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Introduction

This document contains notes taken for the class MAE 306: Mathematics in Engineering II
at Princeton University, taken in the Spring 2025 semester. These notes are primarily based
on lectures by Professor Mikko Haataja. This class covers finite-difference, finite-element,
and spectral methods for numerical solutions to the wave and heat equations. Since these
notes were primarily taken live, they may contains typos or errors.
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Chapter 1

Numerical Solving

An important application of numerical methods is the computation of solution sets of various
kinds of equations. Here we cover methods that may be used for algebraic equations and
linear equations.

1.1 Algebraic Equations

We first consider methods which may be used to solve algebraic equations; namely finding
values of x such that

f(x) = 0

for an algebraic function f . An algebraic function is a polynomial with roots in a particular
field (here, R).

Example 1.1

Consider a sphere of radius R which falls through a fluid under the force of gravity.
Suppose we wish to determine its terminal velocity. The drag force is given by

FD =
1

2
CDρV 2πR2

where CD is the drag coefficient. CD can be empirically approximated by

CD =

[
0.63 +

4.9√
Re

]2
with Re denoting the Reynolds number, given by

Re =
ρV R

η(V )
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1.1.1 Successive Substitution

One method for finidng roots of algebraic equations is the method of successive substitu-
tion. To do this, we rewrite the equation f(x) = 0 as x = g(x) for an appropriate function
g. We can then pick a starting ”guess” x0 and consider the sequence x0 = x0, xn+1 = g(xn).
For sufficiently nice g, this sequence should converge to a fixed point x∗ of g, which is a root
of f .

Example 1.2

Consider the function

f(x) = x3 + 2x+ 2− 10 exp(−2x2) = 0

We can rearrange this to the equivalent equation

x =

√
−1

2
ln

(
x3 + 2x+ 2

10

)
= g(x)

We then make a starting guess and calculate g(x), g(g(x)), g(g(g(x))), . . ..

To study its convergence, we can apply a taylor expansion to g around the root x∗,
writing

xn+1 = g(xn) = g(x∗) + g′(x∗)(xn − x∗) +O((xn − x∗)2)

The order 1 approximation is given by

xn+1 ≈ g(x∗) + g′(x∗)(xn − x∗) = x∗ + g′(x∗)(xn − x∗)

Rearranging, we have
xn+1 − x∗ ≈ g′(x∗)(xn − x∗)

Thus, we see that successive iterations have error εn which approximately scale geometri-
cally with rate |g′(x∗)|. Thus the successive substitution method will converge to x∗ when
g′(x∗) < 1, but it diverges when g′(x∗) > 1.

We perform this analysis without resorting to order 1 approximations by adding and sub-
tracting g(x∗):

xn+1 = g(xn) + g(x∗)− g(x∗)

=⇒ xn+1 − x∗ = g(xn)− g(x∗)

We write

g(xn) = g(x∗) +

∫ xn

x∗
g′(y) dy

so

xn+1 − x∗ =

∫ xn

x∗
g′(y) dy
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This gives the bound

|xn+1 − x∗| ≤
∫ xn

x∗
|g′(y)|dy ≤ |xn − x∗| sup

y∈[x∗,xn]

|g′(y)|

This implies that if x0 − x∗ = δ and |g′(y)| < 1 for all y ∈ [x∗ − δ, x∗ + δ], the successive
substitution method converges exponentially.

This gives us a convenient criterion for guaranteed exponential convergence of successive
substitution; however, this criterion is not too useful in practice. This is not too surprising
since the assumption that iterated evaluation leads to a fixed point is only really justified
for contractions.

1.1.2 Newton-Raphson and Wegstein’s Method

We can improve on successive substitution by using higher order terms in the Taylor expan-
sion around xn in order to interpolate more efficiently. If xn+1 is a fixed point, then

xn+1 = g(xn+1) = g(xn) + g′(xn)(xn+1 − xn) +O((xn+1 − xn)
2)

Thus we define a new iterative algorithm which takes into account the linear term, defined
by

xn+1 =
g(xn)− g′(xn)xn

1− g′(xn)

This is essentially Newton’s method for root-finding. We can make a slight modification
to this to avoid calculating derivatives, which gives the secant method, also known as
Wegstein’s method. To do this, we use the linear approximation of the derivative as

g′(xn) ≈
g(xn)− g(xn−1)

xn − xn−1

which can be combined to give the rule

xn+1 =
xng(xn−1)− xn−1g(xn)

xn − g(xn)− xn−1 + g(xn−1))

Note that in this case, two starting iterates are required. The second iterate could be
calculated simply using successive substitution as g(x0), if desired.

We observe that due to the 1−g′(xn) term in the denominator, the Newton-Raphson method
has convergence issues when g′ is close to 1. This is intuitively explained by the fact that
g is near linear with slope 1, and we are trying to calculate its intersection with y = x,
so this becomes very difficult. While computation of derivatives for Newton-Raphson is
computationally expensive, it does allow quadratic convergence.

1.1.3 Convergence Analysis of Iterated Schemes

In this section we quantify orders of convergence for iterative approximation schemes.
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Suppose that {xn} is a sequence of points generated by some iterative approximation
method, and x∗ is the target value. Then we define:{

εn = xn − x∗

pn = − ln|εn|

If xn → x∗, then pn → ∞. We then define the order of convergence by

ρ = lim
pn+1

pn

when the limit exists. If ρ = 1 then we say the error decreases ”linearly”. For ρ = 2
(”quadratic convergence”) it is even stronger. (Compare this to order of growth for entire
functions). Note that geometric decay has order one convergence.

We can now demonstrate what it means to say that Newton-Raphson converges quadrat-
ically. In its general form, Newton-Raphson can be written to find a root of a function f
using the iteration

xn+1 = xn − f(xn)

f ′(xn)

Then

εn+1 = xn+1 − x∗ = xn − x∗ − f(xn)

f ′(xn)
= εn − f(xn)

f ′(xn)

=⇒ f ′(xn)εn+1 = f ′(xn)εn − f(xn) (∗)

Taylor series expanding f around x∗, we have

f(xn) = f(x∗)︸ ︷︷ ︸
=0

+f ′(x∗)(xn − x∗) +
1

2
f ′′(x∗)(xn − x∗)2 +O((xn − x∗)3)

= f ′(x∗)εn +
1

2
f ′′(x∗)ε2n +O(ε3n) (1)

We similarly expand f ′ as

f ′(xn) = f ′(x∗) + f ′′(x∗)(xn − x∗) +
1

2
f ′′′(x∗)(xn − x∗)2 +O((xn − x∗)3)

= f ′(x∗) + f ′′(x∗)εn +O(ε2n) (2)

Notice that we approximated f and f ′ to different orders; this is because we care about the
quantity εnf

′ − f .

Substituting (1) and (2) into (∗) and cancelling terms, we have

[f ′(x∗) + f ′′(x∗)εn +O(ε2n)]εn+1 =
1

2
f ′′(x∗)ε2n +O(ε3n)

Thus

εn+1 =
1
2f

′′(x∗)ε2n +O(ε3n)

f ′(x∗) + f ′′(x∗)εn +O(ε2n)
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If the Newton-Raphson method converges, then ε → 0. Thus we discard the εn terms in
the denominator (here we see that we need f ′(x∗) ̸= 0) to approximate this for large n as

εn+1 ≈ f ′′(x∗)ε2n
f ′(x∗)

= Cε2n

Taking logarithms, we see that the convergence is quadratic.

Note that the secant method has order of convergence somewhat slower than Newton-
Raphson, which is ϕ.
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