ Z. But the only cubes that differ
by 2 (we can make a list and observe) are u = 1, v = −1. Thus the only solution is
y = 0, x = −1.

The above problem was purely number theoretic and required no ring theory. However,
if we instead change the problem to finding all integer solutions to y2 = x3 + 2, then our
approach cannot be purely number theoretic, since we will have to factor using

√
2. In other

words, we will need to make sense of prime decomposition and the gcd in Z[
√
2]. This will

motivate our work in the following.

Definition 4.23

Assume R is a domain. Then:

1. u ∈ R is called a unit if us = 1 for some s ∈ R, or equivalently if 1 ∈ (u).

2. a|b if there exists q ∈ R such that aq = b.

3. a and b are called associates if there exists a unit u such that au = b.

4. a is irreducible if it is not a unit and its only divisors are its associates or
units.

5. p is prime if it is not a unit and given ab ∈ R such that p|ab, then p|a or p|b.

Proposition 4.17

Let R be a domain and let p ∈ R be a (nonzero) prime element. Then p is irreducible.

Proof. Let p = ab for a, b ∈ R (nonzero). Since p is prime, we have p|a or p|b. Assume
without loss of generality that p|a. Then there exists r ∈ R such that pr = a. Then

a = pr = abs

so a(1 − bs) = 0. Thus b is a unit. So a is an associate and b is a unit. Thus p is
irreducible.

Note that over Z or K[x] where K is a field, then being prime and irreducible are
equivalent.

We note that when we began studying our elementary number theory in Z, we progressed
in the following order:
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1. Division Algorithm

2. Extended Euclidean Algorithm

3. Prime factorization

The above three do not always hold in rings. Thus we will separately study Euclidean rings,
where the division algorithm holds, PIDs, where the extended Euclidean algorithm holds,
and unique factorization domains, where prime factorization holds.

Definition 4.24

A domain R is called a Euclidean ring if there exists a function (called a valuation)

ν : R→ Z≥0

such that for a, b ∈ R with b ̸= 0, there exists q, r ∈ R such that a = qb+r and r = 0
or ν(r) < ν(b).

Example 4.26

1. Z is Euclidean under the valuation ν(a) = |a|.

2. K[x] is Euclidean under the valuation ν(f) = deg(f).

3. Z[i] is Euclidean under the valuation ν(x+ iy) = x2 + y2 = |z|2.

4. Z[
√
−2] is Euclidean under the valuation ν(x+ y

√
−2) = x2 + 2y2.

Note that Z[
√
d] is Euclidean with the valuation ν(x + y

√
d) = x2 − dy2 if and only

if d = −2,−1, 2, 3, 6, 7, 11, 19. It is also multiplicative (even when it is not actually a
valuation).

Proposition 4.18

Let d ≥ 1. Then z ∈ Z[
√
−d] is a unit if and only if ν(z) = 1 (even when ν is not a

valuation).

In particular, if ν(a+ b
√
−d) = 1, then a2 + db2 = 1, so:

• If d = 1 then a = ±1 or b = ±1. In other words, the units in Z[i] are ±1,±i.

• If d > 1 then b = 0 and a = ±1. So the only units are ±1.

Proof. If z is a unit, then zw = 1 for w ∈ Z[
√
−d]. Thus 1 = ν(zw) = ν(z)ν(w) so

ν(z) = 1.
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Example 4.27

To see that not all values of d work, consider Z[
√
−3]. We show that Z[

√
−3] is not

a UFD, which we define shortly. We will also show that being a Euclidean domain
implies that a ring is a UFD. Thus if Z[

√
−3] is not a UFD, it is not Euclidean. To

see this, first note that

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3)

So we have two distinct factorizations. We need to show that the factorizations
are by irreducible elements. To show that 2 is irreducible, suppose 2 = zw for some
z, w ∈ Z[

√
−3]. Since ν is multiplicative (we don’t know a priori that it is a valuation,

since it is not, but it is multiplicative regardless),

4 = ν(2) = ν(z)ν(w)

If 2 is reducible then by Proposition 4.18, ν(z) = ν(w) = 2. But a2 + 3b2 is never
equal to 2. So 2 is irreducible. The same argument holds since ν(1 +

√
−3) = 4 as

well. Thus if Z[
√
−2] is UFD, we must have that 2|1 +

√
−3 or 1 −

√
−3. But if

1+
√
−3 = 2(a+ b

√
−3) then 2|1, which is impossible. So Z[

√
−3] is not a UFD and

hence not Euclidean.

We now consider PIDs. Let R be a PID and let d ∈ R be such that (r, s) = (d). We
define gcd(r, s) = d, which is well defined up to associates. In particular, if gcd(r, s) is a
unit, then (r, s) = (1) so there exist u, v ∈ R such that uv + rs = 1.

Proposition 4.19: Euclid’s Lemma

Let R be a PID and p ∈ R irreducible. Then p is prime.

Definition 4.25

A unique factorization domain is a domain R such that for any r ∈ R, there
exist p1, . . . , pk irreducible such that r = p1 · · · pk, and the factorization is unique up
to reordering and associates.

Theorem 4.20

Every PID is a UFD.

Proof. The uniqueness follows as in Z. To show existence, we apply the following algorithm:

1. If r is irreducible then we are done.

2. Otherwise, write r = ab. If a, b are irreducible, then we are done.

3. Otherwise pick one which is reducible and split it again.
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4. Continue until this terminates.

Showing that the process terminates in the general case is somewhat difficult. However, in
cases such as Z,K[x],Z[i],Z[

√
−2], the valuation of the reducibles decreases at each step,

so by infinite descent it will terminate.

We use the following to give some more proofs from number theory in the first few
sections of these notes.

Theorem

Let p ̸= 2 be a prime. Then p = x2 + y2 for some x, y ∈ Z if and only if p ≡ 1
(mod 4).

Recall the following:

Lemma

If p is odd then −1 is a quadratic residue mod p if and only if p ≡ 1 (mod 4).

The point is that x2 + y2 = (x+ iy)(x− iy), so if p can be written as a sum of squares,
then it is not prime in Z[i]. Thus we need to find when p is or is not prime in Z[i].

Lemma

Let p be a prime in Z. If p ≡ 1 (mod 4), then p is not prime in Z[i].

Proof. By the previous lemma, there exists x ∈ Z such that p|x2 +1. Suppose p is prime in
Z[i]. Then p|(x− i)(x+ i) but p divides neither since it does not divide ±1.

Proof of Theorem. Suppose p ≡ 3 (mod 4). Then p is not a sum of squares since −1 is not a
quadratic residue. If p ≡ 1 (mod 4) then p is not a prime in Z[i]. Thus there exist nonunits
z, w ∈ Z[i] such that p = zw. Since p2 = ν(p) = ν(z)ν(w), then ν(z) = ν(w) = p. Write
z = x+ yi. Then p = ν(z) = x2 + y2.

4.8 Modules

We now arrive at the concept of modules, which generalize the concept of a vector space
to work over rings instead of fields. Indeed, the vector space axioms all make sense when
expressed in terms of ring elements; however, many nice properties do not hold in modules.
Nevertheless, the concept of a module is very important for extending linear algebra to even
more general settings.

Definition 4.26

Let R be a ring. Then a module over R, or an R-module, is an abelian group (M,+)
admitting an action · : R×M →M such that for all r, s ∈ R, v, v′ ∈M ,
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1. 1 · v = v for all v ∈M ,

2. (rs) · v = r · (s · v),

3. (r + s) · v = r · v + s · v,

4. r · (v + v′) = r · v + r · v′.

Notice that the module axioms are precisely those for a vector space, just over a ring
instead of a vector space. In particular, a vector space over a field K is a K-module. Let
us consider some other examples of modules.

Example 4.28

If R is a ring, then Rn is an R-module. For instance, the lattice Z2 is a module over
Z.

Example 4.29

If I is an ideal of R, then R⧸I is an R-module.

The definition of a module implies that a module is an abelian group. But moreover
we can a Z-module structure over any abelian group using repeated addition. That is, for
n ∈ N, g ∈ G we define

n · g = g + . . .+ g︸ ︷︷ ︸
n times

and (−n) · g = −(n · g). Thus abelian groups and Z-modules are precisely the same things.

Definition 4.27

Let M be an R-module. Then a subset N ⊆M is called a submodule if it is closed
under addition and scalar multiplication by R.

Example 4.30

Z⧸4Z is a Z-module. Then 2Z⧸4Z ∼= Z⧸2Z is a submodule.

Note that the correspondence between abelian groups and Z-modules implies that any
submodule of a Z-module is just a subgroup.

Definition 4.28

Let M,N be R-modules. Then φ :M → N is an R-module homomorphism if:

1. φ is a group homomorphism.
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2. φ(rm) = rφ(m) for all r,∈ R,m ∈M .

In particular, a bijective module homomorphism is a module isomorphism.

Definition 4.29

Let N ⊆M be a submodule. Then we define the quotient module to be

M⧸N := {m+N : m ∈M}

In particular, this is indeed an R-module.

Definition 4.30

Let M be a R-module and let m1, . . . ,mk ∈M .

1. We say that m1, . . . ,mk span or generate M if every m ∈M can be written
as

m = r1m1 + . . .+ rkmk

for r1, . . . , rk ∈ R. If M admits a finite spanning set then M is said to be
finitely generated.

2. We say that m1, . . . ,mk are R-linearly independent if

r1m1 + . . .+ rkmk = 0 =⇒ r1 = . . . = rk = 0

3. We say that m1, . . .mk is a basis of M if 1 and 2 hold.

Definition 4.31

An R-module is called a free module if M ∼= Rn for some n.

Proposition 4.21

An R-module M is free if and only if it admits a basis.

Proof. ( =⇒ ) If M ∼= Rn then a basis is e1, . . . , en, where

ei =
[
0 . . . 1 . . . 0

]T
( ⇐= ). If M admits a basis, then we construct an isomorphism Rn →M by definingr1...

rn

 7→ r1m1 + . . .+ rkmk

which is an isomorphism.
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Example 4.31

Z⧸5Z is not a free Z-module, since for any x ∈ Z⧸5Z, 5x = 0. So it admits no linearly
independent sets. (It is also of finite cardinality, and every free Z-module is infinite
or zero.)

Example 4.32

Let us construct a basis for

V =


xy
z

∣∣∣∣∣∣x+ y + z

 ⊆ Z3

Since z = −x− y, we have xy
z

 = x

 1
0
−1

+ y

 0
1
−1


and we can check that these are Z-linearly independent, so

 1
0
−1

 ,
 0

1
−1


is a basis.

Example 4.33

Let us construct a basis for

V =

{[
x
y

]∣∣∣∣5x+ 7y = 0

}
⊆ Z2

We cannot apply the same trick from the previous example since we cannot divide
by 5. Instead, we observe that if 5x+7y = 0, then 5|y and 7|x. So if y = 5a, x = 7b,
then 35b+35a = 0, which implies that b = −a. So any vector in V is given (uniquely)
by [

x
y

]
=

[
7a
−5a

]
= a

[
7
−5

]
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Example 4.34

Let

V =


xy
z

∣∣∣∣∣∣5x+ 7y + 11z = 0

 ⊆ Z3

Over Q this suggests the basis 
− 7

5
1
0

 ,
− 11

5
0
1


which suggests the following basis over Z:

−7
5
0

 ,
−11

0
5


However, the element −5

2
1

 /∈ span


−7

5
0

 ,
−11

0
5


This because every element in the span has a third coordinate divisible by 5. Instead,
we can run the extended Euclidean algorithm to instead get the basis

−7
5
0

 ,
−5

2
1


Definition 4.32

Let M be an R-module for R a domain. We say that M is torsion-free if given
R ∈ R, m ∈M \ {0}, we have

rm = 0 ⇐⇒ r = 0

Example 4.35

Z2 is torsion free over Z, but Z⧸5Z is not (nor is any Z⧸nZ).

The following is a weak version of the main theorem for modules.
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Theorem 4.22

Let R be a PID. If M is a torsion-free, finitely generated R-module, then M admits
a basis.

However, many modules are not torsion-free. To generalize this, we need to weaken our
notion of a basis.

Definition 4.33

If R is a domain and M an R-module, then {m1, . . . ,mk} ⊆ M is called a weak
basis with torsion {d1, . . . , dk} ⊆ R if:

1. m1, . . . ,mk span M .

2. d1m1 = d2m2 = . . . = dkmk = 0.

3. Any linear relation r1m1+. . .+rkmk = 0 is an R-linear combination of relations
in (2).

Example 4.36

Let M = Z⧸2Z × Z⧸3Z × Z be a Z-module (recall that any abelian group can be
considered canonically as a Z-module). Then e1, e2, e3 span M , and is a weak basis
with torsion 2, 3, 0.

Notice that if M is torsion free, then the only choice of di for (2) is d1 = . . . = dk = 0.
Thus (3) gives us that any weak basis is actually just a basis.

The key point here is that ifM admits a weak basis m1, . . . ,mk with torsion d1, . . . , dk ∈ R,
then

M ∼= R⧸(d1)× . . .×R⧸(dk)
This can be seen using the mapping from the RHS to the LHS given byr1...

rk

 7→ r1m1 + . . .+ rkmk

where ri ∈ R⧸(di). This is defined since dimi = 0.

We can now state the stronger version of the main theorem for modules, as well as an
immediate corollary, which we will then prove.
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Theorem 4.23

Let R be a PID andM a finitely generated R-module. ThenM admits a weak basis,
and therefore there exist d1, . . . , dk ∈ R such that

M ∼= R⧸(d1)× . . .×R⧸(dk)

Since we can consider abelian groups as Z-modules, we can then apply this theorem to
classify all finitely generated abelian groups.

Corollary 4.24: Classification of Finitely Generated Abelian Groups

Let G be a finitely generated abelian group. Then there exist nonzero integers
a1, . . . , ak ∈ Z and m ∈ Z such that

G ∼= Z⧸a1Z× . . .× Z⧸akZ× Zm

Note that Zm factor comes from a number of products of the form Z⧸0Z, which represents
the non-torsion part of the group. In particular, any finite abelian group is a product of
finite cyclic groups.

We now consider the main theorem. Consider the setting of a vector space V over some
field K, with L : V → V a linear map.

Definition 4.34

Let V be a finite dimensional vector space over K a field, and L : V → V a linear
map. Define V as a module over K[x] by defining

p(x) · v := p(L)v

for p ∈ K[x], v ∈ V .

For instance, we define (2+32)v = 2v+3L2(v). Note that as aK-module, V is isomorphic
to the free module K × . . .×K. However, using K[x]-structure, we get a different result.

Theorem 4.25

Let V be a vector space over K, and L : V → V a linear map. Define V as a module
over K[x] as above. Then in the category of K[x] modules,

V ∼= K[x]⧸(f1)× . . .×K[x]⧸(fk)

for f1, . . . , fk ∈ K[x] nonzero.

Note that by the Chinese remainder theorem, we may assume fi = gαi
i where gi are each
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irreducible, since otherwise we would have f = gh and

K[x]⧸(f) ∼=
K[x]⧸(g)×

K[x]⧸(h)

This result allows us to prove the Jordan canonical form much more easily than we did by
hand in linear algebra.

Corollary 4.26

Let V be a finite dimensional complex vector space and A an n× n matrix. Then A
is similar to a matrix of the form

A ∼

J1 O
. . .

O Jk


where each Ji is a Jordan block of the form

Ji =


λi 1 O

. . .
. . .

. . . 1
O λi


Proof. By the fundamental theorem of algebra, irreducible polynomials in C[x] are linear,
so applying the previous theorem with L = LA, there exist ai ∈ C, bi ∈ N such that

V ∼= C[x]⧸(x− a1)
b1 × . . .× C[x]⧸(x− ak)

bk

Consider first the case that k = 1. Then C[x]⧸(x− a)b has a basis

1, (x− a), (x− a)2, . . . , (x− a)b−1

Then passing through the isomorphism, these map to some basis of V given by v0, . . . , vb−1.
Let us consider how A acts on each vi. Factoring through the isomorphism and our choice
module structure, Avi corresponds to multiplying (x− a)i by x on the left, which is

x(x− a)i = (x− a)i+1 + a(x− a)i

so
Avi = vi+1 + avi

(If i = b − 1, then (x − a)b = 0 so that term drops out). Thus the matrix of A in the
coordinates of vb−1, . . . , v0 (note the order of the basis), we have

A ∼


a 1 O

. . .
. . .

. . . 1
O a
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For the general case, we can take each of the factors C[x]⧸(x− ai)
bi and concatenate the

bases.

We now prove the main theorem in the case of finitely generated abelian groups (Z-
modules), but the theorem holds with more work for arbitrary R-modules for R a PID.

To do this, we first examine the Gaussian algorithm for integer matrices. This algorithm
presents a method of reducing an arbitrary n × m matrix with integer coefficients to a
diagonal matrix, using only elementary row and/or column operations.

Example 4.37

Let A =

[
2 3
2 5

]
. Then we apply operations:

[
2 3
2 5

]
→
[
2 3
0 2

]
→
[
2 1
0 2

]
→
[
0 1
−4 2

]
→
[
1 0
2 −4

]
→
[
1 0
0 −4

]

Notice that in the above example, we essentially just ran the Euclidean algorithm on the
rows of the matrix. This procedure leads to the Gaussian algorithm:

1. Given a, b ∈ Z we can run the extended Euclidean algorithm, so that by swapping a, b
and replacing (a, b) with (a−b, b) or (a, b−a), we eventually end up with (d, 0), where
d = gcd(a, b).

2. If we have a list of integers (a1, . . . , ak), then we can do the same to get (d, 0, . . . , 0)
where d = gcd(a1, . . . , ak).

3. We can run this algorithm on the first column of A by adding, subtracting, and
swapping rows to get

A 7→


d ∗ ∗ ∗
0 ∗ ∗ ∗
... ∗ ∗ ∗
0 ∗ ∗ ∗


4. Multiply by −1 if necessary, so we assume d ≥ 0. Then:

(a) If d = 0 then the whole column is zero, and we just run the algorithm on the
remaning n× (m− 1) submatrix.

(b) If d > 0 and every other element in the first row is divisible by d, then we can
clear the first row and then run the algorithm on the remaining (n−1)× (m−1)
matrix.

(c) If d > 0 but it does not divide some element in the first row, then we can run
(3) on the first row instead of the first column. This will give us a matrix of the
form d

′ . . . ∗
...

. . .
...

∗ . . . ∗
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where d′ < d. We now return to (3) and run it again. Since d′ < d, our new
gcd will be less than d. By infinite descent, this process must terminate at some
point, so we will eventually end up in case (a) or (b).

Thus we have shown that we may reduce the matrix to the form

d1 0 0 0 0 0 0
0 d2 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0 dk 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0


With some extra work, we can also guarantee that d1|d2| . . . |dk.

Example 4.38

Consider the Z-module M = Z2
⧸N , where

N = Z
[
2
3

]
+ Z

[
2
5

]
and consider e1, e2 ∈M . We have 2e1 + 3e2 = 0, and 2e1 + 5e2 = 0. So we have the
system of equations {

2e1 + 3e2 = 0

2e1 + 5e2 = 0

We can add and subtract these relations to get equivalent relations, which gives{
e1 + 3e2 = 0

2e2 = 0

We could have also added or subtracted columns, which amounts to a change of
basis. For instance, let r ∈ Z and set v1 = e1 − re2, v2 = e2. Then{

v1 + (3 + 2r)v2 = 0
2v1 + (5 + 2r)v2 = 0

so as a matrix operation, we have performed column addition:[
2 3
2 5

]
7→
[
2 3 + 2r
2 5 + 2r

]
Thus adding and subtracting columns is a change of basis. By applying the Gaussian
algorithm to the matrix, which we did before, we observe that

w1 = e2 + (2e1 + e2), w2 = e1 + e2

satisfies the relations and thus we have found a weak basis.
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We now prove the main theorem.

Proof of Theorem 4.23. Let x1, . . . , xn ∈ G be generators. Consider the set of all relations
between them; that is,

a1x1 + . . .+ anxn = 0

for ai ∈ Z.

Considering a simplified case, assume that finitely many relations generate the rest (under
Z-linear combinations). Then we can embed these into a m × n matrix, and then run the
Gaussian algorithm. This gives us a diagonal matrix of the form

d1
. . .

dk
0

. . .

0


This gives us generators y1, . . . , yk ∈ G such that d1y1 = . . . = dkyk = 0, with di ̸= 0. Then
we have a weak basis, and

G ∼= Z⧸d1Z× . . .× Z⧸dkZ× Zn−k

In the general case, let m > 0 and pick m of the relations. Then disregarding the other
relations,

G ∼= Z⧸d1Z× . . .× Z⧸dkZ× Zn−k

If we add another relation which is independent of the rest, we will have

G ∼= Z⧸c1Z× . . .× Z⧸clZ× Zn−l

where l ≤ k and ci ≤ di. By descent, this process terminates at some point, and we are
done.
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Chapter 5

Fields and Galois Theory

We now turn our attention to the final algebraic structure in this course: fields. In this
chapter, our primary motivating examples will be Q and C. We will see how the theory
of field extensions leads to results in algebraic number theory, and we will examine basic
results in Galois theory as well.

5.1 Field Extensions

Here we will work with abstract fields, but our primary examples will be K = Q, L = C.
This is because C is the algebraic closure of Q, and we don’t want to take K = R since R
only admits a single extension, which is directly to C.

Definition 5.1

We say that K ⊆ L is a field extension if K is a subfield of L. For a field extension
K ⊆ L, we say α ∈ L is algebraic over K if there exists p ∈ K[x] such that p(α) = 0.

Example 5.1

i is algebraic over Q, since it is the root of x2 + 1. Similarly
√
3 is algebraic over Q

since it is the root of x2 − 3. On the other hand, π, e are not algebraic over Q (so
they are transcendental.)

Definition 5.2

If K ⊆ L is a field extension and α ∈ L is algebraic, then f ∈ K[x] is called
a minimal polynomial of α if f(α) = 0 and deg(f) is minimal among monic
polynomials vanishing on α.

Note that this is precisely the definition of the minimal polynomial of a matrix, so it is
no surprise that we also have uniqueness here:

92



Proposition 5.1

Let f be a minimal polynomial of α ∈ L. Let g ∈ K[x] be such that g(α) = 0. Then
f |g.

Proof. Run the division algorithm to write

g = qf + r

where r = 0 or deg(r) < deg(f). It follows that r(α) = 0, but if deg(r) < deg(f) then
this contradicts minimality (r may not be monic but we can rescale it), so r = 0 and thus
f |g.

Proposition 5.2

The minimal polynomial of α ∈ L is unique.

Proof. If f, g are minimal polynomials, then f |g and g|f . Both are monic, so f = g.

Lemma 5.3

Minimal polynomials are irreducible.

Proof. Let f be the minimal polynomial of α ∈ L, and write f = f1f2 for f1, f2 ∈ K[x]
nonunits. Then

0 = f(α) = f1(α)f2(α)

Since we are working over a field, f1(α) = 0 or f2(α) = 0, contradiction.

We now formalize a specific way of constructing a field extension, which is critical to the
study of fields.

Definition 5.3

Let K ⊆ L be a field extension and α ∈ L. Then define K[α] ⊆ L (read ”K adjoin
α”) to be

K[α] := {b0 + b1α+ . . .+ bmα
m : m ∈ N, bi ∈ K}

Example 5.2

We can write Q[i] = {a + bi : a, b ∈ Q}. We do not need higher powers of i since
they reduce back to Q using the relation i2 = −1.

Example 5.3

Q[
√
3] = {a+ b

√
3 : a, b ∈ Q}. Again, we only need two terms since (

√
3)2 = 3.
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Example 5.4

Q[ζ3], with ζ3 = e
2πi
3 . This is {a+ bζ3 : a, b ∈ Q}, since ζ23 = −ζ3 − 1.

As we saw from the above examples, we can often consider only combinations with a
bounded number of terms. Thge following gives a sufficient condition for this:

Lemma 5.4

Let f be the minimal polynomial of α, and let n = deg f . Then every element in
K[α] can be uniquely written as

b0 + b1α+ . . .+ bn−1α
n−1

where bi ∈ K.

Proof. Uniqueness follows easily by subtracting two such presentations, since otherwise we
have a polynomial of smaller degree than n vanishing on α.

To show existence, write γ = g(α) for γ ∈ K[α]. Then running the division algorithm, we
have

γ = g(α) = q(α)f(α) + r(α) = r(α)

and since deg(r) < deg(f) = n,

γ = b0 + b1α+ . . .+ bn−1α
n−1

The following theorem allows us to tie together our study of polynomials and algebraic
extensions:

Theorem 5.5

Let α ∈ L be algebraic over K, and f be the minimal polynomial of α. Then

K[α] ∼= K[x]⧸(f)

Proof. Consider the homomorphism ϕ : K[x] → K[α] defined by ϕ(f) = f(α). The image
is all of K[α] by definition, so ϕ is surjective. The kernel is those polynomials that vanish
on α, but Proposition 5.1 showed that this is precisely (f).

Corollary 5.6

For α ∈ L algebraic over K, K[α] is a field.

Proof. f is minimal, so it is irreducible, and thus K[x]⧸(f) ∼= K[α] is a field.
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Definition 5.4

For a field extension K ⊆ L, we define K(α) to be the smallest subfield of L con-
taining α ∈ L and K. We have just shown that when α is algebraic, K[α] = K(α).

We observe that if K ⊆ L is a field extension, then L is a vector space over K.

Definition 5.5

Let K ⊆ L be a field extension. Then we define the degree of the extension L⧸K
to be [L : K] = dim(L) as a K-vector space. We say that a field extension L⧸K is a
finite extension if [L : K] <∞.

Example 5.5

Since Q(i) = {a+ bi : a, b ∈ Q}, [Q(i) : Q] = 2. Similarly [C : R] = 2.

Notice that if f is the minimal polynomial of α ∈ L, then [K(α) : K] = deg f . This is
because we can uniquely write elements ofK[α] as b0+b1α+. . .+bn−1α

n−1, so 1, α, . . . , αn−1

is a basis of K(α). This also implies that K(α) is always a finite extension for algebraic
α ∈ L. Later we will see that every finite extension is of this form.

Proposition 5.7

Let L⧸K be a field extension, and let α ∈ L. Then [K(α) : K] is finite if and only if
α is algebraic over K.

Proof. ( ⇐= ) As we just stated, [K(α) : K] = deg(f) = n <∞.

( =⇒ ) Let [K(α) : K] = n. Then consider 1, α, . . . , αn. These elements are linearly
dependent so there exists a relation

a0 + a1α+ . . .+ anα
n = 0

with ai ∈ K. This implies that α is algebraic over K.

Proposition 5.8

Let F ⊆ K ⊆ L be field extensions. Then [L : F ] = [L : K][K : F ].

Proof. Pick a basis α1, . . . , αm ∈ L over K, and a basis β1, . . . , βn ∈ K over F . We want to
show that the collection of αiβj is a basis for L over F .

To show it is a spanning set, pick α ∈ L and write

α =
∑
i

kiαi
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for ki ∈ K. Then for each ki we can write

ki =
∑
j

fijβj

for fij ∈ F . Then

α =
∑
i,j

fijαiβj

so the set spans L.

To show linear independence over F , suppose we have some linear relation∑
i,j

fijαiβj = 0

for fi,j ∈ F . Then we can rewrite this as

∑
i

∑
j

fi,jβj

αi = 0

By the linear independence of the αi over K, each
∑
j fi,jβj must be zero. But then by

linear independence of the βj over F , the fi,j must all be zero. So the αiβj are linearly
independent over F .

Example 5.6

Consider the field extensions Q ⊆ Q(
√
2) ⊆ Q(i,

√
2). We have [Q(

√
2) : Q] = 2 and

[Q(i,
√
2) : Q(

√
2)] = 2, so [Q(i,

√
2) : Q] = 4.

So far we have allowed field extensions to be arbitrary inclusions, and not necessarily
produced by adjoining elements. However, the following theorem (whose proof we omit),
shows that in the case of fields with characteristic zero, fields produced by adjoining elements
account for all extensions.

Definition 5.6

Let K ⊆ L be a field extension. Then α ∈ L is primitive if L = K(α).

Theorem 5.9: Primitive Element Theorem

Let L⧸K be a finite field extension of fields of characteristic zero. Then L contains a
primitive element.
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Example 5.7

Consider K = Q and L = Q(
√
2,
√
3). Then L = Q(

√
2 +

√
3).

To see this, we of course have the inclusion

Q ⊆ Q(
√
2 +

√
3) ⊆ Q(

√
2,
√
3)

But we can check that [Q(
√
2,
√
3) : Q] = 4, and one can check that the minimal

polynomial of
√
2 +

√
3 is x4 − 10x2 + 1, so [Q(

√
2 +

√
3) : Q] = 4. So [Q(

√
2,
√
3) :

Q(
√
2 +

√
3)] = 1 and thus Q(

√
2 +

√
3) = Q(

√
2,
√
3).

5.2 Splitting Fields

In this section we consider fields K such that Q ⊆ K ⊆ C. More generally, we can consider
algebraically closed fields instead of C.

Definition 5.7

Let Q ⊆ K ⊆ C and let f ∈ K[x]. By the fundamental theorem of algebra, we can
write

f = (x− α1) · · · (x− αn)

for αi ∈ C. Then we define the splitting field of f over K to be

SplitC/K(f) := K[α1, . . . , αn] ⊆ C

Proposition 5.10

A splitting field is indeed a field.

In particular, a splitting field is the smallest field extension of K in which f splits into
linear factors. Thus we will also write K(α1, . . . , αn) = K[α1, . . . , αn].

Definition 5.8

A number field is a field K ⊇ Q which is of finite degree.

Example 5.8

The splitting field of x2 + 1 over Q is

SplitC/Q = Q(i,−i) = Q(i)
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Example 5.9

The splitting field of x4 − 2 over Q can be seen by writing

x4 − 2 = (x− 4
√
2)(x− ζ4

4
√
2)(x− ζ24

4
√
2)(x− ζ34

4
√
2)

Also, ζ4 = i. So the splitting field is Q( 4
√
2, i 4

√
2, i2 4

√
2, i3 4

√
2). But some of these are

redundant, and we can just write this as Q( 4
√
2, i).

Example 5.10

The splitting field of x3 − 2 over Q can be seen by writing

x3 − 2 = (x− 3
√
2)(x− 3

√
2ζ3)(x− 3

√
2ζ23 )

so
SplitC/Q(x

3 − 2) = Q(
3
√
2,

3
√
2ζ3,

3
√
2ζ23 ) = Q(

3
√
2, ζ3)

To calculate its degree, we have [Q( 3
√
2) : Q] = 3 since the minimal polynomial of

3
√
2 is x3 − 2.

Now consider what happens when we adjoin ζ3 to Q( 3
√
2). The polynomial x3 − 2 is

no longer irreducible since we have adjoined a root, so can be factored over Q( 3
√
2)

into
x3 − 2 = (x− 3

√
2)(x2 +

3
√
2x+

3
√
4)

But since Q( 3
√
2) ⊆ R, and 3

√
2ζ3 is a strictly complex root of the second factor,

the second factor must be irreducible. Also, Q( 3
√
2, 3

√
2ζ3) = Q( 3

√
2, ζ3). Thus

[Q( 3
√
2, ζ3) : Q( 3

√
2)] = 2 so [Q( 3

√
2, ζ3) : Q] = 6.

So far we have defined a splitting field of a polynomial, as though splitting fields are
objects associated with polynomials. But in fact, we will see that fields which are splitting
fields posses an important property which is independent of the polynomial: every polyno-
mial with one root in the splitting field splits completely into linear factors.

To see that this is true for f over SplitC/K(f) is clear: by definition, the roots of f , which
are α1, . . . , αn, are all in SplitC/K(f). But then this means that f factors into linear terms:

f(x) = (x− α1) · · · (x− αn)

Definition 5.9

For Q ⊆ K ⊆ L ⊆ C, L is called a splitting field over K if it is a splitting field of
some polynomial with coefficients in K.
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Example 5.11

To see a demonstration of this property, consider L = Q( 3
√
2, ζ3) = SplitC/Q(x

3 − 2).

Take f = x3 − 4, which is an irreducible polynomial in Q[x] which has a root in L.
This polynomial indeed splits, since

x3 − 4 = (x− 3
√
4)(x− 3

√
4ζ3)(x− 3

√
4ζ23 )

Theorem 5.11

Let Q ⊆ K ⊆ L ⊆ C be a splitting field over K. Let g ∈ K[x] be irreducible. Then
if one root of g is in K, then all roots of g are in L.

A corollary to this theorem allows us to finally decouple the notion of a splitting field
from an arbitrary choice of polynomial:

Corollary 5.12

Let K ⊆ L ⊆ C. Then L is a splitting field over K if and only if every irreducible
polynomial in K[x] with a root in L splits completely over L.

5.3 Automorphism Groups and Galois Groups

In this section we will consider the automorphisms of a field extension, which essentially tell
us how many degrees of freedom or how ”unique” the extension is.

Definition 5.10

A field automorphism, or just an automorphism, of a fieldK is a field isomorphism
ψ : K → K.

Example 5.12

Consider the map σ : Q(i) → Q(i) defined by σ(a+ bi) = a+ bi = a− bi. Complex
conjugation is an automorphism of C, and this operation is closed over Q(i), so it is
a field automorphism of Q(i). Importantly, we also note that σ fixes the subfield Q.

Definition 5.11

If K ⊆ L, we call σ : L → L a K-automorphism if it is an automorphism of L
which fixes K.

99



Definition 5.12

The Galois group of a field extension K⧸L is the group Gal
(
L⧸K

)
of all K-

automorphisms of L.

K-automorphisms generalize the notion of conjugation over the complex numbers, which
is a R-automorphism. As such, we adopt analogous terminology.

Definition 5.13

Let K ⊆ L ⊆ C and let α ∈ L. Then we say that β ∈ L is conjugate to α if there
exists a K-automorphism σ : L→ L such that σ(α) = β.

This now allows us to define the norm of an element with respect to a field extension.
Roughly speaking, the norm of α is the product of all conjugates of α.

Definition 5.14

For α ∈ L a field and L ⊆ K, we define the norm of α over K to be

NL/K(α) =
∏

σ∈Gal(L⧸K)

σ(α)

We will see later that that NL/K(α) ∈ K, and that NL/K is multiplicative.

In particular, NL/K(k) = k for k ∈ K.

The important property of Galois groups is that∣∣∣Gal
(
L⧸K

)∣∣∣ ≤ [L : K] (∗)

Before proving this, we will first use this property to calculate some Galois groups.

Example 5.13

For R ⊆ C, Gal
(
R⧸C

)
= {id, z 7→ z} (there are no more since [C : R] = 2). This

induces the norm NC/R(a + bi) = id(a + bi) · a+ bi = a2 + b2 which coincides with
the typical norm.

Example 5.14

For Q ⊆ Q(i), Gal
(
Q(i)⧸Q

)
= {id, z 7→ z}.
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Example 5.15

For Q ⊆ Q(
√
2), Gal

(
Q(

√
2)⧸Q

)
= {id, a + b

√
2 7→ a − b

√
2}, which induces the

norm NQ(
√
2)/Q(a+ b

√
2) = (a+ b

√
2)(a− b

√
2) = a2 − 2b2.

Example 5.16

For Q ⊆ Q(ζ3), Gal
(
Q(ζ3)⧸Q

)
= {id, a+ bζ3 7→ a+ bζ23}.

To prove (∗), we need the important fact that the conjugations admitted by the Galois
group map roots of polynomials to roots:

Lemma 5.13

Let K ⊆ L be a field extension and α ∈ L. Let p ∈ K[x] be such that p(α) = 0.

Then for any σ ∈ Gal
(
L⧸K

)
, p(σ(a)) = 0.

Proof. Write p(x) = b0 + b1x+ . . .+ bmx
m with bi ∈ K. Then σ fixes bi, so

0 = σ(p(α)) = σ(b0 + b1α+ . . .+ bmα
m) = b0 + b1σ(α) + . . .+ bmσ(α)

m = p(σ(α))

Example 5.17

Let σ : C → C be the conjugation operator, and taking p(x) = x8 − 1 ∈ R[x],
α =

√
2
2 +

√
2
2 i is a root, and

p(σ(α)) =

(√
2

2
−

√
2

2
i

)8

− 1 = 0

Corollary 5.14

For K ⊆ L and any α ∈ L algebraic over K with minimal polynomial f ∈ K[x], and

σ ∈ Gal
(
L⧸K

)
, the minimal polynomial of σ(α) is also f .

Proof. Let g be the minimal polynomial of σ(α). Then f(α) = f(σ(α)) = 0, so g|f . By
applying the same to σ−1, f |g, so f = g.

We now need to investigate how to compute the Galois group. Assuming we are working
over a field of characteristic zero, this is simplified by the Primitive Element Theorem, which
tells us that field extensions have primitive elements.
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Lemma 5.15

Let L = K(α) for some α ∈ L. Let σ ∈ Gal
(
L⧸K

)
. Then σ is uniquely determined

by σ(α).

Proof. Let σ(α) = β ∈ L. Any element of L may be written as

b0 + b1α+ . . .+ bmα
m

for bi ∈ K. Since σ is a K-automorphism,

σ(b0 + b1α+ . . .+ bmα
m) = b0 + b1β + . . .+ bmβ

m

Lemma 5.16

Let L = K(α) and let f ∈ K[x] be the minimal polynomial of α over K. Let β ∈ L
be another root of f . Then there exists a unique σ : L→ L such that σ(α) = β. We
denote this by σα→β .

Proof. Uniqueness follows immediately by Lemma 5.15.

f is irreducible over K, since it is a minimal polynomial. Thus f is also the minimal
polynomial of β over K. Thus [K(α) : K] = [K(β) : K] = deg f . Since β ∈ L,
K ⊆ K(β) ⊆ L = K(α), so it follows that K(β) = K(α).

We want to find an isomorphism between K(β),K(α) that sends α to β. This is straight-
forward, since we know there exist

ϕ : K[x]⧸(f)
∼=−→ K(α), x 7→ α

ψ : K[x]⧸(f)
∼=−→ K(β), x 7→ β

It follows that ψ ◦ ϕ−1 is an isomorphism K(α)
∼=−→ K(β) such that ψ ◦ ϕ−1(α) = β. It is

moreover a K-automorphism since both ϕ, ψ are.

The above lemmas allow us to calculate the Galois group of an arbitrary field extension
in C. Indeed, for σ : L→ L a K-automorphism and L = K(α), β = σ(α) is conjugate to α
and they have the same minimal polynomial. So we must have σ = σα→β .

Corollary 5.17

Let K ⊆ L be a field extension with L = K(α). Let f be the minimal polynomial of
α over K, and let α1, . . . , αk be the roots of f which are contained in L. Then

Gal
(
L⧸K

)
= {σα→α1

, . . . , σα→αk
}
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Corollary 5.18

Let K ⊆ L ⊆ C be a finite field extension. Then∣∣∣Gal
(
L⧸K

)∣∣∣ ≤ [L : K]

Proof. We know L = K(α) for some α ∈ L. By the previous corollary,
∣∣∣Gal

(
L⧸K

)∣∣∣ = k,

where k is the number of roots in L of the minimal polynomial of α over K. k ≤ n = deg f ,
and [L : K] = deg f , so we are done.

In particular, equality holds if and only if the minimal polynomial for α over K splits
completely over L.

Example 5.18

Let ζ3 be the third root of unity, and let K = Q, L = Q(ζ3). Then [Q(ζ3) : Q] = 2
since ζ23 + ζ3 + 1 = 0 is the minimal polynomial. We can factor this over L as

x2 + x+ 1 = (x− ζ3)(x− ζ23 )

so this splits over L and thus

Gal
(
Q(ζ3)⧸Q

)
=
{
σζ3→ζ3 , σζ3→ζ23

}
= {id, σ}

Notice also that σ2 = id, so Gal
(
Q(ζ3)⧸Q

)
admits a group structure.

Example 5.19

Consider ζ5. We know from that optional class that since 5 is prime, the minimal
polynomial is given by

x5 − 1

x− 1
= 1 + x+ x2 + x3 + x4 = Φ5(x)

We can decompose this over Q(ζ5) as

Φ5(x) = (x− ζ5)(x− ζ25 )(x− ζ35 )(x− ζ45 )

Thus [Q(ζ5) : Q] = 4, and

Gal
(
Q(ζ5)⧸Q

)
=
{
σζ5→ζ5 , σζ5→ζ25

, σζ5→ζ35
, σζ5→ζ45

}
= {σ1 = id, σ2, σ3, σ4}

Thus we know the Galois group has order 4. Thus it is isomorphic to either Z⧸4Z or
Z⧸2Z× Z⧸2Z. To show that it is in fact isomorphic to Z⧸4Z, we show that

Gal
(
Q(ζ5)⧸Q

)
∼=
(
Z⧸5Z

)× ∼= Z⧸4Z
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To see this, define the mapping

i 7→ σi = σζ5→ζi5

This is a group homomorphism since

ij = ij 7→ σij

We want to show that σij = σi ◦ σj . Indeed, (ζj5)i = ζij5 , and

σi(σj(ζ5)) = σi(ζ
j
5) = σi(ζ5)

j = (ζj5)
i = ζij5 = σij(ζ5)

Example 5.20

Consider the extension Q ⊆ Q(
√
2,
√
3). The degree of the extension is 4. We can

explicitly calculate that

Gal

(
Q(

√
2,
√
3)⧸Q

)
= {id, τ, ρ, τ ◦ ρ}

where τ, ρ are conjugation along
√
2,
√
3, respectively. Each conjugation is of order

2 so this group is isomorphic to Z⧸2Z× Z⧸2Z.

Definition 5.15

Let K ⊆ L be a finite field extension. We say that this is a Galois extension if

Gal
(
L⧸K

)
= [L : K]

The above examples were all Galois extensions. This does not always hold, however.

Example 5.21

Consider Q ⊆ Q( 3
√
2). The minimal polynomial is x3 − 2, but the other roots of

this polynomial are 3
√
2ζ3,

3
√
2ζ23 , which are not in Q( 3

√
2). Thus this extension is not

Galois.

It follows from the above work that we have simply shown that splitting fields enjoy a
group structure:

Corollary 5.19

K ⊆ L is a Galois extension if and only if L is a splitting field over K.

Proof. Pick a primitive element α for the extension. Let f be its minimal polynomial. Then
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∣∣∣Gal
(
L⧸K

)∣∣∣ is the number of roots of f in L, and [L : K] = deg f . So f splits over K if

and only if
∣∣∣Gal

(
L⧸K

)∣∣∣ = [L : K].

To find the minimal polynomial of arbitrary α ∈ L over K, we have two approaches.
First, we can consider 1, α, . . . , αn, where n = [L : K]. These are linearly dependent, so we
get a linear relation. Alternatively, we can use the following lemma:

Lemma: Minimal Polynomial Lemma

Let K ⊆ L be a Galois extension and α ∈ L. Let α1 = α, . . . , αk be the orbit of α

under Gal
(
L⧸K

)
. Then the coefficients of

p(x) = (x− α1) · · · (x− αk)

are contained in K, and moreover p is the minimal polynomial of α.

In other words, the minimal polynomial is calculated by considering linear factors using
the conjugates. The fact that the extension is Galois ensures this is actually the minimal
polynomial.

Example 5.22

For
√
2 +

√
3 ∈ Q(

√
2,
√
3), the minimal polynomial is given by

p(x) = (x−(
√
2+

√
3))(x−(

√
2−

√
3))(x−(−

√
2+

√
3))(x−(−

√
2−

√
3)) = x4−10x2+1

To prove the minimal polynomial lemma, we will take a detour into some other important
facts in Galois theory.

5.4 Fixed Fields

Given a field extension L⧸K, K is fixed under Gal
(
L⧸K

)
by definition. The question we

investigate here is whether the opposite inclusion holds; that is, if α ∈ L is fixed by all

σ ∈ Gal
(
L⧸K

)
, is it necessarily the case that α ∈ K?

Example 5.23

In the case of Q(
√
2)⧸Q, the answer is yes. If α = a + b

√
2 for a, b ∈ Q, then α is

fixed if and only if a+ b
√
2 = a− b

√
2, or equivalently if and only if b = 0. So α ∈ Q.
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Definition 5.16

Let H ⩽ Gal
(
L⧸K

)
and let H ü L. Then we define the fixed subfield of L under

H to be
LH := {α ∈ L : ∀σ ∈ H,σ(α) = α}

Example 5.24

Let L = Q(
√
2,
√
3) and let H = {id, τ}, where τ(

√
3) =

√
3, τ(

√
2) = −

√
2. Then

τ(a+ b
√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6

Thus the fixed field is precisely those elements for which b = d = 0. So

LH = Q(
√
3)

Lemma 5.20: Minimal Polynomial Lemma for Fixed Fields

Let L⧸K be Galois and let H ⩽ Gal
(
L⧸K

)
. Let F = LH , so that K ⊆ F ⊆ L. Let

α ∈ L and let O(α) = {α1, . . . , αk} be the orbit of α under the action H ü L. Then

p(x) = (x− α1) · · · (x− αk)

is contained in F [x] and is the minimal polynomial of α over F .

Proof. We first show that p ∈ F [x]. By Vieta’s formulas, the coefficients of (x−α1) · · · (x−
αk) are symmetric polynomials in α1, . . . , αk. Also, for σ ∈ H, σ(α1), . . . , σ(αk) is a permu-
tation of α1, . . . , αk, so H does not change the symmetric polynomials. Thus the coefficients
of p are fixed by H, so p ∈ LH [x] = F [x].

Let q ∈ F [x] be the minimal polynomial of α. Then q(α1) = . . . = q(αk) = 0, since elements
of H must map roots to roots for polynomials in F [x] (this is essentially the same as the
proof of the more general case). Then it follows that p|q, so p = q. Thus p is the minmal
polynomial for α over F .

In the case where we take H = Gal
(
L⧸K

)
, the minimal polynomial lemma for fixed

fields tells us that the minimal polynomial of α over F = LGal(L⧸K) is (x− α1) · · · (x− αk)

where the αi are all the conjugates of α under Gal
(
L⧸K

)
. Importantly, our work will show

that LGal(L⧸K) = K, so that this is the minimal polynomial of α over K. Thus this lemma,

in combination with the proof of the statement LGal(L⧸K) = K, will prove the minimal
polynomial lemma.

106



Theorem 5.21: Fixed Field Theorem

Let L⧸K be Galois and let H ⩽ Gal
(
L⧸K

)
. Then [L : LH ] = |H|.

Proof. Denote F = LH , so that K ⊆ F ⊆ L. Then let α ∈ L be a primitive element, such
that L = F (α). Let H ü L.

We claim that Stab(α) = {id}. Indeed, suppose σ ∈ H is such that σ(α) = α. σ fixes F by

definition. So σ ∈ Gal
(
L⧸F

)
, and σ is determined by the value of σ(α), so σ = id.

Then by the orbit stabilizer theorem, |O(α)| = |H|, where the orbit is taken under H ü L.
Let f ∈ F [x] be the minmial polynomial for α over F . By the minimal polynomial lemma
for fixed fields, f has degree |O(α)| = |H|. It follows that [L : LH ] = deg f = |H|.

Corollary 5.22

If L⧸K is Galois, then LGal(L⧸K) = K.

Proof. We have the following:

K LGal(L⧸K) L

[L:K]

[
L:LGal(L⧸K)

]

By the fixed field theorem,
[
L : LGal(L⧸K)

]
=
∣∣∣Gal

(
L⧸K

)∣∣∣. Since the extension is Galois,∣∣∣Gal
(
L⧸K

)∣∣∣ = [L : K]. So we must have

K LGal(L⧸K) L
1

[L:K]

[L:K]

Thus it follows that LGal(L⧸K) = K.

Lemma 5.23: Minimal Polynomial Lemma

Let L⧸K be Galois and let α ∈ L. Let α1, . . . , αk be the orbit of α under Gal
(
L⧸K

)
.

Then the minimal polynomial for α over K is

p(x) = (x− α1) · · · (x− αk)

Proof. As we observed previously, this is a consequence of the minimal polynomial lemma
and Corollary 5.22.
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We can also present a stronger version of the fixed field theorem that will lead us to the
fundamental theorem of Galois theory.

Proposition 5.24

Let K ⊆ F ⊆ L and let L⧸K be Galois. Then L⧸F is Galois.

Proof. Homework.

Theorem 5.25

Let L⧸K be Galois. Let H ⊆ Gal
(
L⧸K

)
. Let F = LH , so that K ⊆ F ⊆ L. Then

Gal
(
L⧸F

)
= H.

Proof. H ⊆ Gal
(
L⧸LH

)
essentially by definition, since the elements of H are automor-

phisms of L which fix LH .

By the proposition above, L⧸F is Galois, so
∣∣∣Gal

(
L⧸F

)∣∣∣ = [L : F ] = [L : LH ] = |H|. So

H = Gal
(
L⧸F

)
.

The next theorem may be thought of as a reversed version of the fixed field theorem.

Theorem 5.26

Let K ⊆ F ⊆ L be such that L⧸F is Galois. Then F = LGal(L⧸F).

Proof. We simply apply Corollary 5.22.

The intuition for this theorem is that every intermediate field may be written as the

fixed field of a subgroup of Gal
(
L⧸K

)
.

Theorem 5.27: Fundamental Theorem of Galois Theory

Let L⧸K be Galois and denote G = Gal
(
L⧸K

)
. Then there exists a one-to-one

ocrrespondence between subgroups of G and intermediate field extensions K ⊆ F ⊆
L.

Indeed, the above correspondence is given by

H LH

Gal
(
L⧸F

)
F
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Proof. Theorem 5.25 tells us that for H ⩽ G, H = Gal
(
L⧸LH

)
. For K ⊆ F ⊆ L, Theorem

5.26 says that F = LGal(L⧸F), and Gal
(
L⧸F

)
⩽ Gal

(
L⧸K

)
.

In pacticular, note that for {e} ⩽ H ⩽ G we have

{e} L L{e}

H LH

G K LG

⩽

=

⩽

⊆

⊆

=

In the other direction, for K ⊆ F ⊆ L we have

{e} Gal
(
L⧸L

)
L

Gal
(
L⧸F

)
F

Gal
(
L⧸K

)
K

=

⩽

⩽

⊆

⊆

(Notice that the arrows on either side are reversed; indeed, this correspondence is a con-

travariant functor.) We know that for an intermediate extension K ⊆ F ⊆ L where L⧸K
is Galois, L⧸F is always Galois. It is not necessarily the case that F⧸K is Galois. How-
ever, this correspondence allows us to cast the condition in terms of the group structure of

Gal
(
L⧸K

)
.

Theorem 5.28

Let K ⊆ F ⊆ L and let L⧸K be Galois. Then F⧸K is Galois if and only if

Gal
(
L⧸F

)
⊴ Gal

(
L⧸K

)
.

Example 5.25

ConsiderQ(
√
2,
√
3). Gal

(
Q(

√
2,
√
3)⧸Q

)
= {id, ρ, τ, ρτ}, where ρmaps

√
2 7→ −

√
2

and τ maps
√
3 7→ −

√
3. There are three nontrivial proper subgroups, which are

{id, ρ}, {id, τ}, {id, ρτ}. All are normal since Gal

(
Q(

√
2,
√
3)⧸Q

)
∼= Z⧸2Z×Z⧸2Z is
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abelian. These correspond to the subextensions

{id, ρ} ∼ Q(
√
3)

{id, τ} ∼ Q(
√
2)

{id, ρτ} ∼ Q(
√
6)

Then the fundamental theorem of Galois theory tells us that these are the only
intermediate field extensions.

5.5 Applications: Unsolvability of the Quintic

The development of Galois theory leads to proofs of two impossibility theorems: trisecting
an angle and a quintic formula.

The quadratic formula for roots of a quadratic ax2 + bx+ c is well known:

x =
−b±

√
b2 − 4ac

2a

Less familiar is the cubic formula, produced by Cardano:

Theorem 5.29

Let P (x) = ax3 + bx2 + cx+ d. The roots are given by:

x1 = S + T − b

3a

x2 = −S + T

2
− b

3a
+
i
√
3

2
(S − T )

x3 = −S + T

2
− b

3a
− i

√
3

2
(S − T )

where

S =
3

√
R+

√
Q3 +R2

T =
3

√
R−

√
Q3 +R2

Q =
3ac− b2

9a2

R =
9abc− 27a2d− 2b3

54a3

Even more complicated is Ferrari’s formula for the roots of a quartic:
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Theorem 5.30

Let P (x) = ax4 + bx3 + cx2 + dx+ e. Then the roots are given by

x =
−p±

√
p2 − 8q

4

where

p =
b

a
±
√
b2

a2
− 4c

a
+ 4y1

q = y1 ∓
√
y21 −

4e

a

where y1 is a real root to the cubic

y3 − c

a
y2 +

(
bd

a2
− 4e

a

)
y +

(
4ce

a2
− b2e

a3
− d2

a2

)

Although the formulas become progressively more complicated, with many nested roots,
it seems intuitive that a sufficiently complicated formula using nested n-th roots, sums,
products, and natural powers should provide solutions to arbitrary polynomials of each
degree. However, this is not the case, as proved by Abel and Ruffini.

To prove this, we consider the inverse Galois problem, which asks, for a given finite group

G, to produce a Galois extension K ⊆ L such that Gal
(
L⧸K

)
∼= G. Equivalently, we find

a polynomial f ∈ K[x] such that Gal
(
Split(f)⧸K

)
∼= G.

Example 5.26

Given the group Z⧸2Z, we produce the extension Q ⊆ Q(i).

Example 5.27

Given Z⧸3Z, we produce f = x3 − 3x + 1 ∈ Q[x] (the isomorphism was proved for
homework).

Example 5.28

Given S3, we produce f = x3 + 3x+ 1 (again, as shown in homework).
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Example 5.29

Given the Rubik’s cube group((
Z⧸3Z

)7
×
(
Z⧸2Z

)11)
⋊
(
(A8 ×A12)⋊ Z⧸2Z

)
we produce fg, where

f = x24 +
452984832

14706125
(x3 + 1)

and

g = 2(18x8 − 36x4 − 16x2 + 3)3 − 9
148233

131072
(6x6 − 9x2 − 4)4

See arXiv.

Recall from the fundamental theorem of Galois theory that for a Galois extension L⧸K
and an intermediate extension K ⊆ F ⊆ L, F⧸K is Galois if and only if Gal

(
L⧸F

)
⊴

Gal
(
L⧸K

)
, and in this case

Gal
(
F⧸K

)
∼= Gal

(
L⧸K

)
⧸
Gal

(
L⧸F

)
In particular, in this case there exists a surjective quotient map from Gal

(
L⧸K

)
onto

Gal
(
F⧸K

)
.

Definition 5.17

An extension L⧸K is a Kummer extension if L = K(β) where the minimal poly-
nomial of β over K is xp − b for b ∈ K.

Proposition 5.31

If K contains all the p-th roots of unity and L = K(β) is a Kummer extension for β

having minimal polynomial xp−b, then L⧸K is Galois and Gal
(
L⧸K

)
∼= Z⧸(p− 1)Z.

Proof. Proved in homework.

We define a solvable element to be a root which may be obtained using nested roots and
field operations:

Definition 5.18

If K ⊆ C and α ∈ C, we say that α is solvable over K if there exists a sequence of
fields K = K0 ⊆ K1 ⊆ . . . ⊆ Kr ⊆ C such that α ∈ Kr and Ki ⊆ Ki+1 is Kummer
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for each 0 ≤ i < r.

Suggestively, we define a solvable group to be:

Definition 5.19

A finite group G is a solvable group if there exists a sequence {e} ⊴ H0 ⊴ . . . ⊴
Hk ⊴ G such that each Hi+1⧸Hi

is abelian.

Note that in homework we showed that equivalently we may require the quotients to be
cyclic, and also that images and subgroups of solvable groups are solvable.

Theorem 5.32

Let K ⊆ C and let α ∈ C be algebraic over K with minimal polynomial f ∈ K[x].
Let L be the splitting field of f and suppose all the roots of f are solvable. Then

Gal
(
L⧸K

)
is solvable.

Proof. For a simpler case, first suppose K contains all nth roots of unity for any n. Then if
the roots are solvable, we can consider a sequence of extensions K ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn

such that Ki ⊆ Ki+1 is Kummer and L ⊆ Kn. Since K contains all nth roots, each Kummer
extension is Galois and cyclic. So Kn is solvable. Then L is a subgroup of a solvable group
so it is solvable.

For the general case, we start by adjoining all the pth roots of unity that will be needed in
the above extensions. These extensions are also Kummer.

We can now produce an example of a polynomial with unsolvable Galois group. Any
irreducible quintic with exactly 3 real roots works.

Proposition 5.33

Let L be the splitting field of f(x) = x5 − 16x+ 2 over Q. Then Gal
(
L⧸Q

)
∼= S5.

Proof. f is irreducible by Eisenstein for p = 2. We observe that x5−16x = x(x2−4)(x2+4)
so x5 − 16x has three real roots. Basic calculus allows us to conclude that x5 − 16x+2 also
has exactly three real roots. Then we can factor

x5 − 16x+ 2 = (x− α1) · · · (x− α3)

where α1, α2, α3 ∈ R. Since α4, α5 /∈ Q, we have

Q ⊆ Q(α1, α2, α3) ⊊ Q(α1, . . . , α5)

Denote these by K,F,L, respectively. Then Gal
(
L⧸F

)
is nontrivial. We also know that

for σ nontrivial, we must have σ(αi) = αi for i = 1, 2, 3. Thus σ is a transposition. Then

113



σ ∈ Gal
(
L⧸F

)
⊆ Gal

(
L⧸K

)
= G ⊆ S5, and G contains a transposition. But the minimal

polynomial lemma tells us that the minimal polynomial has roots which are the orbit of α
under the Galois group. But then the orbit is {α1, . . . , α5}. By Orbit-Stabilizer, 5 divides
|G|. Then by Cauchy’s theorem there exists an element of order 5, which must be a 5-cycle.
Then by homework, since G ⊆ S5 contains a transposition and a 5-cycle, it is S5. We know
also that S5 is not solvable. So not all roots of f are solvable.

Corollary 5.34: Abel-Ruffini Theorem

There does not exist a formula in terms of nth roots and field operations for solving
arbitrary quintics over Q.

5.6 Applications: Trisecting the Angle

We now consider the problem of trisecting an arbitrary angle given a ruler and compass. It
is fairly elementary to construct a method for bisecting an angle, which is related to using
the perpendicular bisector. More complicated procedures allow us to construct shapes such
as a pentagon or even a 17-gon. However, the following proof shows that it is impossible to
trisect an arbitrary angle; in particular, we will show that the angle of 20 degrees cannot be
constructed (since an angle of 60 degrees is constructible using an equilateral triangle).

To formalize, we begin with two points in the plane, denoted (0, 0), (1, 0). Then we can
construct new points using the ruler and compass. We track which points we have by
starting with K0 = Q. When we construct the point p = (a, b), then we progress to the
field K1 = Q(a, b). If we construct a new point q = (c, d), we will take K2 = Q(a, b, c, d) =
K1(c, d).

Suppose that an angle of 20 degree is constructible. Then we can construct the point ei
π
9 ,

so cos 20° would be contained in Kn for some n. To show that it is not, let α = 2 cos 20° =
ei

π
9 + e−i

π
9 .

Lemma 5.35

The minimal polynomial of α over Q is x3 − 3x− 1.

Proof. We have e3i
π
9 + e−3iπ9 = 2 cos π3 = 1. So

α3 = (ei
π
9 + e−i

π
9 )3 = e3i

π
9 + 3(ei

π
9 + e−i

π
9 ) + e−3iπ9 = 1 + 3α

Using the rational root theorem, x3 − 3x − 1 is irreducible over Q, so it is the minimal
polynomial of α over Q.

Proposition 5.36

For Kn as defined above, [Kn+1 : Kn] ≤ 2 for all n.
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Proof. We first observe that a line through points P1 = (a, b), P2 = (c, d) has the equation

(d− b)(x− a)− (c− a)(y − b) = 0

So if P1, P2 have been constructed by the nth step, then a, b, c, d ∈ Kn, so the coefficients
are also in K.

Observe that for a circle centered at P = (a, b) and passing through Q = (c, d), the equation
is given by

(x− a)2 + (y − b)2 = (a− c)2 + (b− d)2

Again this can be rearranged into a polynomial in Kn[x, y].

Now, we consider the kinds of points which may be added in the n + 1th step. Any point
must be the intersection of either two lines, two circles, or a line and a circle.

• For two lines, the solutions may be computed with linear algebra, and the solution is
in Kn. So Kn+1 = Kn.

• For a line and a circle, we look for solutions to the system{
dx+ ey = f

(x− a)2 + (y − b)2 = r2

where d, e, f, a, b, r2 ∈ Kn. We assume that the line is nondegenerate, so one of d, e
is nonzero, and we assume without loss of generality that d ̸= 0. Then we can write
x = f−ey

d . So (
f − ey

d
− a

)2

+ (y − b)2 = r2

Then y is the solution to a degree 2 polynomial in Kn. Because we have a formula for
x in terms of y and field operations, Kn+1 = Kn(x, y) = Kn(y), and [Kn(y) : K] ≤ 2.

• For two circles, we have a system{
(x− a)2 + (y − b)2 = r2

(x− a′)2 + (y − b′)2 = r′2

with a, b, a′, b′, r2, r′2 ∈ Kn. This is equivalent to{
−2(a− a′)x− 2(b− b′)y + a2 + b2 − a′2 − b′2 = r2 − r′2

(x− a)2 + (y − b)2 = r2

The first equation gives us a linear relation for x in terms of y, so we follow the same
strategy as in the line and circle case (which works assuming the circles have distinct
centers). Again, Kn+1 = Kn(x, y) = Kn(y) is an extension of degree at most 2.
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This is enough to conclude.

Theorem 5.37

There is no method to trisect arbitrary angles using a ruler and compass.

Proof. An angle of 60° is constructible. If an angle of 20° were constructible, then we would
have Q ⊆ Q(α) ⊆ Kn for some n with α = 2 cos 20°. But [Q(α) : Q] = 3 so 3 divides
[Kn : Q]. But we have just shown that [Kn : Q] = 2m for some m, contradiction.

A reversed argument shows that the converse also works: for any extension K⧸L of
degree which is a power of 2, K may be realized as Kn for some n using the construction
process.
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Appendix A

Representation Theory

A.1 Motivations

A powerful approach to understanding group structures is by analyzing maps between
groups. In particular, we can consider maps between arbitrary groups and groups of linear
maps, can be understood well using linear algebra.

In particular, the structure of finite simple groups (which are groups with no nontrivial
normal subgroups) is completely understood. Thus, it is of interest to find all normal sub-
groups of a given group.

Recall that for any group homomorphism ϕ : G→ H, kerϕ ⊴ G. Thus, finding a nontrivial,
noninjective homomorphism out of G (regardless of its target) will show that G is not sim-
ple. In particular, we will consider homomorphisms from G into GLn(F) (where F is often
R,C).

Some groups may be easily embedded into GLn(R) using geometric interpretations.

Example A.1

Dn is the set of symmetries of R2.

Example A.2

Z⧸nZ acts on R2 by rotation using the map

1 7→

[
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

]

Consider a function f : H → C (H is the upper half complex plane) defined by

f

(
az + b

cz + d

)
= (cz + d)kf(z)
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This is called a modular form. The modularity conjecture (now a theorem) says that modular
forms on certain elliptic curves are in one to one correspondence with representations of
SL2(Z).

A.2 Key Definitions

Definition A.1

A representation of a group G is a group homomorphism R : G → GLn(R). We
say that it is faithful if R is injective.

R is faithful only if it is an isomorphism between G and a subgroup of GLn(R).

Definition A.2

If V is a vector space, GL(V ) is the set of invertible linear maps on V → V .

Note that matrices in GLn(R) uniquely correspond to maps in GL(V ) (where n = dimV )
when V is fixed and real. We can make the same definitions for GLn(C). The key idea is that
the information contained in a representation G → GL(V ) is the same as the information
contained in a linear group action of G on V ; in other words a function (g, v) 7→ gv such
that

1. ev = v for all v ∈ V ;

2. h(gv) = (h ⋆ g)v for all g, h ∈ G, v ∈ V ;

3. g(αv + βw) = αgv + βgw ∈ V (linearity).

Example A.3

Define a map R : Z⧸nZ → GL(R2) by

1 7→
[
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

]

For convenience, we write Rg to denote R(g), since the elements Rg are matrices and we
will need them to act on vectors.

Now, we can see that if we have defined a representation R : G → GL(V ), then we define
a group action by g · v := Rgv. To check that this is a group action if R is a linear
homomorphism:

h · (g · v) = h · (Rgv) = RhRgv = Rh⋆gv = (h ⋆ g) · v

In the other direction, given a group action, the map Rg is defined as v 7→ g · v. From here,
you can check that R is a linear homomorphism.

Note that there are many possible representations of a given group.
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Example A.4

Define a group homomorphism by Dn 7→ {±1} ⊆ GL1(R), where reflections map to
−1.

Example A.5

Let us consider the representations of D3 = {1, x, x2, y, xy, x2y} where x is rotation
and y reflection over the x axis. One representation is the standard representation
S from D3 7→ GL2(R), which is given by

1 7→
[
1 0
0 1

]
x 7→

[
1
2 −

√
3
2√

3
2

1
2

]

y 7→
[
−1 0
0 1

]
We may also consider the signature representation sgn : D3 → R× which maps
x 7→ 1, y 7→ −1.

We have the trivial representation T : D3 → R× by T (τ) = 1 for all τ (this is always
a representation).

We will later see that every representation may be found by combining these rep-
resentations. For now, consider one-dimensional representations R : D3 → GL1(R).
The group presentation of D3 is given by the relations

x3 = e

y2 = e

xy = yx−1

R must respect these, so we must have

RxRy = Rxy = Ryx−1 = Ry[Rx]
−1

so
(Rx)

2 = 1

and thus Rx = ±1. But we also know that

1 = Re = Rx3 = (Rx)
3

so we must haveRx = 1. ThenRy = ±1, which correspond to sgn and T , respectively.
(When n is even the parity means that we have more interesting one-dimensional
representations as x may be mapped to −1, but not when n is odd. This is reflected
in even dimensional groups having reflections across midpoints as well as vertices.)
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We now consider how we may build representations out of smaller ones.

Definition A.3

Let R : G → GL(V ) and R′ : G → GL(W ) be representations (or actions G ü V
and G ü W ). Then the direct sum of R,R′ corresponds to the action

G ü V ×W : g(v, w) = (gv, gw)

or is given explicitly by R⊕R′ : G→ GL(V ⊕W ) defined by

(R⊕R′)g = Rg ⊕R′
g

where the right side ⊕ means concatenation along the diagonal.

Example A.6

Consider T ⊕ sgn : D3 → GL2(R). The matrix of rotation is given by

Rx =

[
1 0
0 1

]
, Ry =

[
1 0
0 −1

]
as sgn(x) = 1, sgn(y) = −1. (The upper left corner is 1 for both as T (x) = T (y) = 1)

Thus we see that representations may be built out of others. The natural question to
ask is which representations may be seen as the ”building blocks” of all others.

Definition A.4

A G-invariant subspace is a subspace W ⊆ V such that for all g ∈ G, w ∈ W ,
gw ∈W .

Definition A.5

G ü V is called irreducible if there is no G-invariant subspace of V besides {0}, V .
In other words, we use all of the space in V .

Definition A.6

Let G ü V and G ü W . Then a G-equivariant map is a map ϕ : V →W is a map
which is linear and

ϕ(gv) = gϕ(v)

for all g ∈ G, v ∈ V (where the left product is taken in G ü V and the right in
G ü W .)
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Example A.7

Consider an action {±1} ü R2 which acts by multiplication: 1(a, b) = (a, b) but
−1(a, b) = (−a, b). Consider a map ϕ : R2 → R by (x, y) 7→ x. Define an action iof
{±1} ü R by multiplication. Then

ϕ(−1(a, b)) = ϕ(−a, b) = −a

and
−1ϕ(a, b) = −a

Definition A.7

Two representations are isomorphic if there exists a G-equivariant isomorphism.

Theorem A.1

Consider a representation G ü V . Then we may write V ∼=W ⊕ U .

Definition A.8

Let G be finite. The G-invariant inner product is defined by

⟨v, w⟩ = 1

|G|
∑

⟨gv, gw⟩

A.3 Characters and Character Tables

Definition A.9

Let R : G → GL(V ) be a representation. Then the character of R is the function
χR : G→ R given by χR(g) = trRg.

The values of characters may be written in a character table:

D3 1 x y . . .

T 1 1 1
sgn 1 1 -1
S 2 -1 0

Note that the columns of the table are orthogonal. Moreover, if we wrote the rest of the
table we would see that the rows are as well. (Column orthonormality is only because we
have all irreducible representations here).
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Proposition A.2

Let R : G → GL(V ) with V n-dimensional and complex, and let χ : G → C× be its
character. Then

1. χ(e) = n.

2. χ(ghg−1) = χ(h).

3. If gk = e then χ(g) is the sum of k-th roots of unity.

4. χ(g−1) = χ(g).

5. χR⊕R′ = χR + χR′ .

Proof. 1. χ(e) = In.

2. tr(RgRnRg−1) = tr(RnRgRg−1) = tr(Rn).

3. In = Rgk = (Rg)
k. So Rg satisfies Xk − 1 = 0 and thus its eigenvalues are some of

the k-th roots of unity. Then the trace is the sum of k-th roots of unity.

4. If the eigenvalues of Rg are λ1, . . . , λn, then the eigenvalues of Rg−1 are λ−1
i = λi

(since λi are roots of unity by the previous). Thus

trRg−1 = tr(Rg)
−1 =

∑
λ−1
i =

∑
λi = trRg

5. Obvious since we have block matrices.

We see that characters are constant on conjugacy classes.

Definition A.10

Let χ, χ′ be characters of some representation G ü V (G finite). Then we define the
inner product by

⟨χ, χ′⟩ := 1

|G|
∑
g∈G

χ(g)χ′(g)

For infinite groups we integrate over G with respect to an appropriate measure:

⟨χ, χ′⟩ = 1

V (G)

∫
G

χ(g)χ′(g) dµ

but we will not discuss this farther.

We now arrive at the main theorem for characters.
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Theorem A.3: Main Theorem

Let R,R′ be nonisomorphic and irreducible, with characters χ, χ′. then

1. ⟨χ, χ′⟩ = 0.

2. Every representation is determined by its character.

3. The number of irreducible representations is equal to the number of conjugacy
classes in G.

Lemma A.4: Schur’s Lemma

Consider a G-equivariant map φ : V → W for a group G with irreducible represen-
tations G ü V,G ü W (complex spaces). Then either φ is an isomorphism or it is
the zero map. Moreover, if φ : V → V , then φ = λ id.

Proof. Suppose φ is not zero. Consider kerφ. Then we want to show that kerφ is a G-
invariant subspace. Pick v ∈ kerφ, g ∈ G. Then

φ(gv) = gφ(v) = g0 = 0

so gv ∈ kerφ. So kerφ is a G-invariant subspace. G ü V is irreducible, so kerφ is trivial
or V , but it must be trivial as φ is nonzero. Thus it is injective. We want to show also that
imφ is a G-invariant subspace of W . Let w ∈ imφ. Then w = φ(v) for approprate v ∈ V .
Then for all g ∈ G, gw = gφ(v) = φ(gv) ∈ imφ. Irreducibility again shows that imφ =W .
So φ is an isomorphism.

Now ifW = V , then there exists an eigenvector v with eigenvalue λ. λ ̸= 0 so the eigenspace
of λ is G-invariant, and therefore is all of V .

Proposition A.5

Let A,B be n × n matrices over C and let Φ : Mn×n → Mn×n(C) be a linear map
given by M 7→ AMB. Then tr(Φ) = tr(A) tr(B).

Proof. Consider a basis of Mn×n(C). Let Eij be the matrix δ(x,y)(i,j). Then Eij maps to a
matrix with aiibjj in the i, j-th entry. Then

trφ =
∑
i,j

(i, j)-th coordinate of φ(Eij) =
∑
i,j

aiibjj = tr(A) tr(B)
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Appendix B

Special Topics in Group Theory

B.1 Free Groups

Definition B.1

A free group on a set of n distinct symbols is the set of finite strings which are
formed by concatenation of the symbols, together with their inverses. The group
operation is concatenation. If there are n generators, then this set may be denoted
as the free product of cyclic groups Z ∗ Z ∗ . . . ∗ Z.

Since the elements of any group may be written as strings which are their algebraic
representations in terms of the generators, the elements of every group may be represented
as elements of the free groups. However, in this case, we need to use the algebraic relations
which tells us which strings are equal algebraically – that is, we need to know what cancel-
lation manipulations are valid. In this way, each group (say, finitely generated for now) is a
quotient of the free group on its generators.

B.2 Connections with Algebraic Topology

Example B.1

Let X be a topological space and let x ∈ X be a point. The fundamental group
of X at x is the set π1(X,x), which is the set of all loops that start and end at x,
identified up to homotopy. The group operation is concatenation.

Example B.2

π1(S
1) is composed of the set of all n counterclockwise wraps for n ∈ Z, so π1(S1) ∼=

Z. Similarly, π1(R2\{0}) ∼= Z. In contrast, π1 of the torus is Z×Z, since wraps around
the long ring and the inner ring commute with each other. Lastly, π1(R2 \ {0, 1}) ∼=
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Z ∗ Z, since loops around 0 and 1 do not commute or cancel in any way.

Definition B.2

An (associative) division algebra, also called a division ring or skew field, is a
field without the assumption that multiplication is commutative (however, left and
right inverses both exist).

The following is a theorem due to Frobenius:

Theorem B.1

The only associative division algebras of finite dimension over R are R,C, and H,
where H is the quaternions.

Note that the dimensions of R,C,H are 1, 2, and 4. Let us investigate why this is. We
can use the multiplicative structures of the algebras to construct a group structure on the
unit sphere. For instance, C ∼= R2 ⊇ S1, so C induces a group structure on S1, which is the
group of rotations. Similarly, Q ∼= R4 ⊇ S3, and we showed in homework that the group
structure on S3 is the quaternions. (Note in both cases that we quotient out by any scaling
factors). In general, an associative division algebra K of dimension n over R induces a
group structure on Sn−1. Moreover, these group structures are smooth, meaning the group
operation is differentiable (that is, the groups induced are Lie groups). However, methods
of topology show that the only spheres which admit such a group structure are S0, S1, S3.
This shows that the only possible dimensions are 1, 2, and 4.
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Definitions

abelian, 17
adjoin, 93
adjoint, 38
algebraic, 92
associates, 78
associative, 14
automorphism group, 57

basis, 83
binary operation, 14

canonical projection, 45
center, 49
centralizer, 48
character, 121
characteristic, 68

zero, 68
class equation, 50
commutative, 14
commutative ring, 62
congruent, 8
conjugacy class, 48
conjugate, 100
conjugation, 42
conjugation action, 47
coset, 34
cyclic, 29

degree, 95
direct product

external, 20
internal, 46

direct sum, 120
division algebra, 125
division ring, 125
domain, 64

elliptic curve, 22
equivalence class, 34
equivalence relation, 33
Euclidean ring, 79
extended Euclidean Algorithm, 6

faithful, 38, 118
field automorphism, 99
field extension, 92

finite, 95
finitely generated, 83
fixed subfield, 106
free group, 124
free module, 83
free product, 124
fundamental group, 124

G-equivariant, 120
G-invariant, 120
G-invariant inner product, 121
Galois extension, 104
Galois group, 100
Gaussian integers, 62
generate, 83
generated subgroup, 29
group, 17
group action, 37
group presentations, 28

homomorphism
group, 24
module, 82
ring, 65

ideal, 69
generated by, 70
maximal, 72
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prime, 72
principal, 70

identity, 15
image, 27
inner product, 122
inverse, 16
irreducible, 78, 120
isomorphic, 27, 121
isomorphism

group, 27
module, 83
ring, 67

K-automorphism, 99
kernel, 25, 68
Kummer extension, 112

Lie groups, 125
linearly independent, 83

minimal polynomial, 92
module, 81
monic, 76
multiplicative inverse, 9

norm, 100
normal, 42
normalizer, 55
number field, 97

orbit, 37
order, 18

p-group, 51
permutation, 30

even, 33
odd, 33

permutations, 17
polynomial ring, 62
prime, 78

primitive, 96
principal ideal domain, 71
product ring, 62

quadratic residue, 12
quotient

group, 43
module, 83
ring, 74

representation, 118
ring, 61

semidirect product
external, 59
internal, 60

sign, 33
simple group, 52
simple groups, 117
skew field, 125
solvable, 112

group, 113
span, 83
splitting field, 97, 98
stabilizer, 40
submodule, 82
subring, 63
Sylow p-subgroup, 54
symmetric polynomial, 72

elementary, 72

torsion-free, 85
transposition, 30

unique factorization domain, 80
unit, 63, 78

valuation, 79

weak basis, 86
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