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Introduction

This document contains notes taken for the class GEO 441: Computational Geophysics at
Princeton University, taken in the Spring 2025 semester. These notes are primarily based
on lectures by Professor Jeroen Tromp. This class covers finite-difference, finite-element,
and spectral methods for numerical solutions to the wave and heat equations. Since these
notes were primarily taken live, they may contains typos or errors.
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Chapter 1

Continuum Mechanics and the
Equations of Motion

In this class, we will primarily focus on the wave and heat equations, which are important
in the study of geophysics, and more broadly, continuum mechanics. As such, we will begin
with an introduction to basic continuum mechanics to better understand the role of the
differential equations we study.

Continuum mechanics are primarily governed by four conservation laws:

1. Conservation of mass,

2. Conservation of linear momentum,

3. Conservation of angular momentum,

4. Conservation of energy.

The wave and heat equations arise as a result of (2) and (4), respectively, but in actual
applications it is often the case that coupled systems of conservation laws must be solved.

1.1 Conservation of Mass

V

S = ∂V

dS
n̂

We consider a “comoving volume” V . By “comoving volume”, one can imagine a bag of
some fluid mass deposited in a river, which can be deformed as it moves, but nevertheless
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maintains a constant mass throughout. We also denote the surface of V by S = ∂V , and
for small surface elements dS we denote the unit outward normal vector by n̂.1

We also adopt the Einstein summation convention, in which repeated indices that are not
otherwise used are implied to be summed over:

u⃗ = uiei

If we consider a change of basis to some new basis {e′1, e′2}, this can then be written as

u⃗ = ui
′
e′i

where ui
′
denotes the ith component of u⃗ in the new basis.

While u⃗ is invariant under change of basis, the components are of course not. The way that
they transform under change of basis is given by the change of basis matrix λ, and this
relationship is expressed under Einstein summation notation by

ui = λii′u
i′

ei = λii′e
′
i

The reverse transformation may be denoted by Λ. The fact that they are inverses may be
expressed by the equation

λii′Λ
i′

j = δij

where δij is the Kronecker delta (in coordinates, the RHS is the identity matrix). This then
allows us to express the reverse relationships for change of basis:

ui
′
= Λi′

i u
i

e′i = Λi′

i ei

Now, to formalize the notion of the mass of V , we first consider the mass density, considered
as a function ρ(x⃗, t) of both space and time (with respect to some coordinate system). For
an infinitesimal volume element dV , the mass of the volume is given by ρ dV . Notice that
the dimensions of mass density is

[ρ] =
kg

m3

so that the dimensions of mass are

[ρ] [dV ] = kg

More generally, the mass of V is given by integrating against mass density,

M =

∫
V

ρ dV

1In this course we adopt the convention that a vector is denoted by v⃗, a unit vector by v̂, and the ith
component of a vector by vi or vi. (The distinction is the distinction between covariant and contravariant
indices, but is not necessary for this course). Moreover, we denote the standard basis vectors in the x and
y directions by ex = x̂ and ey = ŷ, respectively.
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In Cartesian coordinates this is

M =

∫
V

ρ(x, y, z, t) dx dy dz

Notice that the integrand is time dependent. Moreover, we allow V to deform over time as
well, so that this equation might be more appropriately written as

M(t) =

∫
V (t)

ρ(x, y, z, t) dx dy dz

Then the conservation of mass law is expressed as the ODE

0 =
dM

dt
=

d

dt

∫
V (t)

ρ dV

If V is constant (that is, if we allow for no deformation), then Feynman’s trick give us

dM

dt
=

∫
V

∂ρ

∂t
dV

However, because V is time-dependent, this fails to hold. Instead, we first appeal to the
single-dimensional case by considering Leibniz’s rule, which handles integration with time-
dependent limits and integrand of the form

I(t) =

∫ b(t)

a(t)

f(x, t) dx

In this case, by considering I as the area under the curve, it is clear that (at least for
continuous a, b) the value dI

dt must take into account both the values ∂f
∂t |[a,b], but also the

area which is added or removed by the change in a, b.

Theorem 1.1: Leibniz’s Rule

Let f(x, t) be jointly continuous with ∂
∂tf(x, t) also jointly continuous in some region

given by a(t) ≤ x ≤ b(t), t0 ≤ t ≤ t1. If a, b are both continuously differentiable,
then

d

dt

(∫ b(t)

a(t)

f(x, t) dx

)
=

∫ b(t)

a(t)

∂f

∂t
(x, t) dx+ f(b(t), t)

db

dt
(t)− f(a(t), t)

da

dt
(t)

This can be derived using the limit formulation of the derivative by writing

dI

dt
= lim

∆t→0

1

∆t

[∫ b(t+∆t)

a(t+∆t)

f(x, t+∆t) dx−
∫ b(t)

a(t)

f(x, t) dx

]
As a first order approximation for the change in area if the integration limits are constant,
Feynman’s rule holds and we have∫ b(t)

a(t)

1

∆t
lim

∆t→0
[f(x, t+∆t)− f(x)] dx+O((∆t)2) =

∫ b(t)

a(t)

∂f

∂t
(x, t) dx
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At the upper limit, f is also near constant, so the change in area is approximated to first
order by

f(b(t), t) lim
∆t→0

1

∆t
[b(t+∆t)− b(t)] = f(b(t), t)

db

dt
(t)

The lower limit is similar with a negative sign. Combining the three approximations, we get

dI

dt
=

∫ b(t)

a(t)

∂f

∂t
(x, t) dx+ f(b(t), t)

db

dt
(t)− f(a(t), t)

da

dt
(t)

Now, we return to the case of our comoving volume. Taking inspiration from Leibniz’s rule,
the main term that we have to adjust in the 2-dimensional case is the change in boundary
area. This is approximated by considering the volume over which a surface element moves
within an infinitesimal time interval.

For a given surface element dS(t), we consider both the associated normal n̂(t) and the
velocity vector v⃗. Then the component of the velocity of dS(t) in the normal direction is
given by

v⃗ · n̂(t) = vi(t)ni(t)

Note that, as usual we also define the length of u by

∥u⃗∥2 = (ui)2

Now, the flux of mass through dS(t) in the period [t, t+∆t] is then

ρ|dS(t)v⃗ · n̂

Then we can now include the correct error term to calculate dM
dt :

dM

dt
=

d

dt

∫
V (t)

ρ dV =

∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρv⃗ · n̂ dS

(where S is equipped with the outward-facing orientation). Lastly, we can replace the second
term with an integral over V (t) using the divergence theorem:∫

S

u⃗ · n̂ dS =

∫
V

∇ · u⃗ dV

We combine the integrals:

dM

dt
=

∫
V (t)

[
∂ρ

∂t
+∇ · (ρv⃗)

]
dV

Note that the divergence is taken against ρv⃗, since this is the quantity which is dotted
against n̂.

Because the integral must be zero for all possible V , the integrand is identically zero. Thus
we express the conservation of mass law for a comoving volume (also known as the conti-
nuity equation) by

∂ρ

∂t
+∇ · (ρv⃗) = 0
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We can expand this using summation notation as

∂tρ+ vi∇iρ+ ρ∇iv
i = 0

The first two terms ∂tρ+ vi∇iρ is known as the material derivative

Dtρ = ∂tρ+ v⃗ · ∇ρ

where the first term is the local change in density, and the second is the advection term
(which is the directional derivative of the density in the direction of velocity). In other
words, the rate of change of local mass along a path is given by the pointwise rate of change
together with the change given by the motion of the path against the gradient. We then
rephrase the continuity equation as

Dtρ+ ρ∇ · v⃗ = 0

or equivalently
1

ρ
Dtρ = −∇ · v⃗

This essentially says that the relative change in density along a path is the negative of the
velocity divergence. This makes sense because when divergence is positive, mass is moving
away and density decreases, while density increases with velocity divergence is negative. In
particular, if the mass is incompressible, ∇ · v⃗ = 0, so that density is constant along any
path. In this case, we don’t need to worry about conservation of mass.

1.2 Conservation of Linear Momentum

Linear momentum is given by the product of mass with velocity. In continuum mechanics
this is given by ρv⃗ dV . Thus the total momentum of a volume is simply

p =

∫
V (t)

ρv⃗ dV

The statement of conservation of linear momentum is essentially that the only way to change
linear momentum is to apply (external) forces to our volume. This is basically Newton’s

second law, written as F⃗ = ṗ. One can consider a body force f⃗ which pulls on small volume
elements dV . We can also consider forces t⃗ which act only on the surface of the volume.
Thus we write

d

dt

∫
V (t)

ρv⃗ dV =

∫
V (t)

f dV +

∫
S(t)

t⃗ dS

We can differentiate the left hand side the same way as we did in the conservation mass
equation:

d

dt

∫
V (t)

ρv⃗ dV =

∫
V (t)

∂t(ρv⃗) dV +

∫
S(t)

(ρv⃗)n̂ · v⃗ dS

To conceptualize the surface-acting forces, we consider the stress tensor, which is a rank
2 tensor (or matrix) T such that T · n⃗ gives the traction force on dS, if the unit outward
normal of dS is n̂. In indices, this is

ti = Tij n̂j dS
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(Note that in general Tij n̂j ̸= n̂jTji, but this is true if T is a symmetric tensor). Then the
right hand side of our equation is writen as∫

V (t)

f⃗ dV +

∫
S(t)

T · n̂ dS

Once again we use the divergence theorem to convert these to volume integrals, so that our
equation is given by∫

V (t)

[∂t(ρv⃗) +∇ · (ρv⃗ ⊗ v⃗)] dV =

∫
V (t)

[
f⃗ +∇ ·T

]
dV

Note that both integrals are vector quantities. In components, the integrand on the left can
be given by

∂tρv
i +∇j ·

(
ρvivj

)
(By convention, the divergence theorem is written in indices as

∫
S
uin̂i dS =

∫
V
∇iu

i dV ).

Similarly, the divergence of T is given by contracting the gradient against the last index of
T, so that the integrand on the right is given in indices by

f i +∇j · T ij

Equating the integrands again, the conservation of linear momentum law is thus given by

∂t(ρv⃗) +∇ · (ρv⃗ ⊗ v⃗) = ∇ ·T+ f⃗

Some equivalent formulations are

∂t(ρv⃗) = ∇ · (T− ρv⃗ ⊗ v⃗) + f⃗

∂t(ρv⃗) +∇ · (ρv⃗ ⊗ v⃗ −T) = f⃗

The last formulation is the Eulerian form, which expresses the conservation law as the
pointwise time derivative of a quantity plus its flux being equated to the source term.

Expressing this with the chain rule gives

(∂tρ)v⃗ + ρ∂tv⃗ +∇ · (ρv⃗)v⃗ + ρv⃗∇ · v⃗ = ∇ ·T+ f⃗

The first and third term are zero by conservation of mass. Thus this is equivalent to

ρ (∂tv⃗ + v⃗∇ · v⃗) = ∇ ·T+ f⃗

The parenthetical term is again the material derivative, this time of velocity, so this is

ρDtv⃗ = ∇ ·T+ f⃗

As formulated, the coupling of the conservation of mass and momentum laws gives four
scalar equations. Even if body forces are given, this leaves as unknowns the mass density,
velocity, and stress tensor. Thus we need constitutive relationships, which express some of
these (particularly the stress tensor) in terms of the others in order to solve these. This
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makes sense given that the actual results will depend on material properties, which are
specified in the stress tensor but nowhere else.

To do this, we consider stress and strain. Fix some origin point and let x⃗ denote the starting
point of some particle. Let r⃗(x⃗, t) denote the position of particle x⃗ at time t. By definition
r⃗(x⃗, 0) = x⃗. Define s⃗(x⃗, t) = r⃗(x⃗, t)− x⃗ to be the displacement vector. Suppose we consider
two initially neighboring particles x⃗, x⃗+dx⃗. As time progresses, their displacement becomes
dr⃗ = r⃗(x⃗+ dx⃗, t)− r⃗(x⃗, t). We take the first order Taylor expansion:

dr⃗ ≈ r⃗(x⃗, t) + dx⃗ · ∇r⃗(x⃗, t)− r⃗(x⃗, t) = dxi∇ir⃗ = dx⃗ · ∇r⃗

We can express this as a tensor by

∇jr
i dxj = F i

j dx
j

where F i
j = ∇jr

i, or equivalently F = (∇r⃗)T . The tensor F is known as the deformation
gradient. Recalling that r⃗ = x⃗+ s⃗, we have

F = [∇(x⃗+ s⃗)]
T
= [∇x⃗+∇s]T

Since ∇x⃗ is taken against x⃗ itself, its matrix formulation is just the identity:

I = ∇x⃗ = x̂⊗ x̂+ ŷ ⊗ ŷ + ẑ ⊗ ẑ = (δij)

In summary, we can write
F = I+ (∇s⃗)T

which is the identity plus the transpose of the displacement gradient. Physically, the dis-
placement gradient represents the separation or convergence of material, or equivalently the
deviation from uniform motion. Noting that

dr⃗ = F · dx⃗

we have
dr⃗ =

[
I+ (∇s⃗)T

]
dx⃗ = dx⃗+ (∇s⃗)T · dx⃗

In general the tensor may not be symmetric; however we can always decompose a matrix
into its symmetric and antisymmetric parts as

A =
1

2

(
A+AT

)
+

1

2

(
A−AT

)
In particular, we can write F as

F = I+ ε+ ω

where ε,ω are the symmetric and antisymmetric parts of (∇s⃗)T , respectively. ε is called the
strain and ω the vorticity. In other words, ε denotes the linear deviation from uniform
displacement, or the linear deformation, and ω denotes the twisting component.

Note that this implies the following:

tr(ω) = 0

tr(ε) = tr(∇s⃗) = ∇ · s⃗
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So tr(ε) can be seen to measure the local density or volume change.

It is shown in homework that we can calculate

ω · dx⃗ =
1

2
(∇× s⃗)× dx⃗

Thus we have
dr⃗ = F · dx⃗ = (I+ ε+ ω) = dx⃗+ ε · dx⃗+ ω · dx⃗

Which essentially says that final change in position differs by original change position by
some linear strain component ε · dx⃗, and rotationally by ω · dx⃗.

Based on this physical interpretation, it is clear that applying a stress force on the exterior
of a body should impart a strain on the interior. If we relate the two, this can help us reduce
the dimensionality of our PDE. One possible assumption is Hooke’s law, which postulates
that this is a linear relationship.

In other words, for each component Tij of the stress tensor, there should be coefficients
aij , . . . , fij such that

Tij = aijε11 + bijε12 + . . .+ fijε33

(Note that there are only six degrees of freedom since ε is symmetric). These coefficients
can be collected in a fourth-order tensor called the elastic tensor. This is summarized as

Tij = cijklεkl

Returning to the conservation of momentum law and substitute this relationship, we have

ρ∂2t s⃗ = ∇ · (c : ε) + f⃗

or in components,
ρ∂2t s

i = ∇j ·
(
cijklεkl

)
+ f i

A priori, we have not really reduced the dimensionality, since c has 81 components. However,
conservation of angular momentum forces the stress tensor to be symmetric, and conserva-
tion of energy gives symmetricity across the first two and last two indices. This reduces the
number of independent components to 21.

We now investigate further the importance of Hooke’s law in developing the wave equation.
Consider the one-dimensional case of Hooke’s law, which can be imagined by a spring of
length L and spring constant k. If it is given an initial displacement ∆ℓ, then Hooke’s law
says that the spring force is given by F = k∆L.

By graphing the displacement at t = 0 against the position along the spring x, the displace-
ment linearly increases from 0 to ∆ℓ. In other words,

s(x) =
∆ℓ

L
x

so the strain is given by

ε =
d

dx
s =

∆ℓ

L
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which is therefore constant along the spring. Then the stress is linear in ε, so that

σ = µε = µ
∆ℓ

L
=

µ

kL
F

Relating this back to stress forces, the force against a unit area is the stress force:

σ =
F

A

so that

σ =
µA

kL
σ

or

µ =
kL

A

1.3 The 1D Wave Equation

Here we develop the one-dimensional wave equation PDE as a consequence of conservation
of linear momentum. Imagine a horizontal string of length L, and suppose that the string
experiences perpendicular displacement given by s⃗(x, t) = s(x, t)ŷ in the vertical direction.
The gradient of s⃗ is given by

∇s⃗ = x̂⊗ ŷ∂xs

The strain is the symmetric part, which is therefore given by

ε =
1

2
∂xs (x̂⊗ ŷ + ŷ ⊗ x̂)

We apply Hooke’s law to linearly relate stress and strain:

T = 2µε = Txy (x̂⊗ ŷ + ŷ ⊗ x̂)

(The factor of 2 is conventional). It is thus clear that T has to be symmetric in the 1D case
under Hooke’s law, so that

Txy = µ∂xs

To calculate the divergence of T, we have

∇ ·T = ∂x (µ∂xs) ŷ

Since the acceleration is also vertical, it is given by

ρ∂2t s⃗ = ρ∂2t sŷ

Plugging this into the conservation of momentum equation, we get

ρ∂2t s = ∂x (µ∂xs)
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Note that a priori we allow the shear modulus µ to vary over the string. However, if it is
constant, then we can conclude

∂2t s = β2∂2xs

β =

√
µ

ρ

where β is the shear wave speed.

Let us now consider the propagation of sound waves through fluids. In a fluid, the traction
must be perpendicular to the surface, so that

t⃗ ∼ −pn̂dS

where p is the pressure. For an isotropic fluid, the forces are the same in all directions and
only governed by pressure, so that the stress tensor can be written as

T = −pI

In a fluid, the pressure fluctuations are thus governed by the strain

tr ε = ∇ · s⃗

This is expressed as
p = −κ∇ · s⃗

where κ is the bulk modulus or incompressibility of the fluid.

Under isotropy, the stress is completely governed by the shear modulus and bulk modulus,
which reduces from 81 to 2 parameters. Hooke’s law can be written as

T = κ tr(ε)I+ 2µd

where d is the deviatoric strain tensor, which is essentially the traceless part of the strain:
d = ε− 1

3 tr(ε)I.

Using these relations, we have
ρ∂2t s⃗ = −∇p

Or alternately,

∂2t s⃗ = −1

ρ

∂2t∇ · s⃗ = −∇ ·
(

1

ρ∇p

)
1

κ
∂2t p = ∇ ·

(
1

ρ
∇p
)

Under constant density assupmtions, we have the acoustic wave equation

∂2t p = c2∂2xp

where

c =

√
κ

ρ

is the sound wave speed.
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1.4 Conservation of Angular Momentum

Since a small quantity of linear momentum can be calculated as ρv⃗ dV , a small quantity
of angular momentum is given by r⃗ × ρv⃗ dV . The total angular momentum of a comoving
volume is therefore ∫

V (t)

r⃗ × ρv⃗ dV

As with linear momentum, we can express the changes in angular momentum as a sum of
body torques and surface torques:

d

dt

∫
V (t)

r⃗ × ρv⃗ dV =

∫
V (t)

r⃗ × f⃗ dV +

∫
S(t)

r⃗ × t⃗ dS

We proceed on the left side as before, differentiating and applying the divergence theorem:

d

dt

∫
V (t)

r⃗ × ρv⃗ dV =

∫
V (t)

[∂t (r⃗ × ρv⃗) +∇ · (ρr⃗ × v⃗ ⊗ v⃗)] dV

On the right, we have∫
V (t)

r⃗ × f⃗ dV +

∫
S(t)

r⃗ × t⃗ dS =

∫
V (t)

[
r⃗ × f⃗ +∇ · (r⃗ ×T)

]
dV

(Note that r⃗ × T should be interpreted as taking the cross product against the first index
of T.) On the left hand side, there is a ∂tρ +∇ · (ρv⃗) term, which is zero by conservation
of lienar momentum. Thus the final expression of conservation of angular momentum is

ρDt(r⃗ × v⃗)−∇ · (r⃗ ×T) = r⃗ × f⃗

For the material derivative of angular velocity, we note that Dtr⃗ = v⃗, so that we can pull
the r⃗× outside:

r⃗ ×
(
ρDtv⃗ −∇ ·T− f⃗

)
− ϵ : T = 0⃗

where ε is the rank three alternating tensor. By conservation of linear momentum,

ρDtv⃗ = ∇ ·T+ f⃗

so that the entire first term vanishes. Thus we conclude that

ϵ : T = 0⃗

In other words, this tells us that
ϵijkTkj = 0

for all i, which implies that T23 = T32 and similarly T13 = T31, T12 = T21. Therefore
under conservation of angular momentum and linear momentum, the stress tensor has to
be symmetric. Thus the elastic tensor cijkl is symmetric in i, j, as well as k, l since ε is also
symmetric. Thus we have 6 independent components in i, j and 6 in k, ℓ, so there are 36
independent components.

13



1.5 Conservation of Energy

Our final conservation law is conservation of energy, which leads to the heat equation.

The principle of conservation of energy essentially says that energy content is changed by
work done. Considering again our comoving volume V . For any point particle with mass
ρ dV , the kinetic energy is 1

2ρ dV ∥v⃗∥2, so that the total kinetic energy is given by

KE =
1

2

∫
V (t)

ρ∥v⃗∥2 dV

To calculate the internal or potential energy term, simply consolidate all the internal energies
into a term ρU dV , where U is the potential energy per unit mass. This gives

PE =

∫
V (t)

ρU dV

Therefore the total energy is expressed as

E =

∫
V (t)

ρ

(
1

2
∥v⃗∥2 + U

)
dV

As with the previous conservation laws, we can relate the relate of change of the energy to
the forces applied to our volume. In this case, work is calculated by considering the forces
as ∫

V (t)

v⃗ · f⃗ dV +

∫
S(t)

v⃗ · t⃗ dS

However, we also need to consider internal production of heat within the volume, for instance
due to radioactivity. Similarly we need to consider heat fluxes out of the volume. These
terms are given by ∫

V (t)

h dV −
∫
S(t)

H⃗ · n̂dS

where H⃗ is the heat flux out of V . Thus we have

d

dt

∫
V (t)

ρ

(
1

2
∥v⃗∥2 + U

)
dV =

∫
V (t)

v⃗ · f⃗ dV +

∫
S(t)

v⃗ · (T · n̂) dS+

∫
V (t)

h dV −
∫
S(t)

H⃗ · n̂dS

Applying the same strategy as before, we have∫
V (t)

ρDt

(
1

2
∥v⃗∥2 + U

)
dV =

∫
V (t)

[
v⃗ · f⃗ + h+∇ ·

(
v⃗ ·T− H⃗

)]
dV

=⇒ ρDt

(
1

2
∥v⃗∥2 + U

)
+∇ ·

(
H⃗ − v⃗ ·T

)
= h+ v⃗ · f⃗

Recall that one formulation of conservation of linear momentum was ρDtv⃗ − ∇ · T = f⃗ .
Thus

v⃗ ·
(
ρDtv⃗ −∇ ·T− f⃗

)
= 0
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Removing these terms from the equation, we get

ρDtU +∇ · H⃗ = T : ∇v⃗ + h

When T is symmetric, the contraction T : ∇v⃗ leaves only the symmetric part of ∇v⃗ (the
general principle is that a symmetric tensor contracted with an antisymmetric tensor gives

zero). Thus we could replace ∇v⃗ in the above with D, where D = 1
2

[
(∇v⃗)T +∇v⃗

]
:

ρDtU +∇ · H⃗ = T : D+ h

In the case of waves propagating through elastic materials, particularly seismic waves, the
rate of heat flux and heat production are negligible. Linearizing the wave equation, we have

ρ∂tU = T : ∇∂ts⃗

Applying Hooke’s law, we write

ρ∂tU = (c : ∇s⃗) : ∇∂ts⃗ = cijkl∂ksl∂i∂tsj =
1

2
∂t (∂isjcijkl∂ksl)

=
1

2
∂t (εijcijklεkl)

Integrating against time, we have

ρU = ρ0U0 +
1

2
εijcijklεkl = ρ0U0 +

1

2
ε : c : ε

1.6 The 1D Heat Equation

To develop the heat equation, consider a particle with zero initial velocity. Then conservation
of energy gives

ρ∂tU +∇ · H⃗ = h

In order to continue deriving this equation, we need assumptions on U . One possible as-
sumption is caloric equation of state, which says that U may be expressed as a function
U(θ) solely of temperature. We define the specific heat capacity at constant volume V to
be

cV =
dU

dθ

Fourier’s law says that heat fluxes against the temperature gradient:

H⃗ = −K∇θ

(Under anisotropic conditions we may assume that there is cross-gradient heat flux; in this
case we replace K with a tensor and contraction K·). Plugging this in, we arrive at the
heat equation or diffusion equation

ρcV ∂tθ = ∇ · (K∇θ) + h

In one dimension this is
ρcv∂tθ = ∂x(K∂xθ) + h

15



Chapter 2

Strong Methods

Having introduced our model equations, we now turn to methods for numerically solving
differential equations. We first begin with strong methods, which solve for solutions to the
non-integrated form of the desired differential equation. Both of our model equations are
linaer second order PDEs: {

ρ∂2t s = ∂x (µ∂xs)

∂tθ = ∂x (α∂xθ) + h

The most general form of a linear second order PDE is given by

A∂2t s+ 2B∂t∂xs+ c∂2xs+D∂ts+ E∂xs+ Fs+G = 0

Taking inspiration from conic sections we consider the discriminant of the second derivatives,
given by B2 − AC. When this quantity is positive the PDE is called hyperbolic; when it
is negative the PDE is elliptic; and when it is zero it is parabolic.

2.1 The Finite Difference Method

The finite difference method is essentially rooted in the Taylor series. Essentially we can
simulate the evolution of our system forward in time by simply linearizing and taking small
steps forward in time:

df

dx
(x) =

f(x+∆x)− f(x)

∆x
+O(∆x)

This allows us to estimate the derivative of f at a point, so long as we know the values of f
at points close to x. This is called the forward difference approximation. Of course we may
approximate from below as well (backward difference approximation):

df

dx
(x) =

f(x)− f(x−∆x)

∆x
+O(∆x)

A third estimate combines the above approximations:

df

dx
(x) =

f(x+∆x)− f(x−∆x)

2∆x
+O((∆x)2)
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This is called the centered-difference scheme, and it exhibits quadratic error, since approxi-
mating from both sides allows the linear term to cancel.

To calculate second derivatives, we can use the following first order approximation:

d2f

dx2
=
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
+O(∆x)

The finite difference method then uses a discretization of the relevant sample space. Essen-
tially we define a finite grid of points that we will compute. Afterward, we discretize the
time steps as well and progress it forward.

Consider the 1D wave equation. Discretizing the sample space, we approximate our finite
differences as

∂2t u(xi, tn) ≈
u(xi, tn +∆t)− 2u(xi, tn) + u(xi, tn −∆t)

∆t2
=

1

∆t2
[
un+1
i − 2uni + un−1

i

]
∂2xu(xi, tn) ≈

1

∆x2
[
uni+1 − 2uni + uni−1

]
In the homogeneous case, our PDE is

∂2t u(x, t) = c2∂2xu(x, t)

Substituting in, we have

un+1
i =

c2∆t2

∆x2
(
uni+1 − 2uni + uni−1

)
+ 2uni − un−1

i

Now, it is important that we specify the behavior of the boundary conditions. Some options
include the Dirichlet boundary conditions, which corresponds to a fixed boundary that
satisfies u(0, t) = 0 for all t. On the other hand, we can pick the Neumann boundary
conditions, which allow the boundary free movement. In other words, it expreiences no
stress, so that T (0, t) = 0.

We also need to set initial conditions. It suffices to define u(x, 0) and ∂tu(x, 0), which is
just initial position and velocity.

2.2 Stability Analysis

Let us analyze the stability of our approximation in the second order homogeneous case.
Since we are considering waves, we can suppose our solution is a plane wave on the space-
time grid. In other words, we assume it is of the form

unj = Aneikj∆x

where k is the wave number k = 2π/λ for λ the wavelength. Then substituting this into the
discretization, we have

A2 − 2A+ 1 = A
(
eik∆x − 2 + e−k∆x

)
C2 = 2A(cos k∆x− 1)C2 = −4AC2 sin2

(
1

2
k∆x

)

17



where

C =
c∆t

∆x

The average value of sin2 is 1
2 . If we substitute this in, then the whole expression becomes

A2 − 2A(1− C2) + 1 = 0

This is a constraint that must be satisfied for the plane wave to be simulated. Solving, we
have

A = 1− C2 ±
√
(1− C2)2 − 1

We need A ≤ 1, otherwise our expression for snj scales with An → ∞. This occurs precisely

when 0 < c2 ≤ 1, so our condition (known as the Courant condition) is

C ≤ 1 =⇒ ∆t ≤ ∆x

c

We can simplify the second order wave equation by depressing it to a first order system:

ρ(x)∂2t u(x, t) = ∂x[κ(x)∂xu(x, t)]

becomes {
ρ(x)∂tv(x, t) = ∂xT (x, t)

∂tT (x, t) = κ(x)∂xv(x, t)

where {
T (x, t) := κ(x)∂xu(x, t)

v(x, t) = ∂tu(x, t)

In this case we only have first order derivatives, so we can use the forward/backward dif-
ference or centered difference approximations. For the sake of demonstration, suppose first
that we choose to use the centered difference method in space, and the forward difference
method in time. In this case we have

vn+1
j = vnj +

∆t

ρj

Tn
j+1 − Tn

j−1

2∆x

Tn+1
j = Tn

j +∆t · κj
vnj+1 − vnj−1

2∆x

un+1
j = unj +∆t · vnj

If we again take our plane wave solution, we can write

vnj = v0A
neikj∆x

Tn
j = T0A

neikj∆x

Plugging this into our relation (and assuming the homogeneous case for simplicity) , we can
express this in matrix form as[

1−A i∆t
ρ∆x sin k∆x

i∆t·κ
∆x sin k∆x 1−A

] [
v0
T0

]
=

[
0
0

]
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In order to have solutions for nontrivial v0, T0, our matrix needs to have zero determinant.
The determinant is given by∣∣∣∣ 1−A i∆t

ρ∆x sin k∆x
i∆t·κ
∆x sin k∆x 1−A

∣∣∣∣ = (1−A)2 + C2 sin2 k∆x

with

C = c
∆t

∆x

The solutions are
A = 1± iC sin k∆x

In order for us to avoid blowup, we need to have |A| ≤ 1. However, in this case we have

|A| =
√
1 + C2 sin k∆x > 1

Thus we have illustrated that a scheme with a centered difference approximation in space
and forward difference in time is always unstable, reagrdless of how small a timestep we
choose.

To avoid this, we use a centered difference method in time instead of forward difference.
This is given by

vn+1
j = vn−1

j +
2∆t

ρj

Tn
j+1 − Tn

j−1

2∆x

Tn+1
j = Tn−1

j + 2∆t · κj
vnj+1 − vnj−1

2∆x

un+1
j = un−1

j + 2∆t · vnj

Under this scheme, we have the equation∣∣∣∣ 1−A2 2i∆t
ρ∆xA sin k∆x

2i∆t·κ
∆x A sin k∆x 1−A2

∣∣∣∣ = (1−A)2 + 4C2A2 sin2 k∆x

Applying the same determinant logic, we have

(1−A2)2 + 4C2A2 sin2 k∆x = 0

Making the substitution sin2 ≈ 1
2 as in the second order case, we have solutions with A ≤ 1

so long as C ≤ 1, which is precisely the same Courant condition.

One way to remedy the unstable scheme (with forward difference in time and centered
difference in space) is to approximate vnj and Tn

j using their spatial averages:

vn+1
j =

1

2

(
vnj+1 + vnj−1

)
+

∆t

ρj

Tn
j+1 − Tn

j−1

2∆x

Tn+1
j =

1

2

(
Tn
j+1 + Tn

j−1

)
+∆t · µj

vnj+1 − vnj−1

2∆x

This is known as the Lax-Friedrich method, which is also stable if C ≤ 1.
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2.3 Grid Dispersion

In a homogeneous solutions, velocity and stress satisfy the plane wave relations

v = v0 exp [i(kx− ωt)]

T = T0 exp [i(kx− ωt)]

The plane waves satisfy these equations when

ω = kc = k

√
κ

ρ

In discretized form, we have

vnj = v0 exp [i(kj∆x− ωn∆t)]

Tn
j = v0 exp [i(kj∆x− ωn∆t)]

Substituting into the discretized wave equation, we have[
− sinω∆t ∆t

ρ∆x sin k∆x
∆t·κ
∆x sin k∆x − sinω∆t

] [
v0
T0

]
=

[
0
0

]
With the vanishing determinant condition, we have the condition

sin2(ω∆t) = C2 sin2(k∆x)

This relates ω to k, which we can then plug into the formula for the phase speed on the
grid:

cgrid =
ω

k
=

1

k∆t
arcsin [C sin k∆x]

In particular, this is not in general equal to c =
√

κ
ρ , though as ∆x→ 0,∆t→ 0, cgrid → c.

In other words, the propagation of the waves is dependent on the choice of ∆x,∆t. This
phenomenon is known as grid dispersion.

2.4 Staggered Grids

In the staggered grid method, we double the resolution of the grid to consider half-length
time and space steps, so that our indices range over . . . , j − 1, j − 1/2, j, j + 1/2, j + 1, . . ..
We then evaluate velocity on the grid with time values n−1/2, n+1/2, . . ., and evaluate the
stress on a grid staggered in space, with indices j − 1/2, j + 1/2, . . .. Thus our new relation
becomes

v
n+1/2
j = v

n−1/2
j +

∆t

ρj∆x

[
σn
j+1/2 − jnj−1/2

]
σn+1
j+1/2 = σn

j+1/2 +
µj+1/2∆t

∆x

[
v
n+1/2
j+1 − v

n+1/2
j

]
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Notice that the density, which is evaluated with velocity, is defined on the normal grid, while
the shear modulus is evluated with stress on the staggered grid.

Now performing the same stability analysis as for the grid dispersion problem, we obtain
the equation

sin2 (ω∆t/2) = C2 sin (k∆x/2)

resulting in a grid wave speed of

cgrid =
1

k∆t/2
arcsin (C sin(k∆x/2))

In other words, we make the same number of calculations but have the benefit of only
experiencing grid dispersion for half the step size.

2.5 Shallow Water Waves and Grid Anisotropy

We will next investigate another numerical artifact known as grid anisotropy, which occurs
when considering plane waves in two dimensions. As an example, we can consider shallow-
water waves, which are waves where the wavespeed is governed by the depth of a shallow
ocean basin:

c =
√
gh

(Note that this implies that as a wave reaches the shore, it slows down, thus increasing its
amplitude). From here the wave equation is given by the reasonable 2D-analogue of the 1D
wave equation:

∂2t s = c2
(
∂2xs+ ∂2ys

)
We use a first-order approximation for second derivatives:

∂2t s =
sn+1
j,k − 2snj,k + sn−1

j,k

(∆t)2
+O(∆t)

with similar expressions for ∂2xs, ∂
2
ys. If we substitute this into the wave equation, we have

sn+1
j,k − 2snj,k + sn−1

j,k =

(
∆tcj,k
∆x

)2 (
snj+1,k − 2snj,k + snj−1,k

)
+

(
∆tcj,k
∆y

)2 (
snj,k+1 − 2snj,k + snj,k−1

)
To analyze this system, we can consider a plane wave given by

snj,k = exp [i(kxj∆x+ kY k∆y − ωn∆t)]

This satisfies the wave equation so long as

c =
ω

k
=

ω√
k2x + k2y
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Our discretized plane wave results in the equation

sin

(
1

2
ω∆t

)
= c∆t

[
1

(∆x)2
sin2

(
1

2
kx∆x

)
+

1

(∆y)2
sin2

(
1

2
ky∆y

)]1/2
Solving for ω, we have

cgrid =
ω

k
=

2

k∆t
arcsin

(
c∆t

[
1

(∆x)2
sin2

(
1

2
kx∆x

)
+

1

(∆y)2
sin2

(
1

2
ky∆y

)]1/2)
Again this is in general different from c and we only have equality in the limit ∆t,∆x,∆y →
0, so that this scheme again suffers from grid dispersion.

Differentiating ω with respect to kxky, we find that the grid group speed has components
given by

Ugrid
x =

∂ω

∂kx
=
c2∆t

∆x

sin(kx∆x)

sin(ω∆t)

Ugrid
y =

∂ω

∂ky
=
c2∆t

∆y

sin(ky∆y)

sin(ω∆t)

This set of equations implies that the group speed is dependent on wave direction, which is
an undesirable phenomenon known as grid anisotropy.

2.6 The Heat Equation

Recall that in a one-dimensional, homogeneous medium with no heating, the heat equation
is given by

∂tθ = α∂2xθ

Applying forward difference approximations in time and centered difference in space, we
approximate this as

∂tθ(x, t) =
θ(x, t+∆t)− θ(x, t)

∆t
+O(∆t)

∂2xθ(x, t) =
θ(x+∆x, t)− 2θ(x, t) + θ(x−∆x, t)

(∆x)2
+O(∆x)

Discretizing this on a grid, we obtain the scheme

θn+1
j = θnj +

α∆t

(∆x)2
(
θnj+1 − 2θnj + θnj−1

)
If we substitute the solution

θnj = An exp(ikj∆x)

we then obtain the solution

A = 1− 4
α∆t

(∆x)2
sin2

(
1

2
k∆x

)
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In order to ensure |A| < 1, and again using the average bound sin2 ≡ 1/2, we need

∆t ≤ (∆x)2

2α

While this does suggest that stable simulations exist, the timestep is quadratic in space
steps. Moreover, dimesnional analysis of the heat equation suggests that the characteristic
diffusion time is given by

τ ∼ L2

α

In order to resolve spatial accuracy, we will need L≫ ∆x, so that the number of timesteps
needed to simulate a characteristic diffusion time will very large:

Nt =
τ

∆t
∼ L2

α∆t
≥ N2

x(∆x)
22α

α(∆x)2
= 2N2

x

In other words, the time increments needed scale quadratically with the number of spatial
increments.

One way to solve this is to use a backward difference in time instead of a forward difference:

∂tθ(x, t) =
θ(x, t)− θ(x, t−∆t)

∆t
+O(∆t)

∂2xθ(x, t) =
θ(x+∆x, t)− 2θ(x, t) + θ(x−∆x, t)

(∆x)2
+O(∆x)

This results in the equation

− α∆t

(∆x)2
θnj−1 +

[
1 + 2

α∆t

(∆x)2

]
θnj − α∆t

(∆x)2
θnj+1 = θn−1

j

By considering the set of such equations over j ∈ [2, Nx − 1] (and using appropriate re-
placement approximations at the boundaries j = 1, Nt), we obtain a linear system for {θnj }j
in terms of {θn−1

j }j . In particular, the matrix for this system is tridiagonal, meaning the
nonzero terms are on the main diagonal, the diagonal directly above it, and directly below
it. This can be solved using various matrix solving libraries.

Again substituting our sample solution, we this time have the equation

A =

[
1 + 4

α∆t

(∆x)2
sin2

(
1

2
k∆x

)]−1

In this case the power of −1 ensures that we always have |A| < 1, so that this scheme is
unconditionally stable. This allows us to avoid using excessively many timesteps; however
it is computationally expensive since it requires the solution to a linear system at every
timestep. This scheme is an example of an implicit scheme.
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2.7 The Crank-Nicolsen Scheme

The Crank-Nicolsen scheme is a scheme for solving the heat equation that uses a second
order accurate centered difference scheme, while averages both the current and previous
time with a first-order centered difference to calculate the spatial derivative:

∂2xθ ≈
(
θnj+1 − 2θnj + θnj−1 + θn−1

j+1 − 2θn−1
j + θn−1

j−1

)
This provides the equation

− α∆t

2(∆x)2
θnj−1 +

[
1 +

α∆t

(∆x)2

]
θnj − α∆t

2(∆x)2
θnj−1

=
α∆t

2(∆x)2
θn−1
j−1 +

[
1− α∆t

(∆x)2

]
θn−1
j +

α∆t

2(∆x)2
θn−1
j+1

Once again we have a linear system represented by a tridiagonal matrix. Substituting in
our reference solution, we then obtain

A =
1− 2 α∆t

(∆x)2 sin
2
(
1
2k∆x

)
1 + 2 α∆t

(∆x)2 sin
2
(
1
2k∆x

)
Here we find that the Crank-Nicolsen scheme is unconditionally stable, just like our previous
impilcit scheme.

2.8 The Psuedospectral Method

Having covered the finite difference method, we now cover the psuedospectral method. While
the finite difference method uses local information with high-gridpoint resolution in order
to extract information about the Taylor series, the psuedospectral method leverages the
Fourier transform to incorporate information from the entire space.

Recall that the Fourier transform of a function f : R → R is given by

f̃(k) =

∫ ∞

−∞
f(x) exp(−ikx) dx

and moreover that f, f̃ are dual to one another in the sense that

f(x) =
1

2π

∫ ∞

−∞
f̃(k) exp(ikx) dk

Moreover if we differentiate f with respect to x, we note that in Fourier space this simply
amounts to multiplication:

df

dx
(x) =

1

2π

∫ ∞

−∞
f̃(k)ik exp(ikx) dk
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In order to discretize this, we assume that our domain is some line segment with length
L, and we divide it into intervals of ∆x. We then divide the wave numbers into the same
number of intervals:

xj = j∆x, j = 0, . . . , N − 1

kℓ = ℓ∆k, ℓ = 0, . . . , N − 1

Now recall that for a wave with wavelength λ

k =
2π

λ

The highest resolution wave we can resolve on this domain has wavelength N∆x, and this
corresponds to the smallest wavenumber, so we have a wavenumber spacing of

∆k =
2π

N∆x

Note that this gives the identity

∆k∆x =
2π

N

Thus our discretized Fourier transform gives

f̃(ℓ∆k) = ∆x

N−1∑
j=0

f(j∆x) exp(−2πiℓj/N)

and the inverse is given by

f(j∆x) =
1

N∆x

N−1∑
ℓ=0

f̃(ℓ∆k) exp(2πiℓj/N)

(where we have used the fact that ∆k
2π = 1

N∆x ). Taking the derivative in this discretized
sense, we have

df

dx
(j∆x) =

1

N∆x

N−1∑
ℓ=0

iℓ∆kf̃(ℓ∆k) exp(2πiℓj/N)

The fact that this calculation sums over all of the gridpoints implies that this approximation
is also the highest order spatial derivative that is possible to resolve on the grid. Also, the
existence of the Fast Fourier Transform (FFT) algorithm means that this can run in
N logN time.

2.9 Psuedospectral Grid Dispersion

We now revisit the wave equation {
∂tv = 1

ρ∂xσ

∂tσ = µ∂xv
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If we use a second order finite difference in time and a pseudospectral method in space, we
get the relations

vn+1
j − vn−1

j

2∆t
=

1

ρj

1

N∆x

N−1∑
ℓ=0

iℓ∆kσ̃n
ℓ exp(2πiℓj/N)

σn+1
j − σn−1

j

2∆t
= µj

1

N∆x

N−1∑
ℓ=0

iℓ∆kṽnℓ exp(2πiℓj/N)

where σ̃, ṽ are calculated at each timestep using the FFT algorithm.

It is worth considering what advantages are brought by this method over the finite difference
method. In particular we investigate the issues of grid dispersion and anisotropy we observed
before. Taking the Fourier transform on both sides, we have

ṽn+1
ℓ − ṽn−1

ℓ

2∆t
=

1

ρ
iℓ∆kσ̃n

ℓ

σ̃n+1
ℓ − σ̃n−1

ℓ

2∆t
= µiℓ∆kṽnℓ

If we introduce a standing waveg

ṽnℓ = ṽ exp(iωn∆t)

σ̃n
j = σ̃j exp(iωn∆t)

Substituting this standing wave into our system, we obtain the matrix relation[
sin(ω∆t) − ℓ∆k∆t

ρ

−µℓ∆k∆t sin(ω∆t)

] [
ṽℓ
σ̃ℓ

]
= 0⃗

The determinant condition gives us

sin(ω∆t) = βℓ∆k∆t =
2πβℓ∆t

N∆x

where

β =

√
µ

ℓ

The highest value of ℓ we can observe is N , so the CFL condition on the timesteps is

C ≤ 2π

where

C = β
∆x

∆t

Immediately we observe that this condition is less strict than the C ≤ 1 condition we
obtained from the finite difference method.
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Also, we note that the wavespeed is given by

cgrid =
ω

k
=

1

k∆t
arcsin(βk∆t)

Importantly, the grid wavespeed is not dependent on ∆x as a result of this psuedospectral
method, eliminating this component of grid dispersion. Because the time scheme is still
finite difference, there is still grid dispersion from the time domain.

The group speed is given by

U =
∂ω

∂k
=

β

cos(ω∆t)

which of course is also not dependent on ∆x. The phase speed should be β, but we observe
an error factor of cos(ω∆t). Thus we again see that the group speed differs slightly as a
result of the time scheme.

In theory the psuedospectral method is extremely powerful in terms of information extracted
per point. However, it runs into issues with integrating complicated boundary conditions,
or with gridding irregular domains (such as surfaces with nontrivial topography). Lastly,
the psuedospectral method fails to parallelize well on modern GPUs in higher dimensional
cases.
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Chapter 3

Weak Methods

So far we have examined strong methods, which search for strong solutions to the relevant
PDEs. In PDE theory it is also of interest to search for weak solutions. A weak solution
involves integrating both sides of a PDE against an arbitrarily chosen test function in one
of the dimensions.

3.1 Weak Solutions

For instance, consider the wave equation

ρ∂2t s = ∂x(µ∂xs)

Suppose briefly that the spatial domain is x ∈ [0, 1]. Let s̃ be an arbitrarily chosen test
function. Then a strong solution to the PDE certainly satisfies∫ 1

0

s̃ρ∂2t s =

∫ 1

0

s̃∂x(µ∂xs) dx

=

∫ 1

0

∂x(µs̃s) dx−
∫ 1

0

µ∂xs̃∂xs dx

= −
∫ 1

0

µ∂xs̃∂xs dx+ µs̃s

∣∣∣∣x=1

x=0

Similarly for the heat equation
∂tθ = ∂x(α∂xθ) + h

we have ∫ 1

0

θ̃∂tθ dx = −
∫ 1

0

α∂xθ̃∂xθ dx+

∫ 1

0

θ̃hdx+ αθ̃∂xθ

∣∣∣∣x=1

x=0

Thus we see that a strong method satisfies an integrated form of the equation, for any test
function. A weak solution is said to be one which satisfies the integrated form for any test
function. In particular a strong solution is a weak solution but the converse is not generally
true.
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Consider the static heat equation
∂2xθ + h = 0

We also impose the boundary conditions θ(1) = θ1 and θxθ(0) = −H0.

A strong solution is given by

θ(x) = θ1 + (1− x)H0 +

∫ 1

x

∫ y

0

h(z) dz dy

This can be verified by simply observing that the derivatives are given by

∂xθ = −H0 −
∫ x

0

h(z) dz

so that
∂2xθ = −h(x)

It is also clear that the boundary conditions are satisfied.

If we instead look at the weak formulation of this problem (referring to our previous deriva-
tion of the weak heat equation and setting ∂tθ = 0), we need

−
∫ 1

0

(∂xθ̃)(∂xθ) dx+

∫ 1

0

θ̃hdx+ θ̃(1)∂xθ(1)− θ̃(0)∂x(0) = 0

If we choose test functions θ̃ such that θ̃(1) = 0 then we are given

−
∫ 1

0

(∂xθ̃)(∂xθ) dx+

∫ 1

0

θ̃hdx+H0θ̃(0) = 0

The finite element method is a way of discretizing weak formulations of PDEs, in the sense
that the solution space is approximated with a finite dimensional subspace given some basis
vectors. Specifically, we will assume that both our solution θ and the test functions θ̃ are
linear combinations of some finite number of basis functions with small support (called
shape functions) N1, . . . , Nn, each of which satisfies Ni(1) = 0. We will also define a final
shape funtion Nn+1 such that Nn+1(1) = 1, so that we can represent solutions that satisfy
the boundary condition on the right.

We will also discretize the spatial domain into some finite number of elements, and on each
of these elements we will locally solve the PDE with the basis functions. Then expanding θ
in terms of the basis functions, we have

θ =

n∑
i=1

diNi + θ1Nn+1

Now, for any test function which is also a linear combination

θ̃ =

n∑
i=1

ciNi
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the weak form is given by

−
n∑
i,j

cidj

∫ 1

0

(∂xNi)(∂xNj) dx−
n∑
i

ciθ1

∫ 1

0

(∂xNi)(∂xNn+1) dx

+

n∑
i

ci

∫ 1

0

Nih dx+

n∑
i

ciH0Ni(0) = 0

The goal is to solve for the coefficients di. Since the integrals are independent of the
coefficients di, we can compute them ahead of time and represent this whole equation as a
matrix expression

Kd = F

where K is an n× n matrix (called the stiffness matrix or diffusivity matrix) given by

Kij =

∫ 1

0

(∂xNi)(∂xNj) dx

and F is a n× 1 vector given by

Fi =

∫ 1

0

Nih dx+H0Ni(0)− θ1

∫ 1

0

(∂xNi)(∂xNn+1) dx

Inverting K then allows us to compute the coefficients di, and hence our approximated
solution θ.

3.2 The Finite Element Method

A convenient choice of shape functions are piecewise linear functions which take the value
1 on a specific node and are zero at each other node. For instance, if we have just a single
element, with the two nodes x = 0, 1, then we can pick the shape functions

N1 = 1− x

N2 = x

With more nodes, the shape functions will in general be triangular. It is also helpful to
note that even if the spacing of the nodes is not constant, each individual element is similar,
up to some constant scaling value. This motivates us to view the computations as more of
a local computation, by mapping each element back to a reference element which has
boundaries [−1, 1]. For a specific element [xA, xA+1], we can map it back to this reference
element via

x(ξ) = xAM1(ξ) + xA+1M2(ξ)

Mi(ξ) =
1

2

[
1 + (−1)iξ

]
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By choosing triangular shape functions, we ensure that for any given element, only two
shape functions are supported on the element. Thus the global stiffness matrix reduces to
a 2× 2 local matrix ki, which is related to the global matrix by

K11 = k111

Kii = ki−1
22 + ki11

Ki−1,i = ki−1
12

Then to calculate the coefficients of ki, we just need to change variables from x into ξ
(a, b ∈ {1, 2})

kiab =

∫ xi+1

xi

(∂xNa)(∂xNb) dx =

∫ 1

−1

(∂ξNa)(∂ξNb)
dξ

dx
dξ =

(−1)a+b

∆xi

where ∆xi = xx+1 − xi, so that

ki =
1

∆xi

[
1 −1
−1 1

]
We can follow a similar remapping process for the heat source term, creating local 2 × 1
vectors f i such that

F1 = f11 +H0

Fi = f i−1
2 + f i1

Fn = fn−1
2 + fn1 +

θ1
∆xn

where the entries are given by

f ia =

∫ xi+1

xi

Nah dx =
1

2
∆xi

∫ 1

−1

Nah dξ

Returning to the weak form of the heat equation, we split the integral into the components
over each finite element:∫ 1

0

(∂xθ̃)(∂xθ) dx =

n∑
i=1

∫ xi+1

xi

(∂xθ̃)(∂xθ) dx =

n∑
i=1

∫ 1

−1

(∂xθ̃)(∂xθ)
dξ

dx
dξ

and ∫ 1

0

θ̃hdx =

n∑
i=1

∫ xi+1

xi

θ̃hdx =

n∑
i=1

∫ 1

−1

θ̃h
dξ

dx
dξ

When integrating over ξ, we have performed a pullback to the reference element by{
θ̃(x(ξ)) = c1M1(ξ) + c2M2(ξ)

θ(x(ξ)) = d1M1(ξ) + d2M2(ξ)
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We can also pull back the derivatives:

∂xθ̃ = c1∂ξN1(ξ)
dξ

dx
+ c2∂ξN2(ξ)

dξ

dx

∂xθ = d1∂ξN1(ξ)
dξ

dx
+ d2∂ξN2(ξ)

dξ

dx

The explicit expressions for the derivatives can be substituted back into the integral form
to give∫ 1

0

(∂xθ̃)(∂xθ) dx =

n∑
i=1

∑
j,k∈{1,2}

cjdk

∫ 1

−1

∂ξMjMk
dξ

dx
dξ =

n∑
i=1

∑
j,k∈{1,2}

cjdkk
i
jk

where ki is once again the local stiffness matrix. So we have recovered the idea that the
global stiffness matrix may be obtained by piecing together the local stiffness matrices. Of
course, this process will in practice require a kind of atlas which uniquely identifies local
nodes, based on their relative coordinates for a given element, with a global identifier. For
instance in the case of linearly spaced nodes, the ath node for element i (where a = 1, 2)
can be mapped to the global position by

ψ(a, i) = i+ a− 1

3.3 Dynamic Heat Equation

In the previous section we were only concerned with solving a static equation, where the
entire space could be discretized once, without worrying about a time derivative. In partic-
ular this allowed us to ignore the issue of ”stepping forward” in time with the finite element
method. To study this we will consider the dynamic heat equation, where the weak form is
given by ∫ 1

0

θ̃∂tθ dx = −
∫ 1

0

α(∂xθ̃)(∂ − xθ) dx+

∫ 1

0

θ̃hdx+ αθ̃∂xθ

∣∣∣∣1
0

with the boundary conditions given as{
θ(1, t) = θ1

∂xθ(0, t) = −H0

and the initial condition
θ(x, 0) = θ0(x)

Once again we can assume that the test function and solution both lie in the span of some
basis functions:

θ(x, t) =

n∑
i=1

di(t)Ni(x) + θ1Nn+1(x)

θ̃(x, t) =

n∑
i=1

ci(t)Ni(x)
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where this time the coefficients vary in time, to represent the solution’s evolution through
the function space over time. Collecting terms, we now have an extra set of time-dependent
terms, expressed as

n∑
j=1

Mij ḋj +

n∑
j=1

Kijdj = Fi

or in matrix notation as
Mḋ+Kd = F

(Here ḋ denotes the vector (∂tdj)j). The coefficients of our new matrix M , called the
capacity matrix, are given by

Mij =

∫ 1

0

NiNj dx

and the diffusivity matrix is only slightly changed as

Kij =

∫ 1

0

α(∂xNi)(∂xNj) dx

The goal now is to understand the right way to implement the time dependence of this
system. We can consider a generalized trapezoidal time scheme, which parameterizes a
trapezoidal rule for interpolation:

Mḋn+1 +Kdn+1 = Fn+1

dn+1 = dn +∆tḋn+η

ḋn+η = (1− η)ḋn + ηḋn+1

We can implement this using a predictor-corrector scheme. This strategy defines a
predictor d̃ by

d̃n+1 = dn + (1− η)∆tḋn

Using the predictor, we can then solve for ḋn+1 in

(M + η∆tK)ḋn+1 = Fn+1 −Kd̃n+1

and then correct to calculate dn+1 as

dn+1 = d̃n+1 + η∆tḋn+1

The choice of η recovers many of our previously used time schemes. For instance, η = 0 is
the forward difference method, η = 1/2 is the central difference, and for η = 1 we have the
backward difference. For η ≥ 1/2 this method is unconditionally stable.
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3.4 Meshes

In the 1D case, the only choice we have in designing our node points is the spacing between
them. However, in the 2D and 3D cases there are many more choices we can make. In
particular, elements need not be intervals; they can be quadrilaterals, tetrahedra, hexahedra,
and so on. Computational tools exist for taking in models and designing a mesh based on
the model. In any case, the important part about implementing FEM in these cases is
that each mesh element needs a map back to the typical reference element. This can be
accomplished by interpolating relative to given anchor points, where the map between the
element and reference element is known for the anchor points. For instance, a quadrilateral
needs at least four anchors (the vertices) to specify a map, but more anchors may be used
in order to better capture meshes that are not as flat locally.

This can be adapted to account for time dependence. In the classical finite element method,
the same shape functions are used to specify the local geometry and to approximate the
field. When we discuss the spectral element we will see how this can be avoided.

One choice of mesh is to pick hexahedral elements. These are specified using the Lagrange
polynomials as shape functions. These are given, after choosing n+1 points ξ0, ξ1, . . . , ξn,
by

ℓnα(ξ) =
∏
β ̸=α

ξ − ξβ
ξα − ξβ

Inspection shows that ℓnα(ξβ) = δαβ . For a degree 1 approximation with two anchor points
ξ0 = −1, ξ1 = +1, the polynomials are precisely the shape functions we had before:

ℓ10(ξ) =
1

2
(1− ξ)

ℓ11(ξ) =
1

2
(1 + ξ)

For the degree 2 polynomials with anchors ξ0 = −1, ξ1 = 0, ξ2 = +1, the polynomials are
given by

ℓ20(ξ) =
1

2
ξ(ξ − 1)

ℓ21(ξ) = 1− ξ2

ℓ22(ξ) =
1

2
ξ(ξ + 1)

These are the unique quadratics which satisfy the property that they are zero at each
anchor point except a single point, where they are 1. By degree arguments it is clear that
this process should yield uniquely defined polynomials for each order.

Now, given that we have chosen some set of shape functions as a basis, we will interpolate
arbitrary functions on an element by pulling back from the reference element:

f(x⃗(ξ⃗)) =

N∑
a=1

faNa(ξ⃗)
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This in turn allows us to determine what the gradient operator looks like in our choice of
function space. Specifically, we have (using index notation)

∇f = x̂i∂xif = x̂ifa(∂ξjNa)(∂xiξj)

The derivatives ∂xiξj may be calculated from the knowledge that for a given element e, the
map from the reference element is

x⃗e(ξ⃗) =

N∑
a=1

x⃗aNa(ξ) =⇒ ∂ξj (xe)i =

N∑
a=1

x⃗a∂ξjNa(ξ⃗)

As a result, each element is associated with a Jacobian

Je =

(
∂(xe)i
∂ξj

)
ij

which can be inverted to yield the required values of ∂xi
ξj . This calculation only needs to be

computed once and may be stored for each element. In the case of the Lagrange polynomials,
there is a tradeoff between the number of elements and the degree of the polynomials, both
of which can increase the strength of the approximation. Some influences of this choice
include GPU rasterization, which motivates the chocie of polynomials with degrees that
maximize the efficiency of GPU performance.

As in our study of the piecewise linear shape functions, we then need to assemble the
local calculatinos into a global calculation. For instance, on meshes which have multiple
anchor points, some anchor points may be shared between elements, and each element’s
contribution must be added to compute the global field value. This requires a map that
uniquely identifies anchors that are shared between elements, so that the appropriate valeus
may be added.

Another important aspect of meshing for large simulations (such as global-scale simulations)
is the partitioning of meshes into submeshes for the purpose of parallel processing. In this
case contiguous sets of nodes are passed to separate compute clusters with separate memory.
In order to integrate each of these submeshes, boundary information needs to be passed
between the clusters in order to progress in time. This is typically accomplished with a
message passing interface (MPI), which is a protocol for passing the boundary data
between nodes.

Because MPI needs to be applied at the end of each timestep, it can significnatly slow down
computation if the MPI time is significant relative to the compute time for one timestep.
This motivates the use of simulations where the time it takes to compute a timestep is much
longer than the MPI time.

3.5 The Spectral Element Method

The spectral element method is a variant on the finite element method, which is particularly
valuable in geophysics because it captures wave behavior especially well, for instance being
less susceptible to grid dispersion and anisotropy.
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In the spectral element method, field function spaces are approximated with the basis ele-
ments given by the Lagrange polynomials of degree n, ℓnα. The degree is typically around
n ∈ [4, 10]. On the other hand, the geometry is relatively simple so low order shape func-
tions suffice. The interpolation points for the Lagrange polynomials are chosen as Gauss-
Lobatto-Legendre points (GLL). In one dimension, these points are defined to be the
roots of the function

(1− ξ2)P ′
n(ξ) = 0

where Pn is the Legendre polynomial of degree n. This ensures that there are precisely n+1
interpolation points, all lying in [−1, 1], and including ±1.

For an example of why this choice is important, we consider again the weak dynamic heat
equation: ∫ 1

0

θ̃∂tθ dx = −
∫ 1

0

α(∂xθ̃)(∂xθ) dx+

∫ 1

0

θ̃hdx+ αθ̃∂xθ

∣∣∣∣1
0

Since we are working with the spectral element method, we fix some degree n, let ξ0, . . . , ξn
be the GLL points of degree n, and expand the functions θ̃, θ (suppose for now we just have
one element) in terms of our basis:

θ̃(x(ξ)) =

n∑
α=0

θ̃αℓ
n
α(ξ)

θ(x(ξ), t) =

n∑
β=0

θβ(t)ℓ
n
β(ξ)

Now, we can pull integrals back to the reference element:∫ 1

0

f(x) dx =

∫ +1

−1

f(x(ξ))|J(ξ)|dξ

To approximate this integral, we use GLL quadrature, which says that this integral may
be calculated by evaluating |J(ξα)| at the GLL points and taking a weighted sum:∫ +1

−1

f(x(ξ))|J(ξ)|dξ ≈
n∑

γ=0

wγ |J(ξγ)|fγ

The weights are given by

wα =

∫ 1

−1

ℓnα(ξ) dξ

The ability to approximate integrals with sums is an important motivation for the use of
the spectral element method. In particular, because our functions are in terms of Lagrange
polynomials, the fγ coefficients will just be the Kronecker delta, vastly simplifying the
integrals. While the advantage of the spectral element method is that GLL quadrature
makes integral computations very easy, the choice of quadrature does result in some loss of
numerical integration accuracy relative to other methods like Gaussian quadrature.
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To see this, consider the capacitance term. Using the pullback and GLL quadrature, we
approximate this as∫ 1

0

θ̃∂tθ dx =

∫ 1

−1

θ̃(x(ξ))∂tθ(x(ξ), t)|J(ξ)|dξ

=

n∑
γ=0

wγ |J(ξγ)|

 n∑
α=0

θ̃α ℓ
n
α(ξγ)︸ ︷︷ ︸
δαγ


 n∑

β=0

∂tθβ(t) ℓ
n
β(ξγ)︸ ︷︷ ︸
δβγ


=

n∑
γ=0

wγ |J(ξγ)|θ̃γ∂tθγ(t)

Because this represents mutiplication of the θγ(t) vector with a diagonal matrix, we can
maintain an explicit timescheme in time rather than needing to expensively invert a matrix
at each time point.

3.6 Spectral Element Method for the Wave Equation

We now consider the application of the spectral element method to the wave equation. The
weak form of the wave equation is given by∫ 1

0

ρs̃∂2t s dt = −
∫ 1

0

µ(∂xs̃)(∂xs) dx+ µs̃∂xs

∣∣∣∣1
0

Since we are working in the spectral element method, we write our time-constant test func-
tion and the time-dependent solution in terms of the Lagrange polynomials of degree N
passing through the points ξ0, . . . , ξN in the reference element:

s̃(x(ξ)) =

N∑
α=0

s̃αℓ
N
α (ξ)

s(x(ξ), t) =

N∑
β=0

sβ(t)ℓ
N
β (ξ)

Using this, we write the left hand side of the wave equation on the reference element as∫ 1

0

ρ(x)s̃(x)∂2t s(x, t) dx =

∫ 1

−1

ρ(x(ξ))s̃(x(ξ))∂2t s(x(ξ), t)J(ξ) dξ

=

N∑
γ=0

wγρ(xγ)J(xγ)

(
N∑

α=0

s̃αℓ
N
α (ξγ)

) N∑
β=0

s̈β(t)ℓ
N
β (ξγ)


=

N∑
γ=0

wγρ(xγ)J(xγ)s̃γ s̈γ(t)

= s̃TMes̈(t)
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where the (local) mass matrix Me is diagonal and satisfies

Me
γγ(t) = wγρ(xγ)J(xγ)

The first term on the right hand side is calculated by∫ 1

0

µ(x)∂xs̃(x)∂xs(x, t) dx =

∫ 1

0

µ(x(ξ))∂xs̃(x(ξ))∂xs(x(ξ), t)J dξ

=

N∑
γ=0

wγµ(xγ)Jγ

(
N∑

α=0

s̃α
(
ℓNα
)′
(ξγ)

dξ

dx
(ξγ)

) N∑
β=0

sβ(t)
(
ℓNβ
)′
(ξγ)

dξ

dx
(ξγ)


= s̃TKes

where

Ke
αβ =

N∑
γ=0

wγµ(xγ)

Jγ

(
ℓNα
)′
(ξγ)

(
ℓNβ
)′
(ξγ)

Putting this together, this is true for all s̃ so we are given a system of equations

N∑
β=0

mαβ s̈β + kαβsβ = fα α = 0, . . . , N

Now, given the relation between s̈ and s, we need to figure out how to progress the system
in time. For the heat equation we had a relation between ṡ and s and used the predictor-
corrector scheme to advance in time; in this case we will require a different scheme.

One such method is the Newmark time scheme. This provides solutions for equations of
the form

Ms̈+Ks = F

whereM,K are not time-dependent. To do so, interpolates using both ṡ and s̈ concurrently.
With γ, β as paramters, we define

sn+1 = sn +∆tṡn +
1

2
(∆t)

2
[(1− 2β)s̈n + 2βs̈n+1]

ṡn+1 = ṡn + (1− γ)∆ts̈n + γ∆ts̈n+1

s̈n+1 =M−1(Fn+1 −Ksn+1)

Choosing γ = 1
2 , β = 0 results in an explicit scheme. To implement this scheme, we progress

in steps. First, we calculate a predictor for each value:

sn+1 = sn +∆tṡn +
1

2
(∆t)

2
s̈n

ṡ∗n+1 = ṡn +
1

2
∆ts̈n

s̈∗n+1 = 0

Now, we calculate
∆α =M−1Ksn+1
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which we use to correct the predictors:

s̈n+1 = s̈∗n+1 +∆α = ∆α

ṡn+1 = ṡ∗n+1 +
1

2
∆ts̈n+1

3.7 Spectral Element Method in 3D

Now suppose we wish to implement the spectral element method in 3 dimensions. We will
need to do a bit of background so that we can adapt this method.

Rather than letting the reference element be [−1, 1], we will now let the reference element
be the cube [−1, 1]3, and allow our actual elements to be arbitrary hexahedral elements.

If we write ξ⃗ = (µ, η, ζ), then can set our basis elements to be the product of Lagrange
polynomials in the orthogonal directions, so that any function is written as

f(x⃗(ξ⃗)) =

Nα∑
α=0

Nβ∑
β=0

Nγ∑
γ=0

fαβγℓ
Nα
α (µ)ℓ

Nβ

β (η)ℓNγ
γ (ζ)

where
fαβγ = f(x⃗(µα, ηβ , ζγ))

In order to take the gradient of a function on the reference element, we write

∇f(µ, η, ζ) =
3∑

i=1

x̂i
∑
α,β,γ

fαβγ

[(
ℓNα
α

)′
(µ)

dµ

dxi
ℓ
Nβ

β (η)ℓNγ
γ (ζ)

+
(
ℓ
Nβ

β

)′
(η)

dη

dxi
ℓNα
α (µ)ℓNγ

γ (ζ) +
(
ℓNγ
γ

)′
(ζ)

dζ

dxi
ℓNα
α (µ)ℓ

Nβ

β (η)

]
As in the 1D case, this simplifies immensely when we evaluate at the GLL points.

Also as before, we express the geometry in terms of a separate set of shape functions:

x⃗(ξ⃗) =
∑
α,β,γ

x⃗aNa(ξ⃗)

To perform quadrature in three dimensions, we calculate iterated integrals:∫
V

f(x⃗) d3x⃗ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(x⃗(ξ⃗))

∣∣∣∣∂x⃗
∂ξ⃗

∣∣∣∣d3ξ⃗
=
∑
α,β,γ

wαwβwγfαβγJαβγ

We now demonstrate the application of these tools to the 3D wave equation. First, recall
that the strong form of the wave equation is

ρ∂2t s⃗ = ∇ · σ + f⃗
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where Hooke’s law gives the relation

σ = c : ϵ

where

ϵ =
1

2

[
∇s⃗+ (∇s⃗)T

]
To derive the weak form, we integrate by parts after multiplying by a test function ⃗̃s:∫

V

ρ⃗̃s · ∂2t s⃗ dV =

∫
V

σ : ∇⃗̃s dV −
∫
S

⃗̃sσ · n̂ dS +

∫
V

⃗̃s · f⃗ dV

This is an extremely convenient form for seismology, because the typical boundary condition
for seismology is the stress-free condition σ : n̂ = 0. This is easily implemented here simply
by dropping the second term on the right. Isolating the boundary conditions like this also
allows phase transitions over property discontinuities to be addressed by meshing elements
to connect on the boundary. At the connection points, different properties can be assigned
to the same point based on which element is being integrated over, thus implementing the
discontinuity.

Now, we use the expansions of s⃗ and ⃗̃s in terms of the Lagrange polynomials:

⃗̃s(x⃗(ξ⃗)) =

3∑
i=1

x̂i

Nα∑
α=0

Nβ∑
β=0

Nγ∑
γ=0

s̃αβγi ℓNα
α (µ)ℓ

Nβ

β (η)ℓNγ
γ (ζ)

s⃗(x⃗(ξ⃗), t) =

3∑
i=1

x̂i
∑
α,β,γ

sαβγi (t)ℓNα
α (µ)ℓ

Nβ

β (η)ℓNγ
γ (ζ)

Now using GLL quadrature, the left hand side of this equality becomes∫
V

ρ⃗̃s · ∂2t s⃗ dV =
∑
α,β,γ

wαwβwγJαβγραβγ

3∑
i=1

s̃αβγi s̈αβγi (t)

If we select ⃗̃s such that exactly one of s̃αβγi is nonzero, then will end up with a system of
equations so that this expression looks like the matrix multiplication

Ms⃗(t)

Mαβγ,αβγ = wαwβwγJαβγραβγ

where M is a diagonal matrix.

Now, for the first term on the right hand side, we calculate∫
V

σ : ∇⃗̃s dV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

σ : ∇x⃗
⃗̃sJ d3ξ⃗

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

P :
(
∇ξ⃗
⃗̃s
)T

d3ξ⃗

40



where P is the first Piola-Kirchhoff stress given by

P(ξ⃗, t) = J(ξ⃗, t)σ(x⃗(ξ⃗, t), t) · F−1(ξ⃗, t)

where

F−1 =

(
∂ξ⃗

∂x⃗

)T

The stress is essentially given with one component in the physical element and one in the
reference element as

P iI
σβγ =

3∑
j=1

Jσβγσ
ij
σβγ(∂jξ

I)σβγ

Now note that although the boundary traction term vanishes when considering the entire
Earth, waves must still travel through individual elements. To ensure this happens without
reflection we need to introduce a absorbing boundary condition such as the Stacey
condition:

t⃗ = σ · n̂ = ρ(vn(n̂ · ∂ts)n̂+ v1(ν̂1 · ∂ts)ν̂1 + v2(ν̂2 · ∂ts)ν̂2)

where ν̂1, ν̂2 are orthogonal unit vectors tangent to the absorbing boundary, and vn, v1, v2

are the wave speeds of waves polarized in the normal, ν̂1, ν̂2 directions, respectively. This
works properly for waves which impact the boundary at a right angle, but has some reflection
for waves incident to the boundary at an angle.

One optiion to avoid this is to use a perfectly matched layer, which is a boundary layer
where the waves exponentially decay and do not have reflection. However, these schemes
are unstable in time, which is a detriment for their use in long simulations.

In an attenuating medium, the stress is governed by a variant of Hooke’s law, which displays
memory of the system:

σ(t) = κU tr(ε)(t)I+ 2µUd(t)−
L∑

ℓ=1

Rℓ
κ(t)I−

L∑
ℓ=1

Rℓ
µ(t)

where Rℓ
κ,R

ℓ
κ are memory variables given by

∂tR
ℓ
κ = −Rℓ

κ

τ ℓκσ
+ tr(ε)

δℓκ
τ ℓκσ

∂tR
ℓ
µ = −

Rℓ
µ

τ ℓµσ
+ d

δℓµ
τ ℓµσ

3.8 PDE Constrained Optimization

We now consider PDE constrained optimization, which is essentially an inverse method for
parameter inference using the same scenarios that we have modeled using our PDE solvers.
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Consider first the wave equation

ρ∂2t s = ∂x(µ∂xs) + f

This system has model parameters p, µ, f and an observable value s. Suppose that some
receiver stations are installed at various locations within the model, which each record a
seismogram. Thus for any simulation (or observation), we are given data d(xr, t), which
records the displacement at station xf at time t.

If the model parameters are unknown, then we can run simulations using various models
parameters and obtain an estimate of the error produced by each choice of model parameters.
There are many ways to measure error, including cross correlation, Fourier transforms, or
the L2 norm:

E(xr) =

∫
|d(xr, t)− s(xr, t;m)|2 dt

Here m represents the collection of model parameters.

Now, we introduce an optimization parameter λ, which represents the strength of the con-
straint of the given PDE. In this case the total error is given by summing the errors at each
receiver with an overall PDE term:

χ(m) =
1

2

∑
xr

∫
|d(xr, t)− s(xr, t;m)|2 dt+ λ

∫∫ [
ρ∂2t s− ∂x(µ∂xs)− f

]
dx dt

Now, suppose we perturb our model parameters in some direction δm. Then the change in
our misfit is given by

δχ =
∑
xr

∫
(s− d)δs dt+ λ

∫∫ [
ρ∂2t δs− ∂x(µ∂xδs) + δρ∂2t s− ∂x(δµ∂xs)− δf

]
dx dt

=
∑
xr

∫
(s− d)δs dt+

∫∫
[∂t(λρ∂tδs)− ρ∂tδs∂tλ− ∂x(λµ∂xδs) + µ∂xδs∂xλ

+∂t(λδρ∂ts)− δρ∂ts∂tλ− ∂x(λδµ∂xs) + δµ∂xs∂xλ− δfλ] dxdt

=
∑
xr

∫
(s− d)δs dt+

∫∫
δs
[
ρ∂2t λ− ∂x(µ∂xλ)

]
dt dx

−
∫∫

[δρ∂tλ∂ts− δµ∂xλ∂xs− δfλ] dx dt

Two of the terms can be eliminated if we assume that λ satisfies the equation

ρ∂2t λ− ∂x(µ∂xλ) =
∑
xr

∫
(s− d)δ(x− xr) dt (∗)

In this case, the parameter λ generates a wavefield (called the adjoint wavefield) with a
source from each of the receivers. This can be calculated with the same solver as the forward
simulation solver. If this approach is taken, then two of the misfit terms drop out, and we
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are left with

δχ = −
∫∫

[δρ∂tλ∂ts− δµ∂xλ∂xs− δfλ] dxdt

= −
∫ L

0

δρ(x)Kp(x) + δµ(x)Kµ(x) dx

where Kδ,Kµ are kernels that are given by

Kρ(x) =

∫ T

0

∂tλ(x, t)∂ts(x, t;m) dt

Kµ(x) =

∫ T

0

∂xλ(x, t)∂xs(x, t;m) dt

This allows us to calculate gradients of ρ, µ against χ, which in turn allows us to perform
gradient descent using any gradient descent method desired.

Notice that if we chose a different form for the misfit function initially (the portion that does
not contain the λ parameter), then the RHS of (∗) would change, but the general strategy
is the same. Thus the only thing that needs to be changed is the source term in the adjoint
simulation.
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Definitions

absorbing boundary condition, 41
acoustic wave equation, 12
adjoint wavefield, 42

bulk modulus, 12

caloric equation of state, 15
capacity matrix, 33
continuity equation, 6
Courant condition, 18

deformation gradient, 9
diffusivity matrix, 30

elastic tensor, 10
elliptic, 16

Fast Fourier Transform, 25

Gauss-Lobatto-Legendre points, 36
generalized trapezoidal, 33
GLL quadrature, 36
grid anisotropy, 22
grid dispersion, 20

heat equation, 15
Hooke’s law, 10
hyperbolic, 16

implicit scheme, 23

Lagrange polynomial, 34
Lax-Friedrich method, 19

material derivative, 7
message passing interface, 35

Newmark time scheme, 38

parabolic, 16
perfectly matched layer, 41
Piola-Kirchhoff stress, 41
predictor-corrector scheme, 33

reference element, 30

shape functions, 29
shear modulus, 12
Stacey condition, 41
stiffness matrix, 30
strain, 9
stress tensor, 7

test function, 28

vorticity, 9
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