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1
Real Numbers

1.1 Sets

A set is defined by the elements in it. We write x ∈ A if the object x is an element contained in
A, and x /∈ A if it is not in A.

Definition 1.1.1. A set A is a subset of a set B if ∀x ∈ A, x ∈ B.

Definition 1.1.2. The union of two sets A,B is given by A ∪B = {x : x ∈ A or x ∈ B}.

Definition 1.1.3. The intersection of two sets A,B is given by A∩B = {x : x ∈ A and x ∈ B}.

Definition 1.1.4. Two sets A,B are equal if and only if x ∈ A ⇐⇒ x ∈ B.

Definition 1.1.5. Two sets A,B are disjoint if A ∩B = ∅.

Remark. The set of natural numbers, integers, rationals, real numbers, and complex numbers are
denoted N,Z,Q,R,C, respectively.

Definition 1.1.6. A set A is called an inductive set if

(i) 1 ∈ A

(ii) x ∈ A =⇒ x+ 1 ∈ A

Remark. If a set S ⊆ N is an inductive set, then S = N.

1.2 Properties of the Real Numbers

Definition 1.2.1. A number b ∈ R is called an upper bound for a set A ⊆ R if ∀a ∈ A, a ≤ b.

Definition 1.2.2. A set A ⊆ R is bounded above if ∃b ∈ R such that b is an upper bound for
A.

Definition 1.2.3. A number s ∈ R is called the supremum or least upper bound for a set
A ⊆ R if

(i) s is an upper bound for A

(ii) if b is any upper bound for A, then s ≤ b.

Definition 1.2.4. A number m ∈ R is called the maximum of a set A ⊆ R if m is an upper
bound for A and m ∈ A.
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The terms lower bound, bounded below, infimum, greatest lower bound, and mini-
mum are defined similarly.

Axiom of Completeness Every nonempty set A ⊆ R that is bounded above has a supremum.

Lemma 1.2.1. An alternate definition of the supremum says that for s ∈ R that is an upper
bound for A ⊆ R, s = supA if and only if ∀ε > 0,∃a ∈ A s.t. s− ε < a.

Theorem 1.2.2 (Nested Interval Property). Suppose for each n ∈ N there is an associated
interval In = [an, bn], and suppose In ⊇ In+1 such that I1 ⊇ I2 ⊇ I3 ⊇ . . . Then

⋂∞
n=1 In ̸= ∅.

Proof. Let A = an : n ∈ N. Then A is nonempty and bounded above by any bn, so we may
use the Axiom of Completeness to set x = supA. For an arbitrary In = [an, bn], since x is an
upper bound of A, an ≤ x, and since all bn are upper bounds of A and x = supA, x ≤ bn, so
∀n ∈ N, x ∈ In =⇒ x ∈

⋂∞
n=1 In, so the intersection is nonempty.

Theorem 1.2.3 (Archimedean Property). This theorem has two parts:

(i) ∀x ∈ R,∃n ∈ N s.t. n > x.

(ii) ∀y > 0,∃n ∈ N s.t. 1/n < y.

Proof. (i) Suppose not. Then ∃x ∈ R s.t. ∀n ∈ N, n ≤ x. Then N is nonempty and bounded
above, so we may set x = supN. By Lemma 1.2.1, ∃n ∈ N s.t. x− n < 1. But then x < n+1 and
n+ 1 ∈ N, so x is not an upper bound for N and we have a contradiction.

(ii) Use (i) to select n ∈ N s.t. n > 1/y. Then y > 1/n.

1.3 Cardinality

Definition 1.3.1. A relation R : X → Y is called a function if ∀x ∈ X, y, z ∈ Y if (x, y) ∈ R
and (x, z) ∈ R, then y = z, and ∀x ∈ X∃y ∈ Y, (x, y) ∈ R.

Definition 1.3.2. A function f : A → B is called one-to-one or 1-1 if ∀a1, a2 ∈ A, f(a1) =
f(a2) =⇒ a1 = a2.

Definition 1.3.3. A function f : A → B is called onto if ∀b ∈ B, ∃a ∈ A s.t. f(a) = b.

Definition 1.3.4. Two sets A and B have the same cardinality or are called equicardinal,
denoted A ∼ B, if ∃f : A → B such that f is 1-1 and onto.

Definition 1.3.5. A set A is countably infinite if A ∼ N.

Definition 1.3.6. A set A is countable if it is countably infinite or finite.

Remark. Some authors use ”countable” to denote a set A ∼ N, and do not have a term similar
to the definition of ”countable” presented here.

Definition 1.3.7. A set A is uncountable if it is not countable.

Theorem 1.3.1. Q is countably infinite.

Proof. Ordering the rationals in a 2x2 grid and taking a diagonal path results in a 1-1, onto
function.

Theorem 1.3.2. R is uncountable.

Proof. Proved by Cantor’s diagonalization argument.

Theorem 1.3.3. If A ⊆ B and B is countably infinite, then A is countable.

Theorem 1.3.4. The countable union of countable sets is countable.
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Definition 1.3.8. Given a set A, the power set of A is P(A) = {B : B ⊆ A}.

Theorem 1.3.5 (Cantor’s Theorem). Given any set A, there does not exist an onto function
f : A → P(A).

5



2
Sequences and Series

2.1 Sequences

Definition 2.1.1. A sequence is a function whose domain is N.

Definition 2.1.2. A sequence (an) converges to a real number a if ∀ε > 0,∃N ∈ N s.t. ∀n ≥
N, |an − a| < ε. This is denoted (an) → a or lim an = a.

Definition 2.1.3. A sequence (an) is called a convergent sequence if ∃a ∈ R s.t. (an) → a.

Definition 2.1.4. A sequence (an) is called a divergent sequence if it does not converge to any
a ∈ R.

Definition 2.1.5. A sequence (an) is said to eventually possess a property P if ∃N ∈ N s.t.
∀n ≥ N , an possesses P .

Definition 2.1.6. Given a ∈ R, ε > 0, the ε-neighborhood of a is Vε(a) = {x ∈ R : |x− a| < ε}.

Theorem 2.1.1. A sequence (an) converges to a ∈ R if and only if ∀ε > 0, (an) is eventually in
Vε(a).

Theorem 2.1.2. If a sequence (an) has a limit, the limit is unique.

Definition 2.1.7. A sequence (an) is bounded if ∃M > 0 s.t. ∀n ∈ N, |an| < M .

Theorem 2.1.3. Every convergent sequence is bounded.

Proof. Suppose (xn) → l. Then ∃N s.t. ∀n ≥ N, |xn − l| < 1 =⇒ |xn| < |l| + 1. Then (xn) is
bounded by M = max{|x1|, |x2|, |x3|, . . . |xN−1|, |l|+ 1}.

Theorem 2.1.4 (Algebraic Limit Theorem for Sequences). Let lim an = a, lim bn = b, c ∈ R.
Then

(i) lim(can) = ca

(ii) lim(an + bn) = a+ b

(iii) lim(anbn) = ab

(iv) lim(an/bn) = a/b, b ̸= 0

Proof. (i) Let ε > 0 be given. Then ∃N such that ∀n ≥ N we have |an − a| < ε/|c|. So
|can − ca| = |c||an − a| < |c|ε/|c| = ε. So (can) → ca.
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(ii) Let ε > 0 be given. Then ∃N1, N2 such that ∀n ≥ N1 we have |an−a| < ε/2 and ∀n ≥ N2 we
have |bn−b| < ε/2. Then for n ≥ N = max{N1, N2}, |an+bn−(a+b)| ≤ |an−a|+ |bn−b| <
ε/2 + ε/2 = ε.

(iii) (bn) converges, so it is bounded. Suppose ∀n, |bn| ≤ M for some M > 0. Let ε > 0 be given.
Then ∃N1, N2 such that ∀n ≥ N1, |an − a| < ε/2M , and ∀n ≥ N2, |bn − b| < ε/2|a|. Then
∀n ≥ N = max{N1, N2}, |anbn − ab| = |anbn − abn + abn − ab| ≤ |an − a||bn|+ |a||bn − b| <
ε/2M(M) + |a|ε/2|a| = ε/2 + ε/2 = ε. So (anbn) → ab.

(iv) It suffices to show (bn) → b =⇒ (1/bn) → 1/b. Let ε > 0 be given. Then ∃N1 such
that ∀n ≥ N1, |bn − b| < |b|/2 =⇒ |bn| > |b|/2. Then choose N2 such that ∀n ≥ N2,
|bn − b| < ε|b|2/2. So for n ≥ N = max{N1, N2}, we have | 1

bn
− 1

b | = | b−bn
bnb

| < ε|b|2/2| 1
bnb

| <
ε|b|2/2| 1

|b|b/2 | = ε|b|2/|b|2 = ε. So (1/bn) → 1/b and (an/bn) → a/b by part (iii).

Theorem 2.1.5 (Order Limit Theorem). Let lim an = a, lim bn = b. Then

(i) If ∀n ∈ N, an ≥ 0, then a ≥ 0

[(ii) If ∀n ∈ N, an ≤ bn then a ≤ b

(iii) If ∀n ∈ N, an ≥ c for c ∈ R,a ≥ c.

Theorem 2.1.6 (Squeeze Theorem). If ∀n ∈ N, xn ≤ yn ≤ zn and limxn = lim zn = l, then
lim yn = l.

Definition 2.1.8. A sequence is increasing if ∀n ∈ N, an+1 ≥ an.

A decreasing sequence is defined analogously. The terms strictly increasing and strictly
decreasing are defined as above using strict inequalities.

Definition 2.1.9. A sequence is monotone if it is increasing or decreasing.

Theorem 2.1.7 (Monotone Convergence Theorem). A bounded monotone sequence con-
verges.

Proof. Suppose (an) is monotonically increasing (consider (−an) if not. Let s = sup{an : n ∈ N}
(this set is bounded). Then by Lemma 1.2.1, for all ε > 0 we have N such that l − aN < ε. This
holds for n ≥ N because (an) is increasing. So (an) → s.

Definition 2.1.10. Given a sequence (an) and a strictly increasing sequence (nk), then the se-
quence (ank

) is called a subsequence of (an).

Theorem 2.1.8. Subsequences of a convergent sequence converge to the same limit.

Proof. Let (an) → l. Then (an) is eventually in every ε-neighborhood of l, so any subsequence is
also eventually in every ε-neighborhood of l, so any subsequence also converges to l.

Theorem 2.1.9 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent
subsequence.

Proof. Let (xn) be bounded by M . We begin with an interval I1 = [−M,M ]. For each n, we bisect
In and choose In+1 as one of these bisections such that In+1 contains an infinite number of terms
of (xn). If we choose (ynk

) in Ik such that (nk) is strictly increasing, then we have a subsequence
that converges to x0, where x0 ∈

⋂
N In is guaranteed by the Nested Interval Property.

Definition 2.1.11. A sequence (an) is called a Cauchy sequence if ∀ε > 0, ∃N ∈ N s.t.
∀m,n ≥ N , |am − an| < ε.

Theorem 2.1.10. Cauchy sequences are bounded.
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Proof. Let ε = 1. So ∃N such that ∀m ≥ N , |am − aN | < 1. So ∀m ≥ N, |am| < |aN | + 1. Let
M = max{|a1|, |a2|, . . . |aN−1|, |aN |+ 1}. Then M bounds (an).

Theorem 2.1.11 (Cauchy Criterion for Sequences). A sequence is convergent if and only if
it is Cauchy.

Proof. ( =⇒ ) Trivial by definitions.
( ⇐= ) Let (an) be Cauchy. Then it is bounded. Apply the Bolzano-Weierstrass Theorem to

produce (ank
) convergent. Let x = lim ank

. So ∃N1 such that ∀m,n ≥ N1 we have |am−an| < ε/2.
Choose nk > N1 such that ∀nk′ ≥ nk, |ank′ − x| < ε/2. So ∀n ≥ nk we have |an − x| =
|an − ank

+ ank
− x| ≤ |an − ank

|+ |ank
− x| < ε/2 + ε/2 = ε. So (an) → x.

2.2 Series

Definition 2.2.1. Given a sequence (bn), an infinite series is an expression of the form
∑∞

n=1 bn =
b1 + b2 + b3 + . . ..

Definition 2.2.2. Given a series
∑

bn, the corresponding sequence of partial sums is given by

sk =
∑k

n=1 bn.

Definition 2.2.3. A series
∑

bn is a convergent series if and only if (sk) converges. If so, then
we say

∑
bn converges to B, where B = lim sk.

Theorem 2.2.1. The harmonic series
∑

1/n diverges.

Theorem 2.2.2. The series
∑

1/np converges if and only if p > 1.

Theorem 2.2.3 (Algebraic Limit Theorem for Series). Let
∑

an = a,
∑

bn = b, c ∈ R.
Then

(i)
∑

(can) = ca

(ii)
∑

(an + bn) = a+ b

Proof. This follows directly from the Algebraic Limit Theorem for Series by considering the se-
quence of partial sums.

Remark. It is not true that
∑

anbn = ab.

Theorem 2.2.4. If
∑

an converges, then (an) → 0.

Theorem 2.2.5 (Comparison Test). Let (ak), (bk) be sequences satisfying ∀k ∈ N, 0 ≤ ak ≤ bk.
Then

(i)
∑

bk converges =⇒
∑

ak converges.

(ii)
∑

ak diverges =⇒
∑

bk diverges.

Theorem 2.2.6 (Geometric Series).
∑

ark = a
1−r if and only if |r| < 1.

Theorem 2.2.7 (Absolute Convergence Test). If
∑

|an| converges then
∑

an converges.

Theorem 2.2.8 (Alternating Series Test). Suppose (an) is decreasing and (an) → 0. Then∑
(−1)nan converges.

Definition 2.2.4. If
∑

|an| converges, then
∑

an is absolutely convergent. If
∑

an converges
but

∑
|an| diverges, then

∑
an is conditionally convergent.

Definition 2.2.5. A series
∑

bk is called a rearrangement of
∑

ak if there exists a 1-1 function
f : N → N such that ∀k ∈ N, bf(k) = ak.
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Theorem 2.2.9. If a series converges absolutely, any rearrangement converges to the same limit.

Proof. Let ε > 0 be given. (sk) is Cauchy, so ∃N such that ∀m ≥ n ≥ N , |sm − sn| = |an+1 +
an+2 + . . . + am| ≤

∑m
i=n |ai| < ε. Then consider a rearrangement

∑
a′n, with partial sums (s′n).

Then choose p such that ∀1 ≤ m ≤ N , f(m) ≤ p. So ∀k ≥ p, |s′k − sk| cancels all terms with index
j ≤ N , so |s′k − sk| ≤

∑m
i=n |ai| < ε. So (s′k) converges to the same limit as (sk).

Theorem 2.2.10 (Ratio Test). Given (an) with an ̸= 0, if lim
∣∣∣an+1

an

∣∣∣ = r < 1, then
∑

an

converges absolutely.

Proof. Let (an) be given with an ̸= 0. Suppose lim
∣∣∣an+1

an

∣∣∣ = r < 1. Let ε >= (1 − r)/2 > 0 be

given. Then ∃N such that ∀n ≥ N , |
∣∣∣an+1

an

∣∣∣− r| < ε. So
∣∣∣an+1

an

∣∣∣ < r+ε. So |an+1| < (r+ε)|an|. So
∀m ≥ 0, |aN+m| < (r+ ε)m|aN |.

∑
(r+ ε)m converges by the geometric series (because r+ ε < 1),

and |aN | is constant, so
∑

(r+ ε)m|aN | converges. |aN+m| < (r+ ε)m|aN |, so
∑

|aN+m| =
∑

|an|
converges by comparison. So

∑
an converges absolutely.
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3
Point Set Topology

3.1 Open and Closed Sets

Definition 3.1.1. A set O ⊆ R is open if ∀a ∈ O ∃ε > 0 s.t. Vε(a) = (a− ε, a+ ε) ⊆ O.

Definition 3.1.2. Given a set E ⊆ R, the interior of E is Eo = {x ∈ E : ∃Vε(x) ⊆ E}.

Theorem 3.1.1. For any set E ⊆ R, Eo is open and the largest open set contained within E.

Theorem 3.1.2. A set E ⊆ R is open if and only if Eo = E.

Theorem 3.1.3. The union of an arbitrary collection of open sets is open.

Proof. Let U be an arbitrary collection of open sets. Then let U =
⋃

U . Choose some x ∈ U .
Then x ∈ O for some O in U . Since O is open, ∃Vε(x) ⊆ O ⊆ U . So U is open.

Theorem 3.1.4. The intersection of a finite collection of open sets is open.

Proof. Let O1, O2, O3, . . . On be a finite collection of open sets. Let U =
⋂n

i=1 Oi. Then choose
some x ∈ U . x ∈ O1, so ∃ε1 such that Vε1(x) ⊆ O1. Repeat with every Ok to obtain ε1, ε2, ε3, . . . εn.
Let ε = min{ε1, ε2, ε3, . . . εn}. Then for each k, Vε(x) ⊆ Vεk(x) ⊆ Ok, so Vε(x) is in each Ok, so
Vε(x) ⊆ U . So U is open.

Definition 3.1.3. A point x is a limit point of a set A if ∀ε > 0,∃y ∈ Vε(x) ∩A : y ̸= x.

Theorem 3.1.5. A point x is a limit point of a set A if and only if ∃(an) with ∀an, an ∈ A, an ̸= x,
and (an) → x.

Proof. ( =⇒ ). If x is a limit point, then every Vε(x) contains some x0 ̸= x satisfying |x0 − x| < ε.
It is easy to see that any decreasing sequence of ε tending to 0 will produce a sequence converging
to x.

( ⇐= ). By the definition of convergence, every Vε(x) contains some x0, which by assumption
is in A and x0 ̸= x, so x is a limit point.

Theorem 3.1.6. A set F ⊆ R is closed if and only if every Cauchy sequence in F tends to an
element of F .

Definition 3.1.4. A point a ∈ A is an isolated point of A if it is not a limit point of A.

Remark. A limit point need not be in A. An isolated point is always in A.

Definition 3.1.5. Given a set F ⊆ R, let L be the set of limit points of F . F is closed if L ⊆ F .

Definition 3.1.6. Given a set F ⊆ R, the closure of F is F = F ∪ L.
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Theorem 3.1.7. A set F ⊆ R is closed if and only if F = F .

Theorem 3.1.8. For any A ⊆ R, A is closed and the smallest closed set containing A.

Theorem 3.1.9. The union of a finite collection of closed sets is closed.

Theorem 3.1.10. The intersection of an arbitrary collection of closed sets is closed.

Theorem 3.1.11. A set O is open if and only if Oc is closed. A set F is closed if and only if F c

is open.

3.2 Compact Sets

Definition 3.2.1. Given A ⊆ R, a cover for A is a collection of sets {Eλ : λ ∈ Λ} such that
A ⊆

⋃
λ∈Λ Eλ.

Definition 3.2.2. A cover C is called an open cover if every set in C is open.

Definition 3.2.3. If C is a cover for A, then D is a subcover of C if D is a subcollection of C
and is also a cover of A.

Definition 3.2.4. A set K ⊆ R is compact if every open cover of K has a finite subcover.

Theorem 3.2.1. Closed intervals I = [a, b] ⊆ R are compact.

Proof. Let U be an open covering of I. Assume for contradiction it has no finite subcover. Bisect
I = I1 = [a1, b1] into two intervals [a1, c1] and [c1, b1]. At least one of those intervals has no finite
subcover (if they both did, the total subcover would be finite which is a contradiction). Let I2 be
this interval. Continue this process to obtain a nested sequence of closed intervals. By the nested
interval property, there exists some x0 ∈

⋂
N In. Since x0 ∈ I, there exists some U0 ∈ U with

x0 ∈ U0. Since U0 is open, there is some Vε(x0) ∈ U0. Since each In has length (b− a)2n−1, there
is some N for which n ≥ N =⇒ In ⊆ Vε(x). So IN is covered by U0 which is a finite subcover of
U . This is a contradiction. So every open covering of I has a finite subcover, and I is compact.

Theorem 3.2.2. Closed subsets of compact sets are compact.

Proof. Let F ⊆ K, where F is closed and K is compact. Then let U be an arbitrary open cover of
F . Adding F c (which is open) to U gives an open cover of K. Since K is compact, there is some
finite subcover of this collection that covers K. Call this subcover C. Then C \ F c still covers F ,
and is a subcollection of U . So C \ F c is the desired finite subcover.

Theorem 3.2.3 (Nested Compact Set Property). If K1 ⊆ K2 ⊆ K3 ⊆ . . . is a nested
sequence of nonempty compact sets, then the intersection

⋂∞
n=1 Kn is nonempty.

Proof. Construct a sequence (xn) such that xn ∈ Kn for each n. Then (xn) is contained in K1,
so it converges to a limit in K1. Similarly, (xn) (excluding the first term) is contained in K2, and
this is true for all Kn, so x = limxn is in

⋂∞
n=1 Kn.

Theorem 3.2.4 (Heine-Borel Theorem). If K ⊆ R, then all of the following three statements
are equivalent:

(i) Every sequence in K has a subsequence that converges to a limit in K.

(ii) K is closed and bounded.

(iii) Every open cover of K has a finite subcover.
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Proof. ((i) =⇒ (ii)) Assume for contradiction that K is not bounded. Then we may construct a
sequence of terms (xn) that is increasing with (xn) → ∞. But this sequence has no convergent
subsequence, so this is a contradiction andK must be bounded. Let (yn) be an arbitrary convergent
sequence in K. Then it has a convergent subsequence (ynk

) → y, y ∈ K. Since subsequences
converge to the same limit, (yn) → y for some y ∈ K, so K is closed.

((ii) =⇒ (i)) Let (xn) be an arbitrary sequence in K. K is bounded, so (xn) is bounded. Then
by the Bolzano-Weierstrass Theorem, (xn) has a convergent subsequence (xnk

). Since this is a
convergent sequence in K, which is closed, (xnk

) → x for some x ∈ K.

((ii) =⇒ (iii)) If K is bounded, then there exists some closed interval I with K ⊆ I. I is compact.
So K is a closed subset of a compact set and is therefore compact.

((iii) =⇒ (ii)) Construct an open cover for K by defining Ox = (x− 1, x+ 1). Then {Ox : x ∈ K}
has a finite subcover {Ox1

, Ox2
, Ox3

, . . . Oxn
}. Since K is contained in a finite union of bounded

sets, K is bounded. Suppose for contradiction that K is not closed. Then let (yn) be a Cauchy
sequence in K with y = lim yn, but y /∈ K. So every x ∈ K satisfies |x−y| > 0. Construct an open
cover forK by defining Ox = (x−|x−y|/2, x+|x−y|/2) for each x ∈ K. Since we assume (iii), there
is a finite subcover of K given by {Ox1

, Ox2
, Ox3

, . . . Oxn
}. But let ε0 = min{|xi−y|/2 : 1 ≤ i ≤ n.

Since (yn) → y, there exists yn ∈ K with |yn − y| < ε0. But this yn is not in any Oxn
, so the

subcover does not actually cover K, contradiction. So K is closed.

Remark. The equivalence between statements (ii) and (iii) above is true only for compact sets in
Euclidean space Rn. It is not true for general closed metric spaces.

3.3 Perfect Sets

Definition 3.3.1. A set P ⊆ R is called perfect if it is closed and contains no isolated points.

Theorem 3.3.1. The Cantor set is perfect.

Proof. Since the Cantor set is an intersection of finite unions of closed intervals, it is closed. Every
point in the Cantor set is a limit point. So the Cantor set is perfect.

Theorem 3.3.2. A nonempty perfect set is uncountable.

Proof. If P is perfect and nonempty, it cannot be finite, since then it would only have isolated
points. Suppose it is countable. Then P = {x1, x2, x3, . . .}. Create a nested sequence of compact
sets Kn in P such that x1 /∈ K2, x2 /∈ K3, . . ., with each Kn nonempty. We do this by letting I1 be
a closed interval containing x1 in its interior. Since x1 is not isolated, ∃y2 ̸= x1 in I0. Construct
I2 ⊆ I1, a closed interval centered around y2 satisfying x1 /∈ I2. Continue this process inductively.
Then In+1 ⊆ In, xn /∈ In+1, and In ∩ P ̸= ∅ because yn ∈ In and yn ∈ P . let Kn = In ∩ P . By
the Nested Compact Set Property, the intersection

⋂∞
n=1 Kn is nonempty, but x ∈

⋂∞
n=1 Kn ⊆ P

is not in the list {x1, x2, x3 . . .} by construction. So P is uncountable.

3.4 Connected Sets

Definition 3.4.1. Two nonemtpy sets A,B ⊆ R are separated if A ∩ B and A ∩ B are both
empty.

Definition 3.4.2. A set E ⊆ R is disconnected if it can be written as E = A∪B, where A and
B are nonempty separated sets. E is connected if it is not disconnected.

Theorem 3.4.1. A set E ⊆ R is connected if and only if, for all nonempty disjoint A and B
satisfying E = A ∪ B, there exists a convergent sequence (xn) → x with (xn) contained in either
A or B, and x in the other.

Theorem 3.4.2. A set E ⊆ R is connected if and only if whenever a < c < b with a, b ∈ E, then
c ∈ E.
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4
Functional Limits and Continuity

4.1 Functional Limits

Definition 4.1.1. Let f : A → R, and let c be a limit point of A. Then the functional limit
limx→c f(x) = L means that ∀ε > 0, ∃δ > 0 s.t. 0 < |x− c| < δ, x ∈ A implies |f(x)− L| < ε

Theorem 4.1.1. Given f : A → R and c a limit point of A, limx→c f(x) = L if and only if for all
sequences (xn) ⊆ A satisfying xn ̸= c and (xn) → c, (f(xn)) → L.

Theorem 4.1.2 (Algebraic Limit Theorem for Functional Limits). Let f and g be functions
defined on A ⊆ R and assume limx→c f(x) = L and limx→c g(x) = M for some limit point c of A.
Then

(i) limx→c kf(x) = kL for k ∈ R

(ii) limx→c[f(x) + g(x)] = L+M

(iii) limx→c[f(x)g(x)] = LM

(iv) limx→c[f(x)/g(x)] = L/M if M ̸= 0

Theorem 4.1.3. Let f : A → R with A ⊆ R, and let c be a limit point of A. if there exist two
sequences (xn) and (yn) in A with xn ̸= c and yn ̸= c and limxn = lim yn = c but lim f(xn) ̸=
lim f(yn), then limx→c f(x) does not exist.

4.2 Continuity

Definition 4.2.1. A function f : A → R is continuous at a point c ∈ A if ∀ε > 0∃δ > 0 such
that |x− c| < δ and x ∈ A implies |f(x)− f(c)| < ε.

If f is continuous at every point in A, then f is continuous on A.

Remark. If c is a limit point of A, then the above definition is equivalent to the statement that
limx→c f(x) = f(c). If c is isolated, then the limit is undefined, but the definition is still valid. It
follows from the definition that f is continuous at every isolated point of A.

Theorem 4.2.1. Let f : A → R and let c ∈ A. Then f is continuous at c if and only if for all
(xn) → c contained in A, (f(xn)) → f(c).

Theorem 4.2.2. Let F : A → R and c ∈ A be a limit point of A. If there exists a sequence
(xn) ⊆ A with (xn) → c but f(xn) does not converge to f(c), then f is discontinuous at c.

Definition 4.2.2. Let f : M → N . Then the preimage of a set V ⊆ N under f is fpre(V ) =
{x ∈ M : f(x) ∈ V }.
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Theorem 4.2.3. Let f : M → N . Then f is continuous on M if and only if the preimage of each
closed set in N is closed in M .

Theorem 4.2.4. Let f : M → N . Then f is continuous on M if and only if the preimage of each
open set in N is open in M .

Theorem 4.2.5 (Algebraic Continuity Theorem). Let f : A → R and g : A → R be
continuous at c ∈ A. Then

(i) kf(x) is continuous at c for k ∈ R

(ii) f(x) + g(x) is continuous at c

(iii) f(x)g(x) is continuous at c

(iv) f(x)/g(x) is continuous at c, provided it is defined.

Theorem 4.2.6. Let f : A → R and g : A → R, with the range of f contained in B. If f is
continuous at c ∈ A and g is continuous at f(c) ∈ B, then g ◦ f is continuous at c.

Theorem 4.2.7. Let f : A → R be continuous on A. If K ⊆ A is compact, then f(K) is compact.

Proof. Let (bn) be an arbitrary sequence in fK. Then let (ak) be a sequence in K such that
f(an) = bn for all n. Since K is compact, there exists a subsequence (ank

) that converges to some
p ∈ K. By the continuity of f , (ank

) → p =⇒ (f(ank
)) → f(p) ∈ fK. So (bn) has a subsequence

bnk
= f(ank

) that converges to a limit in fK.

Theorem 4.2.8 (Extreme Value Theorem). Let f : K → R be continuous on K ⊆ R compact.
Then ∃x0, x1 ∈ K such that f(x0) ≤ f(x) ≤ f(x1) for all x ∈ K.

4.3 Uniform Continuity

Definition 4.3.1. A function f : A → R is uniformly continuous on A if ∀ε > 0, ∃δ > 0 such
that ∀x, y ∈ A, |x− y| < δ =⇒ |f(x)− f(y)| < ε.

Remark. Because there is no notion of uniform continuity at a point, δ is not allowed to depend
on the point in A.

Theorem 4.3.1. Let f : A → R. Then f is not uniformly continuous on A if and only if there
exists ε > 0 and two sequences (xn) and (yn) in A with |xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε

Theorem 4.3.2. A function that is continuous on a compact set K is uniformly continuous on
K.

Proof. Suppose f is continuous on K. Assume it is not uniformly continuous on K. Then there
exists ε > 0 and two sequences (xn) and (yn) in A with |xn − yn| → 0 but |f(xn) − f(yn)| ≥ ε.
Since K is compact, there exists a subsequence (xnk

) that converges to some x ∈ K. Consider
(ynk

). Since lim(xn − yn) = 0, we have lim ynk
= lim(ynk

− xnk
+ xnk

) = 0 + x. So (ynk
) → x.

By the continuity of f , lim f(xnk
) = f(x) = lim f(ynk

), so lim f(xnk
) − f(ynk

) = 0. But this
contradicts the statement that |f(xn) − f(yn)| ≥ ε for all n. So f must be uniformly continuous
on K.

Theorem 4.3.3. If f : G → R is continuous and E ⊆ G is connected, then f(E) is connected.

Theorem 4.3.4 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. If L is a
real number with f(a) < L < f(b) or f(b) < L < f(a), then ∃c ∈ (a, b) such that f(c) = L.
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5
Differentiation

5.1 Derivatives

Definition 5.1.1. Let g : A → R. Then the derivative of g at c ∈ A is g′(c) = limx→c
g(x)−g(c)

x−c ,
provided the limit exists.

Definition 5.1.2. g : A → R is differentiable at c ∈ A if the derivative of g at c exists. It is
differentiable on A if it is differentiable at every c ∈ A.

Theorem 5.1.1. If f : (a, b) → R is differentiable at c ∈ (a, b), then there exists f∗
c continuous at

c such that f(x)− f(c) = (x− c)f∗
c (x) for any x ∈ (a, b), with f∗

c (c) = f ′(c).

Proof. Let f∗
c (x) =

f(x)−f(c)
x−c , f∗

c (c) = f ′(c).

Theorem 5.1.2. If g : A → R is differentiable at c ∈ A, then it is continuous at c ∈ A.

Proof. By Theorem 5.1.1, f∗
c exists and satisfies f(x)−f(c) = (x−c)f∗

c (x). limx→c(x−c)f∗
c (x) = 0

so limx→c f(x) = f(c) so f is continuous at c.

Theorem 5.1.3. Let f, g : A → R be differentiable at c ∈ A. Then

(i) (f + g)′(c) = f ′(c) + g′(c)

(ii) (kf)′(c) = kf ′(c) for k ∈ R

(iii) (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

(iv) (f/g)′(c) = (g(c)f ′(c)− g′(c)f(c))/[(g(c))2], provided g(c) ̸= 0

Theorem 5.1.4 (Chain Rule). Let f : A → R and g : B → R such that f(A) ⊆ B and g ◦ f is
defined. If f is differentiable at c ∈ A and g is differentiable at f(c) ∈ B then (g◦f) is differentiable
at c with (g ◦ f)′(c) = g′(f(c))f ′(c).

Proof. Apply Theorem 5.1.1 to produce f∗
c (x), g

∗
f(c)(x) satisfying f(x)− f(c) = (x− c)f∗

c (x) and

g(y) − g[f(c)] = [y − f(c)]g∗f(c)(y). Then we have g[f(x)] − g[f(c)] = [f(x) − f(c)]g∗f(c)[f(x)] =

(x− c)[f∗
c (x)][g

∗
f(c)(x)] and limx→c g

∗
f(c)(x) = g′[f(c)], so limx→c

g(f(x))−g(f(c))
x−c = g′[f(c)]f ′(c).

Theorem 5.1.5. Let f : (a, b) → R satisfy f ′(c) > 0 at some c ∈ (a, b). Then ∃δ > 0 s.t. for
any x ∈ Vδ(c), x > c =⇒ f(x) − f(c) and x < c =⇒ f(x) < f(c), with a similar statement for
f ′(c) < 0.

Proof. By Theorem 5.1.1, we construct f∗
c (x) with f∗

c (c) = f ′(c) > 0. Since f∗
c is continuous, there

is some Vδ(c) so f∗
c (x) > 0 on this interval, which leads to the conclusion.

15



Definition 5.1.3. Let f : A → R. Let a ∈ A. f has a local maximum at a if there exists some
Vδ(x) such that f(x) ≤ f(a) for any x ∈ Vδ ∩A. A local minimum is defined similarly.

Theorem 5.1.6. Let f be differentiable on (a, b). If f has a local extremum at c ∈ (a, b), then
f ′(c) = 0.

Proof. By Theorem 5.1.5, if f ′(c) > 0 or f ′(c) < 0, then no Vδ(c) works. So f ′(c) = 0.

5.2 Mean Value Theorems

Theorem 5.2.1 (Rolle’s Theorem). f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b). If f(a) = f(b) then ∃c ∈ (a, b) such that f ′(c) = 0.

Theorem 5.2.2 (Mean Value Theorem). Let f : [a, b] → R be continuous on [a, b] and
differentiable on (a, b). Then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Theorem 5.2.3. Let f, g be continuous on [a, b] and differentiable on (a, b). Then ∃c ∈ (a, b) such
that |f(b)− f(a)|g′(c) = g(b)− g(a)f ′(c). If g′ ̸= 0 on [a, b] the

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)

Theorem 5.2.4. Suppose f is differentiable on [a, b]. Then for any k satisfying f ′(a) < k < f ′(b)
or f ′(b) < k < f ′(a), there exists c ∈ (a, b) with f ′(c) = k.

Proof. Use Theorem 5.1.1 to produce f∗
a (x) =

f(x)−f(a)
x−a and f∗

b (x) =
f(x)−f(b)

x−b . Since each function

is continuous, f∗
a takes on all values from f(b)−f(a)

b−a to f ′(a) and f∗
b (x) all values from f(b)−f(a)

b−a
to f ′(b). So for any k, one of the functions satisfies f∗

a or b(z) = k. By the Mean Value Theorem,
there exists c ∈ (a, b) such that f ′(c) = f∗

a or b(z) = k

Theorem 5.2.5 (L’Hospital’s Rule). Let f and g be differentiable on (a, b), with limx→c f(x) =
limx→c g(x) = 0, g(x), g′(x) ̸= 0, and limx→c f

′(x)/g′(x) = L. Then limx→c f(x)/g(x) = L. The
result also holds if c = ±∞ or if limx→c g = ∞.
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6
Sequences and Series of Functions

6.1 Sequences of Functions

Definition 6.1.1. Let (fn) be a sequence of functions on A ⊆ R. (fn) converges pointwise on
A to a function f (denoted (fn) → f) if, for any x ∈ A, (fn(x)) → f(x).

Definition 6.1.2. Let (fn) be a sequence of functions on A ⊆ R. (fn) converges uniformly
on A to a function f (denoted (fn) ⇒ f) if, ∀ε > 0 ∃N ∈ N such that ∀n ≥ N , ∀x ∈ A,
|fn(x)− f(x)| < ε.

Theorem 6.1.1. Let (fn) be a sequence of functions on A ⊆ R. (fn) converges uniformly if and
only if ∀ε > 0 ∃N ∈ N such that ∀m,n ≥ N , ∀x ∈ A, |fn(x)− fm(x)| < ε.

Theorem 6.1.2. Let (fn) ⇒ f on A ⊆ R. If each fn is continuous at some c ∈ A, then f is
continuous at c.

Theorem 6.1.3. Let (fn) → f on [a, b]. If each fn is differentiable and (f ′
n) ⇒ g on [a, b], then f

is differentiable with f ′ = g.

Theorem 6.1.4. Let (fn) be a sequence of differentiable functions on [a, b]. Suppose (f ′
n) ⇒ g on

[a, b] and (fn(c)) is convergent at some c ∈ [a, b]. Then (fn) converges uniformly on [a, b], and the
limit function f = lim fn is differentiable with f ′ = g.

6.2 Series of Functions

Definition 6.2.1. Let fn be defined on A ⊆ R for each n. Then the series
∑

fn converges

pointwise to f if the sequence sk =
∑k

i=1 fi converges pointwise to f , and converges uniformly if
(sk) converges uniformly.

Theorem 6.2.1. Suppose each fn is continuous on A ⊆ R and
∑

fn converges uniformly to f on
A. Then f is continuous on A.

Theorem 6.2.2. Suppose each fn is differentiable on [a, b] and
∑

f ′
n converges uniformly to g on

[a, b]. If
∑

fn(c) converges for some c ∈ [a, b], then
∑

fn converges uniformly to f on [a, b] and
f ′ = g.

Theorem 6.2.3.
∑

fn converges uniformly on A ⊆ R if and only if for every ε > 0 there exists
N ∈ N such that ∀n > m ≥ N , ∀x ∈ A, |

∑n
k=m+1 fk(x)| < ε.

Theorem 6.2.4. Given some (fn) on A ⊆ R, suppose some (Mn) satisfies |fn(x)| ≤ Mn for each
x ∈ A and each n ∈ N. If

∑
Mn converges, then

∑
fn converges uniformly on A.

17



6.3 Power Series

Definition 6.3.1. A power series is a series of functions of the form
∑∞

n=0 anx
n for some

constants a0, a1, . . . ∈ R.

Theorem 6.3.1. If a power series
∑

anx
n converges at some x0 ∈ R then it converges absolutely

for any x with |x| < |x0|.

Corollary 6.3.1.1. The set of points that a power series converges on must be either {0},R,
or some bounded interval of the form [−R,R], (−R,R), [−R,R), (−R,R]. The value of R is the
radius of convergence of the power series. If the set is {0} then the radius is 0 and if it is R
then the radius is ∞.

Proof. If
∑

anx
n
0 converges then (anx

n
0 ) → 0 so (anx

n
0 ) is bounded. Let M ≥ anx

n
0 for all n. Then

for |x| < |x0|, we have |anxn
0 | ≤ M |x/x0|n. Since |x/x0| < 1,

∑
M |x/x0|n converges, so

∑
anx

n
0

converges absolutely.

Theorem 6.3.2. If a power series
∑

anx
n converges absolutely at some x0 > 0 then it converges

uniformly on the interval [0, x0].

Corollary 6.3.2.1. If a power series converges at some x0 > 0 then it converges uniformly on any
compact subset of (−x0, x0].

Theorem 6.3.3 (Abel’s Theorem). Suppose a power series converges at the point x = R > 0.
Then the series converges uniformly on [0, R] (moreover, it converges uniformly on (−R,R]. A
similar result holds for x = −R.

Corollary 6.3.3.1. A power series converges uniformly on any compact subset of the interval it
converges on.

Theorem 6.3.4. Power series are continuous everywhere they are defined.

Theorem 6.3.5. Power series are infinitely differentiable on the interior of their radius of conver-
gence. Moreover, (

∑
anx

n)′ =
∑

nanx
n−1.

6.4 Taylor Series

Definition 6.4.1. Let f : I → R be infinitely differentiable on I. Then we say that f ∈ C∞ on I.

Definition 6.4.2. Let f ∈ C∞ for some neighborhood of c. Then the Taylor series generated
by f about c is the series

∑∞
0 f (n)(c)(x− c)n/n!.

Theorem 6.4.1. Let f be differentiable N +1 times on (−R,R). Let SN (x) =
∑N

0 f (n)(0)xn/n!.
Then for any x ̸= 0 in (−R,R), there is some c(x) with |c| < |x| such that EN (x) = f(x)−SN (x) =
f (N+1)(c(x))xN+1/(N + 1)!

Corollary 6.4.1.1. Let T be the Taylor series generated by f about 0. If En(x) → 0 on some
interval I then T = f on that interval.

Corollary 6.4.1.2. Let f ∈ C∞ in some neighborhood I of c. Let T be the Taylor series generated
by f about c. Then if there exists M > 0 such that |f (n)(x)| < Mn on I, T = f on I.
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6.5 Weierstrass Approximation Theorem

Definition 6.5.1. A function ϕ : [a, b] → R is polygonal if it is linear on a finite number of
subintervals which cover [a, b].

Theorem 6.5.1. For any continuous function f on [a, b], for any ε > 0, there exists a polygonal
function ϕ such that |ϕ− f | < ε on [a, b].

Theorem 6.5.2. For any polygonal function ϕ on [a, b], for any ε > 0, there exists a polynomial
p such that |ϕ− p| < ε on [a, b].

Theorem 6.5.3 (Weierstrass Approximation Theorem). For any continuous function f on
[a, b], for any ε > 0, there exists a polynomial p such that |f − p| < ε on [a, b].
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7
Integration

7.1 Riemann Integral

Definition 7.1.1. Given an interval I, a partition P of I is a finite collection of points xn ∈ I
such that a = x0 < x1 < . . . < xn−1 < xn = b.

Definition 7.1.2. Given a partition P and partition P ′, P ′ is a refinement of P if P ⊆ P ′.

Definition 7.1.3. Let P and Q be two partitions. Then the partition J = P ∪Q is the common
refinement, and J is a refinement of both P and Q.

Definition 7.1.4. Given a bounded function f : [a, b] → R and a partition P of [a, b], let
Mk = sup{f(x) : xk ≤ x ≤ xk+1} and mk = inf{f(x) : xk ≤ x ≤ xk+1}. Then U(f, P ) =∑k−1

0 Mk(xk+1 − xk) the upper sum of f with respect to P , and L(f, P ) is the lower sum,
defined with mk.

Theorem 7.1.1. Given any f and partition P , L(f, P ) ≤ U(f, P ).

Theorem 7.1.2. If P ′ is a refinement of P , then U(f, P ′) ≤ U(f, P ) and L(f, P ) ≤ L(f, P ′).

Theorem 7.1.3. If P and Q are two partitions, then L(f, P ) ≤ U(f,Q)

Definition 7.1.5. Let f be bounded on [a, b]. Let P be the collection of all partitions of an

interval [a, b]. Then the upper integral of f on [a, b] is
∫ b

a
f = U(f) = inf{U(f, P ) : P ∈ P}. The

lower integral is
∫ b

a
f = L(f) = sup{L(f, P ) : P ∈ P}.

Definition 7.1.6. Let f be a bounded function on [a, b]. If U(f) = L(f) on [a, b], then f is

Riemann integrable on [a, b], and we say
∫ b

a
f = U(f) = L(f).

Theorem 7.1.4. A bounded function f is integrable on [a, b] if and only if, for all ε > 0 there
exists a partition Pε such that U(f, Pε)− L(f, Pε) < ε.

Theorem 7.1.5. A continuous function f : [a, b] → R is integrable on [a, b].

Theorem 7.1.6. A bounded function f with finite discontinuities on [a, b] is integrable on [a, b].

Definition 7.1.7. Let P be a partition of I. If {ck} is a collection of points such that ck ∈
[xk, xk+1] for all 0 ≤ k ≤ n− 1, then (P, {ck}) is called a tagged partition.

Definition 7.1.8. Let (P, {ck}) be a tagged partition. Then given a bounded function f , the
tagged sum of f with respect to (P, {ck}) is R(f, P, {ck}) =

∑
f(ck)(xk+1 − xk).

Definition 7.1.9. The norm of a partition P is ||P || = max{xk+1 − xk : 0 ≤ k ≤ n− 1}.
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Theorem 7.1.7. A bounded function f is integrable with
∫
f = A if and only if for all ε > 0,

there exists δ > 0 such that for any partition P with ||P || < ε, we have |R(f, P, {ck})−A| < ε.

Theorem 7.1.8. If f is integrable on [a, b] then it is integrable on any I ⊆ [a, b].

Theorem 7.1.9. If f is integrable on [c, b] for all c ∈ (a, b), then f is integrable on [a, b].

Theorem 7.1.10. If f is integrable on [a, b] and integrable on [b, c] then it is integrable on [a, c].

Moreover,
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Definition 7.1.10. A set A ⊆ R has measure zero if for any ε > 0, there exists a cover of A by
open intervals with total length less than ε.

Theorem 7.1.11. Given a bounded function f on [a, b], define D(f) to be the set of points at
which f is continuous. f is integrable on [a, b] if and only if D(f) has measure 0.

Theorem 7.1.12. If f, g are integrable on [a, b] then

• f ± g is integrable with
∫
f ± g =

∫
f ±

∫
g

• kf is integrable with
∫
kf = k

∫
f

• fg and f/g are integrable (assuming g ̸= 0)

• |f | is integrable and |
∫
f | ≤

∫
|f |

• If m ≤ f ≤ M on [a, b] then (b− a)m ≤
∫
f ≤ (b− a)M

Theorem 7.1.13 (Fundamental Theorem of Calculus I). Let f be an integrable function on
[a, b]. Suppose F satisfies F = f ′ on [a, b]

Theorem 7.1.14 (Fundamental Theorem of Calculus II). Let f be an integrable function
on [a, b]. Let g(x) =

∫ x

a
f . Then g is differentiable with g′ = f .

Theorem 7.1.15. Let fn ⇒ f on [a, b], with each fn integrable on [a, b]. Then f is integrable on

[a, b] with
∫ b

a
f = lim

∫ b

a
fn.
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ε-neighborhood, 6
1-1, 4

Abel’s Theorem, 18
Absolute Convergence Test, 8
absolutely convergent, 8
Algebraic Continuity Theorem, 14
Algebraic Limit Theorem for Functional

Limits, 13
Algebraic Limit Theorem for Sequences, 6
Algebraic Limit Theorem for Series, 8
Archimedean Property, 4
Axiom of Completeness, 4

Bolzano-Weierstrass Theorem, 7
bounded, 6
bounded above, 3
bounded below, 4

Cantor’s Theorem, 5
cardinality, 4
Cauchy Criterion for Sequences, 8
Cauchy sequence, 7
Chain Rule, 15
closed, 10
closure, 10
common refinement, 20
compact, 11
Comparison Test, 8
conditionally convergent., 8
connected, 12
continuous, 13
convergent sequence, 6
convergent series, 8
converges, 6
converges pointwise, 17
converges uniformly, 17
countable, 4

countably infinite, 4
cover, 11

decreasing, 7
derivative, 15
differentiable, 15
disconnected, 12
disjoint, 3
divergent sequence, 6

equicardinal, 4
eventually, 6
Extreme Value Theorem, 14

function, 4
functional limit, 13
Fundamental Theorem of Calculus, 21

Geometric Series, 8
greatest lower bound, 4

Heine-Borel Theorem, 11

increasing, 7
inductive set, 3
infimum, 4
infinite series, 8
interior, 10
Intermediate Value Theorem, 14
intersection, 3
isolated point, 10

least upper bound, 3
limit point, 10
local maximum, 16
local minimum, 16
lower bound, 4
lower integral, 20
lower sum, 20
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maximum, 3
Mean Value Theorem, 16
measure zero, 21
minimum, 4
monotone, 7
Monotone Convergence Theorem, 7

Nested Compact Set Property, 11
Nested Interval Property, 4
norm, 20

one-to-one, 4
onto, 4
open, 10
open cover, 11
Order Limit Theorem, 7

partial sums, 8
partition, 20
perfect, 12
polygonal, 19
power series, 18
power set, 5
preimage, 13

radius of convergence, 18
rearrangement, 8

refinement, 20
relation, 4
Riemann integrable, 20
Rolle’s Theorem, 16

separated, 12
sequence, 6
Squeeze Theorem, 7
strictly decreasing, 7
strictly increasing, 7
subcover, 11
subsequence, 7
subset, 3
supremum, 3, 4

tagged partition, 20
Taylor series, 18

uncountable, 4
uniformly continuous, 14
union, 3
upper bound, 3
upper integral, 20
upper sum, 20

Weierstrass Approximation, 19
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