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Introduction

This document contains exercises to selected solutions in the book Calculus on Manifolds, by
Michael Spivak. These solutions were written as part of personal self-study during Summer
2024.
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Chapter 1

Solutions to Selected Exercises

1.1 Chapter 1 Exercises

Exercise 1-1 Prove that |x| ≤
∑n
i=1 |xi| for any x ∈ Rn.

Proof. Let x = (x1, . . . , xn) ∈ Rn be arbitrary. For each 1 ≤ i ≤ n, let us denote by (xi)

the vector
[
0 . . . xi . . . 0

]T
, with the xi term in the ith coordinate. Then for each i,

we have the following:
|(xi)| =

√
(xi)2 = |xi|

Moreover, by construction we have x = (x1) + . . . + (xn). By repeated application of the
triangle inequality, we have

|x| = |
n∑
i=1

(xi)| ≤
n∑
i=1

|(xi)| =
n∑
i=1

|xi|

Exercise 1-2 When does equality hold for the triangle inequality?

I claim that |x+ y| = |x|+ |y| if and only if y = λx for some λ ≥ 0, or x = 0.

Proof. x = 0 clearly satisfies the triangle inequality, so assume x ̸= 0. Following the proof
of the triangle inequality given by Spivak, we already see that x, y being linearly dependent
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is certainly a necessary condition. Thus, assume that y = λx for some λ ∈ R. Then

|x+ y|2 =

n∑
i=1

(xi + yi)
2

=

n∑
i=1

(xi + λxi)
2

=

n∑
i=1

x2i + λ2x2i + 2λ

n∑
i=1

x2i

= |x|2 + |λx|2 + 2λ|x|2

When λ ≥ 0 we have

|x|2 + |λx|2 + 2λ|x| = |x|2 + 2|x||λx|+ |λx|2 = (|x|+ |λx|)2 = (|x|+ |y|)2

where equality follows by taking the square root on both sides.

When λ < 0 this becomes

|x|2 + |λx|2 + 2λ|x| = |x|2 +−2|x||λx|+ |λx|2 = (|x| − |λx|)2 = (|x| − |y|)2

By taking square roots on both sides, we have |x + y| = |x| − |y| ̸= |x| + |y| where the
inequality holds since x ̸= 0, λ ̸= 0 means that |y| ̸= 0. Thus y = λx for λ ≥ 0, or x = 0 is
a necessary and sufficient condition.

Exercise 1-3 Prove that |x− y| ≤ |x|+ |y| for any x, y ∈ Rn.

Proof. Let x, y ∈ Rn be arbitrary. Then

|x− y| = |x+ (−1 ∗ y)| ≤ |x|+ |(−1) ∗ y| = |x|+ | − 1||y| = |x|+ |y|

Exercise 1-4 Prove that ||x| − |y|| ≤ |x− y|.

Proof. We expand:

|x− y|2 =

n∑
i=1

(xi − yi)
2

=

n∑
i=1

x2i +

n∑
i=1

y2i − 2

n∑
i=1

xiyi

≥ |x|2 + |y|2 − 2|x||y|(by Cauchy-Schwarz)

= (|x| − |y|)2

Taking square roots on both sides (using the fact that it is order-preserving), we get

|x− y| ≥ ||x| − |y||
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Exercise 1-5 The quantity |y − x| is called the distance between x and y. Prove
and interpret geometrically the inequality |z − x| ≤ |z − y|+ |y − x|.

Proof. Noting that |z − x| = |(z − y) + (y − x)|, this is a simple application of the triangle
inequality. This says that the sum of the lengths of any two sides of a triangle must be
greater than the length of the third.

Exercise 1-6 Let f, g be integrable on [a, b].

(a) Prove that |
∫ b
a
fg| ≤ (

∫ b
a
f2)

1
2 (
∫ b
a
g2)

1
2 .

(b) If equality holds, must it be true that f = λg for some λ ∈ R? What if f, g are
required to be continuous?

(c) Show that the Cauchy-Schwarz inequality is a special case of (a).

(a) Proof. We consider the cases 0 =
∫ b
a
(f − λg)2 for some λ ∈ R, and 0 <

∫ b
a
(f − λg)2

for all λ.

Case 1: Here, we have

0 =

∫ b

a

(f − λg)2 =

∫ b

a

f2 − 2λfg + λ2g2 =

∫ b

a

f2 − 2λ

∫ b

a

fg + λ2
∫ b

a

g2

if λ = 0, then f (and thus fg) is zero on a set of measure 1, immediately making both
sides of the inequality 0. Thus assume that λ ̸= 0, which implies∫ b

a

fg =
1

2λ

∫ b

a

f2 +
λ

2

∫ b

a

g2

so (∫ b

a

fg

)2

=

(
1

2λ

∫ b

a

f2

)2

+

(
λ

2

∫ b

a

g2

)2

+
1

2

(∫ b

a

f2

)(∫ b

a

g2

)

≤ 1

2

(∫ b

a

f2

)(∫ b

a

g2

)

≤

(∫ b

a

f2

)(∫ b

a

g2

)

Taking the square root on both sides gives |
∫ b
a
fg| ≤ (

∫ b
a
f2)

1
2 (
∫ b
a
g2)

1
2 , as desired.

Case 2: Here, we have∫ b

a

(f − g)2 > 0 =⇒
∫ b

a

f2 +

∫ b

a

g2 > 2

∫ b

a

fg
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Squaring both sides,(∫ b

a

fg

)2

<

(
1

2

∫ b

a

f2

)
+

(
1

2

∫ b

a

g2

)
+

1

2

(∫ b

a

f2

)(∫ b

a

g2

)
and the rest of the proof is identical to the first case.

(b) Proof. Examining the proof of part (a), we must have 0 =
∫ b
a
(f − λg)2 for equality

to hold. This implies f − λg is 0 almost everywhere, so f = λg almost everywhere.
However, it may not be the case that f = λg everywhere (consider f = 0 and g = 0
except at countably many points). When f, g are required to be continuous, then they
cannot differ on a set of measure zero, so equality implies f = λg for some λ ∈ R.

(c) Proof. Let x, y ∈ Rn be arbitrary. Define f : [0, n) → R such that f = xi on the
interval [i− 1, i) and define g similarly for y. Then∫ n

0

f2 =
n∑
i=1

x2i = |x|2,
∫ n

0

g2 =
n∑
i=1

y2i = |y|2,
∫ n

0

fg =

n∑
i=1

xiyi

Then by part a,∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ =
∣∣∣∣∫ n

0

fg

∣∣∣∣ ≤
(∫ b

a

f2

) 1
2
(∫ b

a

g2

) 1
2

= |x||y|

Exercise 1-7 A linear transformation T : Rn → Rn is norm preserving if |T (x)| =
|x| for all x ∈ Rn, and inner product preserving if ⟨Tx, Ty⟩ = ⟨x, y⟩ for all
x, y ∈ Rn.

(a) Prove that T is norm preserving if and only if T is inner product preserving.

(b) Prove that such a linear transformation T is one-to-one and T−1 is of the same
sort.

(a) Proof. ( =⇒ ) Suppose T is norm preserving. Then for any x, y ∈ Rn, we use bilin-
earity of the inner product:

⟨Tx, Ty⟩ = ⟨Tx− Ty + Ty, Ty⟩
= ⟨Tx− Ty, Ty⟩+ ⟨Ty, Ty⟩
= ⟨Tx− Ty, Ty − Tx+ Tx⟩+ |Ty|
= ⟨Tx− Ty, Ty − Tx⟩+ ⟨Tx− Ty, Tx⟩+ |Ty|
= |Tx| − ⟨Ty, Tx⟩+ |Ty| − |Tx− Ty|

which gives

⟨Tx, Ty⟩ = 1

2
(|Tx|+ |Ty| − |T (x− y)|) (by linearity of T )

=
1

2
(|x|+ |y| − |x− y|) (by norm preserving)

= ⟨x, y⟩
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where the last line follows through a similar calculation as the first part.

( ⇐= ) Suppose T is inner product preserving. Then for any x ∈ Rn,

|Tx| = ⟨Tx, Tx⟩ = ⟨x, x⟩ = |x|

where the second equality follows since T preserves inner products.

(b) Proof. Suppose T is inner product/norm preserving. Suppose Tx = Ty. Since T is
linear, we have T (x − y) = 0. So |T (x − y)| = 0. But T is norm preserving, so
|x−y| = 0, which occurs only when x−y = 0, showing that x = y. So T is one-to-one.

Let T−1 denote the inverse of T (which exists since T is an injective endomorphism
on finite dimensional vector spaces). Then let x ∈ Rn be arbitrary. Since T is norm
preserving, we have

|T−1x| = |TT−1x| = |x|

so T−1 is norm preserving as well.

Exercise 1-8 If x, y ∈ Rn are nonzero, then the angle between x and y is denoted

∠(x, y), which is defined as arccos
(

⟨x,y⟩
|x|·|y|

)
. This is well-defined since

∣∣∣ ⟨x,y⟩|x|·|y|

∣∣∣ ≤ 1 by

Cauchy-Schwarz. The linear transformation T is angle preserving if T is one-to-one
and for any x, y ̸= 0 we have ∠(Tx, Ty) = ∠(x, y).

(a) Prove that if T is norm preserving, then T is angle preserving.

(b) If there is a basis x1, . . . , xn of Rn and numbers λ1, . . . , λn such that Txi = λixi,
prove that T is angle preserving only if all |λi| are equal. (Note: Spivak’s
original exercise has an if and only if here, but this is false.)

(c) What are all angle preserving T : Rn → Rn?

(a) Proof. Since T is both norm preserving and inner product preserving by Exercise 1-7,
we have

⟨Tx, Ty⟩
|Tx| · |Ty|

=
⟨x, y⟩
|x| · |y|

so

∠(Tx, Ty) = arccos

(
⟨Tx, Ty⟩
|Tx| · |Ty|

)
= arccos

(
⟨x, y⟩
|x| · |y|

)
= ∠(x, y)

(b) Proof. Proof by contrapositive. Suppose |λi| ̸= |λj | for some i ̸= j. Then consider the
vectors

v1 = xi + xj , v2 = xi −
|xi|
|xj |

xj
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Since xi, xj are linearly independent, neither v1 or v2 is the zero vector. Then we have

cos∠(v1, v2) = cos arccos


〈
xi + xj , xi − |xi|

|xj |xj

〉
|xi + xj ||xi − |xi|

|xj |xj |


=

|xi|2 − |xi|2
|xj |2 |xj |

2

|xi + xj ||xi − |xi|
|xj |xj |

= 0

On the other hand,

cos∠(T (v1), T (v2)) = cos∠(λixi + λjxj , λixi − λj
|xi|
|xj |

xj)

=
λ2i |xi|2 − λ2j |xi|2

|λixi + λjxj ||λixi − λj
|xi|
|xj |xj |

̸= 0

where the last inequality holds since |λi| ̸= |λj | =⇒ λ2i ̸= λ2j . So if |λi| ̸= |λj |, then
T is not angle preserving. So T is angle preserving only if |λi| = |λj | for all i, j.

(c) Intuitively, the answer is that T must consist of only rotation and scaling by a constant
factor. More rigorously, the singular values of T must all be σ1 = . . . = σn = k for
some k > 0. We do not provide a full proof here.

Exercise 1-9 If 0 ≤ θ < π, then let T : R2 → R2 have the matrix in the standard
basis given by [

cos θ sin θ
− sin θ cos θ

]
Show that T is angle preserving, and that for any x ̸= 0, ∠(x, Tx) = θ.

Proof. To show that T is one-to-one, we instead prove that T is invertible. Consider the
matrix

T ′ =

[
cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

]
Then

TT ′ =

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos2 θ + sin2 θ − cos θ sin θ + cos θ sin θ

− cos θ sin θ + cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
Since T is square and TT ′ = I, we have T ′T = I so T is invertible and thus must be
one-to-one.
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Let x, y ̸= 0 ∈ R2 be arbitrary. Suppose x = (x1, x2), y = (y1, y2). Then

cos∠(x, y) =
x1y1 + x2y2√
x21 + x22

√
y21 + y22

Moreover, Tx = (x1 cos θ+x2 sin θ, x2 cos θ−x1 sin θ) and Ty = (y1 cos θ+y2 sin θ, y2 cos θ−
y1 sin θ. Then we have

⟨Tx, Ty⟩ = (x1 cos θ + x2 sin θ)(y1 cos θ + y2 sin θ) + (x2 cos θ − x1 sin θ)(y2 cos θ − y1 sin θ)

= x1y1 (cos
2 θ + sin2 θ)︸ ︷︷ ︸

=1

+x1y2 (cos θ sin θ − sin θ cos θ)︸ ︷︷ ︸
=0

+ x2y1(sin θ cos θ − sin θ cos θ)︸ ︷︷ ︸
=0

+x2y2 (sin
2 θ + cos2 θ)︸ ︷︷ ︸

=1

= x1y1 + x2y2 = ⟨x, y⟩

and

|Tx| =
√

(x1 cos θ + x2 sin θ)2 + (x2 cos θ − x1 sin θ)2

=

√
x21(cos

2 θ + sin2 θ) + x22(sin
2 θ + cos2 θ)

=
√
x21 + x22

= |x|

Similarly,
|Ty| = |y|

Then

∠(Tx, Ty) = arccos

(
⟨Tx, Ty⟩
|Tx||Ty|

)
= arccos

(
⟨x, y⟩
|x||y|

)
= ∠(x, y)

Lastly, using the fact that |x| = |Tx|,

∠(x, Tx) = arccos

(
⟨x, Tx⟩
|x||Tx|

)
= arccos

(
x21 cos θ + x1x2 sin θ + x22 cos θ − x1x2 sin θ

|x|2

)
= arccos

(
cos θ

x21 + x22
|x|2

)
= arccos cos θ

= θ
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Exercise 1-10 If T : Rm → Rn is a linear transformation, show that there is a
number M such that |T (h)| ≤M |h| for h ∈ Rm.

Proof. By singular value decomposition, there are orthonormal bases B = {u1, . . . , um} ⊆
Rm and C = {v1, . . . , vn} ⊆ Rn as well as scalars σ1 ≥ . . . ≥ σm ≥ 0 such that Tui = σivi
for all i (with Tuj = 0 for any j ≥ n). Then for any h ∈ Rm, if we suppose that h =
a1u1 + . . .+ amum, then we have

|Th| = |T (a1u1 + . . .+ amum)|
= |a1Tu1 + . . .+ amTum|
= |a1σ1v1 + . . .+ amσmvm|

(where the indices only run to n if n < m). Now since C is orthonormal, the Pythagorean
identity gives

|a1σ1v1 + . . .+ amσmvm|2 = a21σ
2
1 + . . .+ a2mσ

2
m ≤ (σm)2(a21 + . . .+ a2m)

But since B is also orthonormal, we have (a21 + . . .+ a2m) = |h|2. So

|Th|2 ≤ σ2
1 |h|2 =⇒ |Th| ≤ σ1|h|

so our choice of M = σ1 works.

Exercise 1-11 If x, y ∈ Rn and z, w ∈ Rm, show that ⟨(x, z), (y, w)⟩ = ⟨x, y⟩+⟨z, w⟩,
and that |(x, z)| =

√
|x|2 + |z|2. Recall that (x, z) ∈ Rn+m is the concatenation of x

and z.

Proof. For the first statement,

⟨(x, z)(y, w)⟩ =
n+m∑
i=1

(x, z)i(y, w)i

=

n∑
i=1

(x, z)i(y, w)i +

m∑
j=1

(x, z)n+j(y, w)n+j

=

n∑
1=1

xiyi +

m∑
j=1

zjwj

= ⟨x, y⟩+ ⟨z, w⟩

For the second statement,

|(x, z)|2 = ⟨(x, z), (x, z)⟩ = ⟨x, x⟩+ ⟨z, z⟩ = |x|2 + |z|2

where the second equality is by the first statement. Taking square roots on both sides
recovers |(x, z)| =

√
|x|2 + |z|2.
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Exercise 1-12 Let (Rn)∗ denote the dual space of Rn, which is the space of all linear
functions f : Rn → R. If x ∈ Rn, then define ϕx ∈ (Rn)∗ such that ϕx(y) := ⟨x, y⟩.
Define T : Rn → (Rn)∗ such that T (x) = ϕx. Show that T is one-to-one and conclude
that each ϕ ∈ (Rn)∗ is ϕx for a unique x ∈ Rn.

Proof. Suppose ϕx = ϕy. Then ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ Rn. Choosing z = x− y, this gives

0 = ⟨x, z⟩ − ⟨y, z⟩ = ⟨x− y, z⟩ = ⟨x− y, x− y⟩ = |x− y|

which implies that |x − y| is the zero vector. So x = y. The rest of the proof follows since
dimRn = dim(Rn)∗, so T is injective between vector spaces of the same dimension and is
thus surjective and bijective.

Exercise 1-13 (Pythagorean Identity) If x, y ∈ Rn, then x and y are called
orthogonal if ⟨x, y⟩ = 0. If x and y are orthogonal, prove that |x+ y|2 = |x|2 + |y|2.

Proof. By the definition of the norm and bilinearity of the inner product,

|x+ y|2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨y, y⟩+ 2 ⟨x, y⟩︸ ︷︷ ︸

=0

= |x|2 + |y|2

Exercise 1-14 Prove that the arbitrary union of open sets is open. Prove that the
finite intersection of open sets is open. Show that an infinite union of open sets need
not be open.

Proof. Let U =
⋃
i∈I Ui be the union of some open sets over an arbitrary indexing set I.

Then for any x ∈ U , x ∈ Ui for some i. Then x ∈ B ⊆ Ui for some open rectangle B. Since
B ⊆ Ui, B ⊆ U , so x ∈ B ⊆ U . So U is open.

Let U = U1 ∩U2 for some open sets U1, U2. Let x ∈ U be arbitrary. Then x ∈ Br1(x) ⊆ U1

and x ∈ Br2(x) ⊆ U2 for some radii r1, r2. Taking r = min{r1, r2} > 0, we have x ∈
Br(x) ⊆ Br1 ⊆ U1 and Br(x) ⊆ Br2 ⊆ U2, so x ∈ Br(x) ⊆ U . By induction, this extends to
any finite intersection.

The intersection of the sets (−1/n, 1/n) for n ∈ N is the singleton {0}, which is not open.

Exercise 1-15 Prove that the open ball Br(a) := {x ∈ Rn : |x − a| < r} is indeed
open.

Proof. When r = 0, Br(a) = ∅ which is vacuously open. If r > 0, then pick some x ∈
Br(a). Let r′ = r − |x − a|. Then if x = (x1, . . . , xn), consider the box B with sides
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(x1−r′/n, x1+r′/n)×. . .×(xn−r′/n, xn+r′/n). For any other y ∈ B, we have |xi−yi| ≤ r′/n
by construction, so

|x− y| ≤ |x1 − y1|+ . . .+ |xn − yn| ≤ r′

By the triangle inequality,

|y − a| = |y − x− (a− x)| ≤ |y − x|+ |a− x| ≤ r′ + |a− x| = r − |x− a|+ |x− a| = r

So y ∈ Br(a), and thus B ⊆ Br(a). So Br(a) is open.

Exercise 1-16 Find the interior, exterior, and boundary of the following sets:

1. A := {x ∈ Rn : |x| ≤ 1}

2. B := {x ∈ Rn : |x| = 1}

3. C := {x ∈ Rn : each coordinate xi ∈ Q}

1. We proved in Exercise 1-15 that B1(0) ⊆ A is open. So B1(0) ⊆ intA.

I claim that Rn \A = extA. Let x ∈ Rn \A. Then take the open ball B|x|−1(x). For
any y ∈ B|x|−1(x), the reverse triangle inequality tells us

|y| ≥ ||y − x| − |x||

Since y ∈ B|x|−1(x), |y − x| ≤ |x| − 1. So |y − x| − |x| ≤ −1, and thus

|y| ≥ ||y − x| − |x|| ≥ 1

so y ∈ Rn \A. Thus Rn \A ⊆ extA, but extA ⊆ Rn \A (this is easy to see based on
the definition of extA), so Rn \A = extA.

Lastly, for any x with |x| = 1, pick any open ball Br(x). Then the point y = x+ r
2x

has
|y − x| =

∣∣∣r
2
x
∣∣∣ = r

2
|x|︸︷︷︸
=1

< r

So y ∈ Br(x). Moreover,

|y| =
(
1 +

r

2

)
|x|︸︷︷︸
=1

> 1

so y ∈ Rn \A. On the other hand, a similar calculation shows that z = x− r
2x ∈ Br(x)

is in A. So the set of points with |x| = 1 is a subset of ∂A. But intA⊔∂A⊔extA = Rn,
and we have already partitioned Rn, so our subsets must be equalities and we must
have intA = {x : |x| < 1}, ∂A = {x : |x| = 1}, extA = {x : |x| > 1.

2. By the same argument as before, the set of |x| > 1 is a subset of extB. By a similar
argument, the set of |x| < 1 is also a subset of extB. Lastly, the same argument
shows that B itself is not a subset of intB. But B cannot be in extB, so we must
have intB = ∅, ∂B = {x : |x| = 1}, extB = {x : |x| ̸= 1}.
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3. Let x ∈ Rn be arbitrary. Then let D = (y1, z1) × . . . × (yn, zn) be an arbitrary
open rectangle containing x. By the density of Q in R, we can pick rational numbers
qi ∈ (yi, zi). Then the point q = (q1, . . . , qn) ∈ C and q ∈ D, soD contains points of C.
Similarly, we can construct a point with all irrational coordinates p = (p1, . . . , pn) /∈ C
and p ∈ D, so D contains points of Rn \C. Thus x ∈ ∂C. x was arbitrary, so ∂C = Rn
and intC = extC = ∅.

Exercise 1-17 Construct a set A ⊆ [0, 1] × [0, 1] such that A contains at most one
point on each horizontal and each vertical line but has extA = [0, 1]× [0, 1].

We construct sets recursively as follows: for A1, pick a point in each quadrant of [0, 1]×[0, 1],
such that none lie on the same horizontal or vertical line. For A2, pick a point in each
sixteenth of [0, 1]× [0, 1] such that none lie on the same horizontal or vertical line, and none
lie on the same horizontal or vertical line as the points in A1. Continue doing this, picking
4i points for Ai such that no point x ∈ Ai shares a vertical or horizontal line with a point
y ∈

⋃i
k=1Ak. This is possible because each choice of point removes only a single vertical

line and horizontal line from our possible choices, which is a set of measure zero, so we
always have a set of measure one to choose from. Then take our set to be A =

⋃∞
i=1Ai. By

construction, this set satisfies the vertical/horizontal line property. This set has no interior,
since a nontrivial open rectangle being a subset of A would violate the vertical/horizontal
line condition. Moreover, for any point x ∈ [0, 1]×[0, 1] and any radius r, we simply look in a
(4i)-ant of length r/2 or less in order to find a point y that is close to x. So ∂A = [0, 1]×[0, 1].

Exercise 1-18 If A ⊆ [0, 1] is the union of open intervals (ai, bi) such that any
rational number in (0, 1) is in (ai, bi) for some i, prove that ∂A = [0, 1] \A.

Proof. Since A is the union of open intervals, A is open and thus intA = A. I claim that
extA = Rn \ [0, 1]. Clearly Rn \ [0, 1] ⊆ extA. Then take some point x ∈ [0, 1]. For any
open interval (a, b) containing x, the density of Q tells us that there is a rational number in
(a, b)∩ [0, 1], so x /∈ extA. So ext = Rn \ [0, 1], intA = A, and this forces ∂A = [0, 1]\A.

Exercise 1-19 If A is a closed set that contains every rational r ∈ [0, 1], show that
[0, 1] ⊆ A.

Proof. Suppose not. Then there is some x ∈ [0, 1] with x ∈ Rn \ A. x must be in (0, 1),
which is open. Moreover, x ∈ Rn \A, which is open since A is closed, so x ∈ (Rn \A)∩ (0, 1)
which is open (since the finite intersection of open sets is open). Take some open interval
x ∈ (a, b) ⊆ (Rn \A) ∩ (0, 1). By the density of Q, there is a rational r in (a, b). But r ∈ A
by definition, so (a, b) ̸⊆ Rn \ A, so Rn \ A isn’t open, which contradicts the assumption
that A is closed. So we must have [0, 1] ⊆ A.

Exercise 1-20 Prove that a compact subset of Rn is closed and bounded.
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Proof. Suppose K ⊆ Rn is compact. The collection of open rectangles (i− 1, i+ 1)× (j −
1, j+1) . . .× (k− 1, k+1) for i, j, . . . , k ∈ Z covers R, so it covers K. Then a finite number
of these boxes covers K, so it is bounded.

We wish to show that Rn \K is open. Suppose it is not. Then there is some x ∈ Rn \K
such that for all open balls Br(x), Br(x) ∩K ̸= ∅. We can construct a sequence of points
y1, y2, . . . ∈ K as follows: Pick some r1, say r1 = 1. ThenBr1(x) contains some point y1 ∈ K.
Let r2 = |y1 − x| (note this is strictly less than r1 since y1 ∈ Br1(x) =⇒ |y1 − x| < r1).
Next, Br2(x) contains some other point y2 ∈ K, and |y2 − x| < r2 = |y1 − x|. Continue this
to construct a sequence of points y1, y2, . . . ∈ K such that |y1 − x| > |y2 − x| > . . ..

We use this sequence to create an open cover of K. Let ri = |yi − x|. Let C be the closed
ball with radius r2 and center x. The set Rn \ C is open, since its complement C is closed.
Now let Ri := {y : ri+2 < |y−x| < ri} be the open ring with outer radius ri and inner radius
ri+2. Then

⋃
Ri = {y : |y−x| < r1} = Br1(x) contains all points with distance |y−x| < r1.

Rn \C contains all points with distance |y− x| > r2. But r2 < r1, so Rn \C ∪
⋃
Ri = Rn.

Thus the collection O = {Rn \ C,R1, R2, . . .} covers Rn and thus K. But if we pick only a
finite number of these, then there is some Ri in the finite subcover such that i is maximal
in the subcover, so the points yi+2, yi+3, . . . are not contained in the subcover, and thus K
is not compact. So if K is compact, then it is closed.

Exercise 1-21

1. If A is closed and x /∈ A prove that there is a number d > 0 such that y−x ≥ d
for all y ∈ A.

2. If A is closed, B is compact, and A ∩ B = ∅, prove that there is d > 0 such
that |y − x| ≥ d for all y ∈ A and x ∈ B.

3. Give a counterexample in R2 if A and B are closed but neither is compact.

1. Proof. Since A is closed, Rn\A is open. Let x /∈ A. Then x ∈ Rn\A, so there is an open
ball Br(x) ⊆ Rn \A. Then we have |x− y| < r =⇒ y ∈ Br(x) ⊆ Rn \A =⇒ y /∈ A,
and thus for any y ∈ A we must have |x− y| ≥ r.

2. Proof. For each point b ∈ B, part (a) tells us there is a distance rb such that |b−y| ≥ rb
for any y ∈ A. Consider the collection of open balls (Brb/2(b))b∈B . This collection
covers B, so we pick a finite subcover {Brb1/2(b1), Brb2/2(b2), . . . , Brbn/2(bn)}. For
any x ∈ B, x ∈ Brbi/2(bi) for some i. Then by the reverse triangle inequality, for any
y ∈ A, we have

|y − x| = |y − bi − (x− bi)| ≥ ||y − bi| − |x− bi||

Since y ∈ A, |y − bi| ≥ rbi . Since x ∈ Brbi/2(bi), |x − bi| ≤ rbi/2 ≤ rbi ≤ |y − bi|. So
the quantity |y − bi| − |x− bi| is positive, so

|y − x| ≥ |y − bi| − |x− bi| ≥ rbi −
rbi
2

=
rbi
2

≥ min1≤i≤n rbi
2

14



Since rbi ≥ 0 for all i and there are finite i, min rbi is well defined and positive. Thus
for arbitrary y ∈ A, x ∈ B, we have |y − x| ≥ min rbi/2 = d > 0.

3. We define two sets as follows: first, pick A = N. Next, pick B = {x1, x2, . . .}, where
xi = i+ 1

i+1 . Since xi is never an integer, A∩B = ∅. However, let r > 0 be arbitrary.

Then pick i large enough that 1
i+1 < r. Choosing x = xi, y = i, we have

|x− y| = |xi − i| =
∣∣∣∣ 1

i+ 1

∣∣∣∣ = 1

i+ 1
< r

Exercise 1-22 If U is open and C ⊆ U is compact, show that there is a compact
set D such that C ⊆ intD and D ⊆ U .

Proof. Since U is open, Rn \U is closed. Thus by Exercise 1-21 part (b), there is a distance
d such that |y − x| < d for any x ∈ C and y ∈ Rn \ U . Let Bx = Bd(x) be the open ball
of radius d and center x. Let Bx = Bd(x) = {y : |y − x| ≤ d} be the closed ball of radius d
and center x.

The collection (Bx)x∈C is an open cover of C compact, so we pick a finite subcollection
Bx1

, . . . , Bxn . Then let D = Bx1
∪ . . . ∪Bxn . We have Bxi ⊇ Bxi for all i, so

D =

n⋃
i=1

Bxi ⊇
n⋃
i=1

Bxi ⊇ C

so C ⊆ D. Moreover, for any point y ∈ Rn \ U and x ∈ D, x ∈ Bxi for some i. Then
|x− xi| ≤ d/2, and |y − xi| ≥ d, so

|y − x| ≥ ||y − xi| − |x− xi|| ≥ d− d

2
=
d

2
> 0

so D ∩ Rn \ U = ∅ and thus D ⊆ U .

Exercise 1-23 If f : A→ Rm and a ∈ A, show that limx→a f(x) = b = (b1, . . . , bm)
if and only if limx→a f

i(x) = bi for each i (recall f
i is the ith component function).

Proof. ( =⇒ ) Suppose limx→a f(x) = b. Then for any ε > 0, there is δ > 0 such that
|x− a| < δ and x ∈ A implies |f(x)− b| < ε. Then for any such x, we have |f i(x)− bi|2 ≤∑m
j=1 |f j(x)− bj |2 = |f(x)− b|2 < ε2 so |f i(x)− bi| < ε. So limx→a f

i(x) = bi.

Suppose limx→a f
i(x) = bi for each i. Then for any ε > 0, pick δi > 0 for each i such that

|x− a| < δi =⇒ |f i(x)− bi| < ε/
√
m. Let δ = min δi. Then for any x with |x− a| < δ,

|f(x)− b|2 =

m∑
i=1

|f i(x)− bi|2 < ε2/m = ε2

so |f(x)− b| < ε and thus limx→a f(x) = b.
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Exercise 1-24 Prove that f : A→ Rm is continuous at a if and only if each f i is.

Proof. Immediate from Exercise 1-23.

Exercise 1-25 Prove that a linear transformation T : Rn → Rm is continuous.

Proof. From Exercise 1-10, we know that there exists M > 0 such that |T (h)| ≤ M |h| for
all h. Then at any point a ∈ Rn, let ε > 0 be arbitrary. Set δ = ε/M . Then for any x ∈ Rn
with |x− a| < δ, we have

|T (x)− T (a)| = |T (x− a)| ≤M |x− a| < M
ε

M
= ε

Exercise 1-26 Let A = {(x, y) ∈ R2 : x > 0 and 0 < y < x2}.

(a) Show that every straight line through (0, 0) contains an interval around (0, 0)
which is in R2 \A.

(b) Define f : R2 → R by f(x) = 0 if x /∈ A and f(x) = 1 if x ∈ A. For h ∈ R2

define gh : R → R by gh(t) = f(th). Show that each gh is continuous at 0, but
f is not continuous at (0, 0). (This problem shows that f is continuous in any
direction, but not continuous as a two-variable function).

(a) Proof. Suppose y = mx defines a straight line through (0, 0). When m = 0 one can
verify that that the entire line is in Rn \A since y = 0. (For a vertical line we similarly
have x = 0 so the line is in Rn \ A). Then consider the interval [−|m|, |m|]. The
portion of the line with x ≤ 0 is automatically in R2 \A, but for any x ∈ (0, |m|],

x2 ≤ |m|x = y

so the entire interval [−|m|, |m|] is in R2 \A.

(b) Proof. Pick some gh. By part (a), there is an interval about 0 such that th ∈ R2 \A,
so gh(t) = 0. So gh(t) = 0 on an interval about 0, so limt→0 gh(t) = 0 = gh(0). Thus
each gh is continuous at 0.

To show f is not continuous at 0, pick ε = 1/2. Let δ > 0 be arbitrary. Assume δ < 1
since this will automatically prove larger δ. Then the point x = (δ/2, δ2/5) is in A, so
f(x) = 1. Moreover,

|x− 0| = |x| ≤ δ

2
+
δ2

5
≤ δ

2
+
δ

5
< δ

But |f(x)− f(0)| = |1| = 1 > ε, so f is not continuous at 0.

Exercise 1-27 Prove that {x ∈ Rn : |x − a| < r} is open using the topological
condition.
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Proof. Consider the function f : Rn → R with f(x) = |x − a|. To prove f is continuous,
pick some point y. Then let ε > 0 and set δ = ε. Then we have

|x− y| < δ =⇒ |f(x)− f(y)| = ||x− a| − |y − a|| ≤ |x− a− (y − a)| = |x− y| < δ = ε

so f is continuous. Thus the preimage of the open ball Br(0) under f is open, but this is
precisely the set {x ∈ Rn : f(x) = |x− a| < r}.t

Exercise 1-28 Suppose A ⊆ Rn is not closed. Show that there exists an unbounded
continuous function f : A→ R.

Proof. Let A ⊆ Rn be not closed. Then Rn\A is not open, so there exists a point x ∈ Rn\A
such that every Br(x) contains a point in A. Then define f : A→ R by

f(y) =
1

|y − x|

To verify that this function is continuous, first consider the function |y − x|. Letting a ∈ A
be arbitrary, for any ε > 0 set δ = ε. Then for any b ∈ A with |b− a| < δ,

|f(b)− f(a)| = ||b− x| − |a− x|| ≤ |b− a| < δ = ε

So y 7→ |y − x| is continuous. Then since |y − x| ̸= 0 for y ∈ A, and f is the quotient of
nonzero continuous functions, f is continuous.

To show that f is unbounded, pick M > 0. Then by our choice of x, the ball B1/M (x)
contains a point y ∈ A. Then

f(y) =
1

|y − x|
≥ 1

1
M

=M

Exercise 1-29 Let K ⊆ Rn be compact, and let f : K → R be continuous. Show
that f attains a maximum and minimum value.

Proof. Since K is compact and f is continuous, f(K) is compact. Specifically, it is bounded,
so let α = sup f(K). We want to show α ∈ f(K). By way of contradiction, suppose
α /∈ f(K). Then since f(K) is closed, R \ f(K) is open, so there is an interval (α− ε, α+ ε)
that doesn’t intersect f(K). But then α− ε is also an upper bound for f(K), contradicting
that fact that α = sup f(K). So we must have sup f(K) = max f(K) ∈ f(K), and thus
there is a y ∈ K such that f(y) = max f(K). The proof for the minimum is similar.

Exercise 1-30 Let f : [a, b] → R be increasing. Let x1, . . . , xn ∈ [a, b] be distinct.
Show that

n∑
i=1

o(f, xi) ≤ f(b)− f(a)
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Proof. Note that since f is increasing, for any [c, d] ⊆ [a, b], we have

max
[c,d]

f(x) = f(d),min
[c,d]

f(x) = f(c)

In particular,M(f, x, δ) = f(x+δ) andm(f, x, δ) = f(x−δ), so f(x+δ)−f(x−δ) ≥ o(f, x).

We may suppose that the xi are ordered, so that x1 < . . . < xn. Pick δ small enough that
|xi+1 − xi| < δ for all δ. This gives us disjoint intervals [x1 − δ, x1 + δ], . . . , [xn − δ, xn + δ].
Then we have

n∑
i=1

o(f, xi) ≤
n∑
i=1

f(xi + δ)− f(xi − δ)

= f(xn + δ)− f(xn − δ) + . . .+ f(x1 + δ)− f(x1 − δ)

≤ f(b)− f(xn + δ)︸ ︷︷ ︸
≥0

+f(xn + δ)− f(xn − δ) + f(xn − δ)− f(xn−1 + δ)︸ ︷︷ ︸
≥0

+ f(xn−1 + δ)− . . .− f(x1 − δ) + f(x1 − δ)− f(a)︸ ︷︷ ︸
≥0

= f(b)− f(a)

The first and last intervals may be adjusted slightly for the case where x1 = a or xn = b.

1.2 Chapter 2 Exercises

Exercise 2-1 Prove that if a function f : Rn → Rm is differentiable at a ∈ Rn, then
it is continuous at a.

Proof. Suppose f : Rn → Rm is differentiable at a ∈ Rn. Then Df(a) is linear transforma-
tion. By Exercise 1-10, there exists a number M > 0 such that

|Df(a)(h)|
|h|

≥M, ∀h ∈ Rn

Then since f is differentiable at a, there exists δ > 0 such that for any |h| < δ,

|f(a+ h)− f(a)−Df(a)(h)|
|h|

< 1

Now let ε > 0 be arbitrary, and pick δ′ = min
{
δ, ε
M+1

}
. Then for any x with |x− a| < δ′

we have

|f(x)− f(a)| = |f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)|
≤ |f(x)− f(a)−Df(a)(x− a)|+ |Df(a)(x− a)|
< |x− a|+M |x− a|

< (M + 1)
ε

M + 1
= ε
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Exercise 2-2 A function f : R2 → R is independent of the second variable
if for any x ∈ R and y1, y2 ∈ R we have f(x, y1) = f(x, y2). Show that f is
independent of the second variable if and only if there is a function g : R → R such
that f(x, y) = g(x). What is f ′(a, b) in terms of g′?

Proof. ( =⇒ ) Suppose f is independent of the second variable. Then define g(x) = f(x, 0).
For any x, y we have

f(x, y) = f(x, 0) = g(x)

( ⇐= ) Suppose g(x) = f(x, y). Then let x, y1, y2 ∈ R be arbitrary. We have

f(x, y1) = g(x) = f(x, y2)

Claim: f ′(a, b) =
[
g′(a) 0

]
.

Proof. Fix (a, b) ∈ R2. Then let ε > 0. Since g is differentiable at a, there exists δ > 0 such
that for any |h| < δ,

|g(a+ h)− g(a)− g′(a)(h)|
|h|

< ε

Then if h = (h1, h2) satisfies |h| < δ, it must also be the case that |h1| ≤ |(h1, h2)| < δ.
Thus for any |(h1, h2)| = |h| < δ, we have∣∣∣∣f(a+ h1, b+ h2)− f(a, b)−

[
g′(a) 0

] [h1
h2

]∣∣∣∣
|h|

=
|g(a+ h1)− g(a)− g′(a)(h1)|

|h|

≤ |g(a+ h1)− g(a)− g′(a)(h1)|
|h1|

< ε

Thus we have f ′(a, b) =
[
g′(a) 0

]
.

Exercise 2-3 Define when a function f : R2 → R is independent of the first variable,
and find f ′(a, b) for such f . Which functions are independent of both the first and
second variables?

A function f ;R2 → R is independent of the first variable if for any x1, x2, y ∈ R we
have f(x1, y) = f(x2, y), or equivalently if there exists h : R → R such that f(x, y) = h(y).
In this case, f ′(a, b) =

[
0 h′(b)

]
. If a function is independent of both variables, then

f(a1, b1) = f(a2, b1) = f(a2, b2) for any (a1, b1), (a2, b2) ∈ R2 so f is constant.
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Exercise 2-4 Let g be a continuous real-valued function on the unit circle such that
g(0, 1) = g(1, 0) = 0 and g(−x) = −g(x). Define f : R2 → R by

f(x) =

{
|x|g

(
x
|x|

)
, x ̸= 0

0, x = 0

(a) If x ∈ R2 and hx : R → R is defined by hx(t) = f(tx), show that hx is
differentiable.

(b) Show that f is not differentiable at (0, 0) unless g = 0 everywhere.

(a) Proof. If x = 0 then h is identically 0 and is differentiable. If x ̸= 0, then for t ̸= 0 we
have

h(t) = |tx|g
(
tx

|tx|

)
= |t||x|g

(
sign(t)

x

|x|

)
= |t|sign(t)|x|g

(
x

|x|

)
︸ ︷︷ ︸

g(−x)=−g(x)

= t

[
|x|g

(
x

|x|

)]

We also have h(0) = f(0) = 0 = 0|x|g
(
x
|x|

)
so h is a linear function of t. Thus it is

differentiable from single-variable analysis.

(b) Proof. Suppose that f can be differentiated. Then since Df(0, 0) is linear, it is
uniquely determined by its behavior on the basis {e1, e2}. In particular, pick ε > 0.
Then there exists a δ > 0 such that whenever 0 < |h| < δ we have

|f(h)− f(0, 0)−Df(0, 0)(h)|
|h|

< ε

Then picking some h1 ∈ R with 0 < |h1| < δ,

|Df(0, 0)(e1)| =
|h1Df(0, 0)(e1)|

|h1|
=

| f(h1e1)− f(0, 0)︸ ︷︷ ︸
=0

−Df(0, 0)(h1e1)|

|h1e1|
< ε

This works for all epsilon, so Df(0, 0)(e1) = 0. Similarly, Df(0, 0)(e2) = 0, so Df(0, 0)
is the zero transformation. Now suppose g(x) ̸= 0 for some x. Then for ε = g(x) and
arbitrary, δ,

|f
(
δx
2

)
− f(0, 0)−Df(0, 0)

(
δx

2

)
|︸ ︷︷ ︸

=0∣∣ δx
2

∣∣ =

δ
2g
(
δx/2
δ/2

)
δ
2

= g(x) ≥ ε

so f is not differentiable. Thus f is only differentiable when g(x) = 0 everywhere.
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Exercise 2-5 Let f : R2 → R be defined by

f(x, y) =

{ x|y|√
x2+y2

, (x, y) ̸= 0

0 (x, y) = 0

Show that f is a function of the kind considered in Exercise 2-4, so that f is not
differentiable at (0, 0).

Proof. Let

g(x, y) =

{
x|y|
x2+y2 , (x, y) ̸= 0

0, (x, y) = 0

Then for (x, y) ̸= 0 we have

|(x, y)|g
(
(x, y)

|(x, y)

)
=
√
x2 + y2g

(
x√

x2 + y2
,

y√
x2 + y2

)

=
√
x2 + y2

x|y|
x2 + y2

=
x|y|√
x2 + y2

= f(x, y)

Moreover,

g(1, 0) =
0√
1
= 0 =

|0|√
1
= g(0, 1)

and

g(−x,−y) = −x| − y|
(−x)2 + (−y)2

= − x|y|
x2 + y2

= −g(x, y)

so f is of the form in Exercise 2-4. However,

g

(
1√
2
,
1√
2

)
=

(
1√
2

)2

=
1

2
̸= 0

so g is not 0 everywhere and thus f is not differentiable at (0, 0).

Exercise 2-6 Let f : R2 → R be defined by f(x, y) =
√
|xy|. Show that f is not

differentiable at (0, 0).

Proof. Following the proof of Exercise 2-4 part (a), first suppose f is differentiable at (0, 0).
Then Df(0, 0) exists, and it is determined by its behavior on the basis {e1, e2}. Letting
ε > 0 be arbitrary, there must exist δ > 0 such that for any 0 < |h| < δ,

|f(h)− f(0, 0)−Df(0, 0)(h)|
|h|

< ε
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Pick some h1 ∈ R with 0 < |h1| < δ. Then

|Df(0, 0)(e1)| =
|h1Df(0, 0)(e1)|

|h1|
=

|f(h1e1)− f(0, 0)−Df(0, 0)(h1e1)|
|h1e1|

< ε

So |Df(0, 0)(e1)| < ε for all ε, and thus Df(0, 0)(e1) = 0. Similarly, Df(0, 0)(e2) = 0, so
Df(0, 0) is the zero transformation. However, let ε = 1√

2
, and let δ > 0 be arbitrary. Then

the point (x, y) = ( δ√
3
, δ√

3
) satisfies 0 < |(x, y)| < δ, but

|f(x, y)− f(0, 0)−Df(0, 0)(x, y)|
|(x, y)|

=

√
δ2

3√
2δ2

3

=
1√
2
≥ ε

so no δ works and f is not differentiable.

Exercise 2-7 Let f : Rn → R be a function such that |f(x)| ≤ |x|2. Show that f is
differentiable at 0.

Proof. Let λ : Rn → R be the zero transformation. Then let ε > 0 be arbitrary, and set
δ = ε. Whenever 0 < |x| < δ, by assumption we have

|f(x)|
|x|

≤ |x|

In particular, |f(0)| ≤ |0|2 = 0 so f(0) = 0. Thus

|f(x)− f(0)− λ(x)|
|x|

=
|f(x)|
|x|

≤ |x| < δ = ε

so f is differentiable at 0 with derivative Df(0) = λ the zero transformation.

Exercise 2-8 Let f : R → R2. Prove that f is differentiable at a ∈ R if and only if
f1 and f2 are, and that in this case

f ′(a) =

[
(f1)′(a)
(f2)′(a)

]

Proof. ( =⇒ ) Suppose f is differentiable at a ∈ R. Then let ε > 0 be arbitrary. Since f is
differentiable, there exists δ > 0 such that whenever 0 < |h| < δ we have

|f(a+ h)− f(a)−Df(a)(h)|
|h|

< ε

If we suppose that Df(a)(h) has matrix representation given by

f ′(a) =

[
b
c

]
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then it is the case that

Df(a)(h) =

[
bh
ch

]
Now if we write for convenience (x, y) = f(a + h) − f(a) − Df(a)(h), then we know that
|x| ≤ |(x, y)|, so whenever 0 < |h| < δ

|f1(a+ h)− f(a)− bh|
|h|

=
|x|
|h|

≤ |(x, y)|
|h|

=
|f(a+ h)− f(a)−Df(a)(h)|

|h|
< ε

so f1 is differentiable at a. The proof for f2 is similar. Moreover, this proves that in this
case bh = (f1)′(a) and ch = (f2)′(a), so that

f ′(a) =

[
(f1)′(a)
(f2)′(a)

]
( ⇐= ) Now suppose that f1 and f2 are differentiable at a. Let ε > 0 be arbitrary. Then
there exist δ1, δ2 > 0 such that whenever 0 < |h| < δ1 we have

|f1(a+ h)− f1(a) + (f1)′(a)(h)|
|h|

<
ε

2

and whenever 0 < |h| < δ2 we have

|f2(a+ h)− f2(a) + (f2)′(a)(h)|
|h|

<
ε

2

Let δ = min{δ1, δ2}. Let λ : R → R2 have the matrix

[λ] =

[
(f1)′(a)
(f2)′(a)

]
Then whenever 0 < |h| < δ,

|f(a+ h)− f(a)− λ(h)|
|h|

=

∣∣∣∣[xy
]∣∣∣∣

|h|

where [
x
y

]
=

[
f1(a+ h)− f1(a)− (f1)′(a)(h)
f2(a+ h)− f2(a)− (f2)′(a)(h)

]
Then

|f(a+ h)− f(a)− λ(h)|
|h|

=

∣∣∣∣[xy
]∣∣∣∣

|h|
≤ |x|

|h|
+

|y|
|h|

<
ε

2
+
ε

2
= ε

so f is differentiable at a, and once again we have

f ′(a) = [λ] =

[
(f1)′(a)
(f2)′(a)

]
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Exercise 2-9 Two functions f, g : R → R are equal up to nth order at a ∈ R if

lim
h→0

f(a+ h)− g(a+ h)

hn
= 0

(a) Show that a continuous function f is differentiable at a if and only if there is
a function g of the form g(x) = a0 + a1(x− a) such that f and g are equal up
to first order at a. (Note: Spivak did not assume continuity in the original
exercise, but it is required in the if direction, and continuity in the only if
direction follows from differentiability).

(b) If f ′(a), . . . , f (n)(a) exist, show that f and the function g defined by

g(x) =

n∑
i=0

f (i)(a)

i!
(x− a)i

are equal up to nth order at a. (This is the nth degree Taylor polynomial of f
expanded about a).

(a) Proof. ( =⇒ ) Suppose f is differentiable at a. Then define

g(x) = f(a) + f ′(a)(x− a)

We have

lim
h→0

f(a+ h)− f(a+ h)

h
= lim
h→0

f(a+ h)− f(a)− f ′(a)(h)

h
= 0

since f is differentiable, so f and g are equal up to first order.

( ⇐= ) Now suppose g(x) = a0 + a1(x − a) is equal to f up to first order. Since f
(and g) are continuous,

lim
h→0

f(a+ h)− g(a+ h) = f(a)− g(a) = 0

so f(a) = g(a) = a0. Thus we have

lim
h→0

f(a+ h)− f(a)− a1h

h
= lim
h→0

f(a+ h)− g(a+ h)

h
= 0

so f is differentiable at a.

(b) Proof. We induct on n. Suppose that for any function f , whenever f ′(a), . . . , f (n−1)(a)
exist, then

f(x)
n−1∼

n∑
i=0

f (i)(a)

i!
(x− a)i
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where
n−1∼ represents equality up to order n− 1. Now suppose that f ′(a), . . . , f (n)(a)

all exist. Then we have

lim
h→0

f(a+ h)− g(a+ h)

hn
= lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! (a+ h− a)i

hn

= lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! hi

hn

Note that since f and g are continuous (where f is continuous since it is differentiable),
we have

lim
h→0

f(a+ h)−
n∑
i=0

f (i)

i!
hi = f(a)− f (0)(a)

0!
−

n∑
i=1

f (i)

i!
0i = f(a)− f(a) = 0

Clearly g is differentiable and so is f , so f(a+h)− g(a+h) is differentiable, and thus
L’Hopital’s Rule applies. So

lim
h→0

f(a+ h)−
∑n
i=0

f(i)(a)
i! hi

hn
LH
= lim

h→0

f ′(a+ h)−
∑n
i=1

f(i)(a)
(i−1)! h

i−1

nhn−1

= lim
h→0

f ′(a+ h)−
∑n−1
i=0

f(i+1)(a)
i! hi

hn−1

= lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1

Since f ′′(a), . . . , f (n)(a) all exist, (f ′)′(a), . . . , (f ′)(n−1)(a) all exist, so the inductive
hypothesis applies and

f ′(x)
n−1∼

n−1∑
i=0

(f ′)(i)(a)

i!
(x− a)i

so

lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1
= 0

Thus

lim
h→0

f(a+ h)− g(a+ h)

hn
= lim
h→0

f ′(a+ h)−
∑n−1
i=0

(f ′)(i)(a)
i! hi

hn−1
= 0

so f and g are equal up to nth order.
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Exercise 2-10 Use the theorems of this section [Section 2.2] to find f ′ for the
following:

(a) f(x, y, z) = xy.

(b) f(x, y, z) = (xy, z).

(c) f(x, y) = sin(x sin y).

(d) f(x, y, z) = sin(x sin(y sin z)).

(e) f(x, y, z) = xy
z

.

(f) f(x, y, z) = xy+z.

(g) f(x, y, z) = (x+ y)z.

(h) f(x, y) = sin(xy).

(i) f(x, y) = [sin(xy)]cos 3.

(j) f(x, y) = (sin(xy), sin(x sin y), xy).

(a) We write

f = [π1][π
2] = (eln ◦[π1])[π

2] = eπ
2·ln ◦π1

. Then

f ′(a, b, c) = (eπ
2·ln ◦π1

)′(a, b, c)

= eb ln a(π2 · ln ◦π1)′(a, b, c)

= ab(ln a(π2)′(a, b, c) + b(ln ◦π1)′(a, b, c)

= ab(ln aπ2 + b
1

a
(π1)′(a, b, c)

= ab(ln aπ2 +
b

a
π1)

= (bab−1, ab ln a, 0)

(b) Following easily from part (a) we have:

f ′(a, b, c) =

[
− (xy)′(a, b, c) −
− (π3)′(a, b, c) −

]
=

[
bab−1 ab ln a 0
0 0 1

]

26



(c) Similarly to the example, we have f = sin ◦(π1 · sin ◦π2). Thus,

f ′(a, b) = (sin ◦(π1 · sin ◦π2))′(a, b)

= cos(a sin b)(π1 · sin ◦π2)′(a, b)

= cos(a sin b)(sin b(π1)′(a, b) + a(sin ◦π2)′(a, b))

= cos(a sin b) sin bπ1 + a cos(a sin b) cos bπ2

= (cos(a sin b) sin b, a cos(a sin b) cos b)

(d) As above, we have
f = sin ◦(π1 · (sin ◦(π2 · (sin ◦π3))))

so

f ′(a, b, c) = (sin ◦(π1 · (sin ◦(π2 · (sin ◦π3)))))′(a, b, c)

= cos(a sin(b sin c))(π1 · (sin ◦(π2 · (sin ◦π3))))′(a, b, c)

= cos(a sin(b sin c))(sin(b sin c)π1 + a cos(b sin c)(π2 · (sin ◦π3))′(a, b, c))

= cos(a sin(b sin c))(sin(b sin c)π1 + a cos(b sin c)(sin cπ2 + b cos cπ3))

= cos(a sin(b sin c)) ∗ (sin(b sin c), a cos(b sin c) sin c, ab cos(b sin c) cos c)

(e) Let g(x, y) = xy. Then we have

f(x, y, z) = g(x, g(y, z))

so that
f = g ◦ (π1, g ◦ (π2, π3))

Using our result from part (a),

f ′(a, b, c) = g′(a, g(b, c))

[
− (π1)′(a, b, c) −
− (g ◦ (π2, π3))′(a, b, c) −

]
=
[
bcab

c−1 ab
c

ln a
] [1 0 0

0 cbc−1 bc ln b

]
=
[
bcab

c−1 ab
c

cbc−1 ln a ab
c

bc ln a ln b
]

(f) Letting g be as defined in part (e), we have

f = g ◦ (π1, π2 + π3)

Thus

f ′(a, b, c) = (g ◦ (π1, π2 + π3))′(a, b, c)

= g′(a, b+ c)

[
− (π1)′(a, b, c) −
− (π2 + π3)′(a, b, c) −

]
=
[
(b+ c)ab+c−1 ab+c ln a

] [1 0 0
0 1 1

]
=
[
(b+ c)ab+c−1 ab+c ln a ab+c ln a

]
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(g) Again letting g be as in part (e), we have

f = g ◦ (π1 + π2, π3)

so that

f ′(a, b, c) = (g ◦ (π1 + π2, π3))′(a, b, c)

= g′(a+ b, c)

[
− (π1 + π2)′(a, b, c) −
− (π3)′(a, b, c)

]
=
[
c(a+ b)c−1 (a+ b)c ln(a+ b)

] [1 1 0
0 0 1

]
=
[
c(a+ b)c−1 c(a+ b)c−1 (a+ b)c ln(a+ b)

]
(h) We can straightforwardly write this as

f = sin ◦(π1 · π2)

Then

f ′(a, b) = (sin ◦(π1 · π2))′(a, b)

= cos(ab)(bπ1 + aπ2)

= (b cos(ab), a cos(ab))

(i) Using the same definition of g,

f = g ◦ (sin ◦(π1 · π2), cos 3)

Since cos 3 is constant,

f ′(a, b) = (g ◦ (sin ◦(π1 · π2), cos 3))′(a, b)

= g′(sin(ab), cos 3)

[
− (π1 · π2)′(a, b) −
− (cos 3)′(a, b) −

]
=
[
cos 3[sin(ab)]cos 3 [sin(ab)]cos 3 ln sin(ab)

] [b a
0 0

]
=
[
b cos 3[sin(ab)]cos 3 a cos 3[sin(ab)]cos 3

]
(j) From parts (h), (c), and (a), respectively, we already know that

(sin(xy))′(a, b) =
[
b cos(ab) a cos(ab)

]
(sin(x sin y))′(a, b) =

[
cos(a sin b) sin b a cos(a sin b) cos b

]
(xy)′(a, b) =

[
bab−1 ab ln a

]
Then f ′ is simply given by putting each of these matrices in as row vectors, such that

f ′(a, b, c) =

− (sin(xy))′(a, b) −
− (sin(x sin y))′(a, b) −
− (xy)′(a, b) −

 =

 b cos(ab) a cos(ab)
cos(a sin b) sin b a cos(a sin b) cos b

bab−1 ab ln a


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Exercise 2-11 Find f ′ for the following (where g : R → R is continuous, and s ∈ R
is fixed):

(a) f(x, y) =
∫ x+y
s

g.

(b) f(x, y) =
∫ xy
s
g.

(c) f(x, y, z) =
∫ sin(x sin(y sin z))

xy
g.

(a) Define F : R → R by

F (x) =

∫ x

s

g(t) dt

Since g is continuous, the fundamental theorem of calculus tells us that

F ′(x) = g(x)

Then we can here write f as
f = F ◦ (π1 + π2)

so that

f ′(a, b) = (F ◦ (π1 + π2))′(a, b)

= F ′(a+ b)(π1 + π2)′(a, b)

= g(a+ b)(π1 + π2)

= (g(a+ b), g(a+ b))

(b) Similarly, write
f = F ◦ (π1 · π2)

Then

f ′(a, b) = (F ◦ (π1 · π2))′(a, b)

= (bg(ab), ag(ab))

(c) First note that we can pick any s ∈ R and separate this integral:

f(x, y, z) =

∫ sin(x sin(y sin z))

xy
g =

∫ sin(x sin(y sin z))

s

g+

∫ s

xy
g =

∫ sin(x sin(y sin z))

s

g−
∫ xy

s

g

Then using the same method as parts (a) and (b) of this problem, and using the results
from parts (d) and (a) of Exercise 2-10, the Jacobian of the first term, evaluated at
(a, b, c), is given by g(sin(a sin(b sin c))) cos(a sin(b sin c)) sin(b sin c)

ag(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) sin c
abg(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) cos c

T
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and the Jacobian of the second by g(ab)bab−1

g(ab)ab ln a
0


Thus we have

f ′(a, b, c) =

 g(sin(a sin(b sin c))) cos(a sin(b sin c)) sin(b sin c)− g(ab)bab−1

ag(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) sin c− g(ab)ab ln a
abg(sin(a sin(b sin c))) cos(a sin(b sin c)) cos(b sin c) cos c

T

Exercise 2-12 A function f : Rn × Rm → Rp is bilinear if for x, x1, x2 ∈ Rn,
y, y1, y2 ∈ Rm and a ∈ R we have

f(ax, y) = af(x, y) = f(x, ay)

f(x1 + x2, y) = f(x1, y) + f(x2, y)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

(a) Prove that if f is bilinear, then

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= 0

(b) Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).

(c) Show that the formula for Dp(a, b) in Section 2.2 is a special case of (b).

(a) Proof. Suppose f is bilinear, and suppose h = (h1, . . . , hn), k = (k1, . . . , km). Then
we can write

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= lim
(h,k)→0

|f(
∑n
i=1 hi,

∑m
j=1 kj)

|(h, k)|

= lim
(h,k)→0

|
∑n
i=1

∑m
j=1 hikjf(ei, ej)|
|(h, k)|

≤
n∑
i=1

m∑
j=1

f(ei, ej) lim
(hi,kj)→0

|hikj |
|(h, k)|

≤
n∑
i=1

m∑
j=1

f(ei, ej) lim
(hi,kj)→0

|hikj |
|(hi, kj)|

Now we proved in the proof of Dp(a, b) that

lim
(hi,kj)→0

|hikj |
|(hi, kj)|

= 0
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so we have

lim
(h,k)→0

|f(h, k)|
|(h, k)|

= 0

(b) Proof. Note that

f(a+ x, b+ y)− f(a, b)− f(a, y)− f(x, b) = f(a+ x, b+ y)− f(a, b+ y)− f(x, b)

= f(a+ x, b+ y)− f(a, b+ y)− f(x, b)− f(x, y) + f(x, y)

= f(a+ x, b+ y)− f(a, b+ y)− f(x, b+ y) + f(x, y)

= f(a+ x, b+ y)− f(a+ x, b+ y) + f(x, y)

= f(x, y)

Then we have

lim
(x,y)→0

|f(a+ x, b+ y)− f(a, b)− f(a, y)− f(x, b)|
|(x, y)|

= lim
(x,y)→0

|f(x, y)|
|(x, y)|

and by part (a) we know this limit is 0.

(c) Proof. Note that our work in part (a) implies that f is completely determined by its
values on the various pairs (ei, ej). So Dp(a, b) is simply the case where n = m = 1
and f(1, 1) = 1.

Exercise 2-13 Define IP : Rn × Rn → R by IP (x, y) = ⟨x, y⟩.

(a) Find D(IP )(a, b) and (IP )′(a, b).

(b) If f, g : R → Rn are differentiable and h : R → R is defined by h(t) =
⟨f(t), g(t)⟩, show that

h′(a) =
〈
f ′(a)T , g(a)

〉
+
〈
f(a), g′(a)T

〉
(Note that f ′(a) is an n × 1 matrix; its transpose f ′(a)T is a 1 × n matrix,
which we consider as a member of Rn.)

(c) If f : R → Rn is differentiable and |f(t)| = 1 for all t, show that
〈
f ′(t)T , f(t)

〉
=

0.

(d) Exhibit a differentiable function f : R → R such that the function |f | defined
by |f |(t) = |f(t)| is not differentiable.

(a) Since the (real) inner product is bilinear by definition, we can apply Exercise 2-12 to
conclude that

D(IP )(a, b)(x, y) = IP (a, y)+IP (x, b) = ⟨a, y⟩+⟨x, b⟩ = ⟨a, y⟩+⟨b, x⟩ = ⟨(b, a), (x, y)⟩

Moreover, we can rewrite this to be

D(IP )(a, b)(x, y) = (b, a)(x, y)T
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from which we can conclude that

(IP )′(a, b) = (b, a)

where (b, a) is the 1× 2n matrix given by concatenating the row vectors b and a.

(b) Proof. Directly from the definition of h, we have

h = IP ◦ (f, g)

so the chain rule says that

h′(a) = IP ′(f(a), g(a))



|
f ′(a)
|

|
g′(a)
|



=
[
−g(a)− −f(a)−

]


|
f ′(a)
|

|
g′(a)
|


=
[
−g(a)−

]  |
f ′(a)
|

+
[
−f(a)−

]  |
g′(a)
|


=
〈
g(a), f ′(a)T

〉
+
〈
f(a), g′(a)T

〉
=
〈
f ′(a)T , g(a)

〉
+
〈
f(a), g′(a)T

〉
(c) Proof. Define

h(t) := ⟨f(t), f(t)⟩ =
√

|f(t)|

Then by part (b),
h′(t) = 2

〈
f ′(t)T , f(t)

〉
But the assumption that |f(t)| is identically 1 means that h is constant, and thus

〈
f ′(t)T , f(t)

〉
=
h′(t)

2
= 0

(d) The identity function satisfies this, since x 7→ |x| is not differentiable at x = 0.
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Exercise 2-14 Let Ei, i = 1, . . . , k be Euclidean spaces of various dimensions. A
function f : E1 × . . .× Ek → Rp is called multilinear if for each choice of xj ∈ Ej ,
j ̸= i, the function g : Ei → Rp defined by g(x) = f(x1, . . . , xi−1, x, xi+1, . . . , xk) is
a linear transformation.

(a) If f is multilinear and i ̸= j, show that for h = (h1, . . . , hk) with hl ∈ El, we
have

lim
h→0

|f(a1, . . . , hi, . . . , hj , . . . , ak)|
|h|

= 0

(b) Prove that

Df(a1, . . . , ak)(x1, . . . , xk) =

k∑
i=1

f(a1, . . . , ai−1, xi, ai+1, . . . , ak)

(a) Proof. Suppose that dimEi = k1 and dimEj = k2. Then define the function g :
Rk1 × Rk2 → Rp by

g(x, y) = f(a1, . . . , x, . . . , y, . . . , ak)

Then we need to prove that

lim
(hi,hj)→0

|g(hi, hj)|
|(hi, hj)|

= 0

To do this, we first prove that g is bilinear. Using multilinearity, we have that

g(ax, y) = f(a1, . . . , ax, . . . , y, . . . , ak) = af(a1, . . . , x, . . . , y, . . . , ak) = ag(x, y)

and

g(x1 + x2, y) = f(a1, . . . , x1 + x2, . . . , y, . . . , ak)

= f(a1, . . . , x1, . . . , y, . . . , ak) + f(a1, . . . , x2, . . . , y, . . . , ak)

= g(x1, y) + g(x2, y)

The last property is similar. So g is bilinear, and Exercise 2-12 part (a) tells us that

lim
h→0

|f(a1, . . . , hi, . . . , hj)|
|h|

= lim
(hi,hj)→0

|g(hi, hj)|
|(hi, hj)|

= 0

(b) Proof. For notational convenience, we define the following. Given a set of distinct

indices i1, . . . , in ∈ [1, k], and vectors −→a = (a1, . . . , ak),
−→
h = (h1, . . . , hk), we write

f{i1,...,in}(
−→a ,

−→
h ) = f(a1, . . . , hi1 , . . . , hi2 , . . . , hin , . . . , ak)

In other words, if S ⊆ [1, k], then fS(
−→a ,

−→
h ) passes in hi if i ∈ S and ai otherwise.
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Now, we prove an extension of part (a), namely, that for any k-linear function f , if we
pick n ≤ k indices i1, . . . , 1n, then

lim−→
h→0

|f{i1,...,in}(
−→a ,

−→
h )|

|
−→
h |

= 0

We skip the proof that f{i1,...,in} is n-linear, so this reduces to simply showing that
for any multilinear function (n > 1) we have

lim−→
h→0

|f(
−→
h )|

|
−→
h |

= 0

Let di = dimEi for each i. Suppose also that hi = (hi,1, . . . , hi,di). Then

lim−→
h→0

|f(h1, . . . , hk)|∣∣∣−→h ∣∣∣ = lim−→
h→0

∣∣∣f(∑d1
j1=1 hi,j1 , . . . ,

∑dk
jk=1 hi,jk)

∣∣∣∣∣∣−→h ∣∣∣
= lim−→

h→0

∣∣∣∑d1
j1=1 . . .

∑dk
jk=1 h1,j1 . . . hk,jkf(ej1 , . . . , ejk)

∣∣∣∣∣∣−→h ∣∣∣
≤

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| lim
(h1,j1

,...,hk,jk )→0

|h1,j1 . . . hk,jk |∣∣∣−→h ∣∣∣
≤

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| lim
(h1,j1

,...,hk,jk )→0

|h1,j1 . . . hk,jk |
|(h1,j1 , . . . , hk,jk)|

=

di∑
ji=1

. . .

dk∑
jk=1

|f(ej1 , . . . , ejk)| · 0

= 0

Thus we have shown that any multilinear function satisfies

lim−→
h→0

|f(
−→
h )|

|
−→
h |

= 0

Now, I claim that

f(a1 + x1, . . . , ak + xk) = f(−→a +−→x ) =
∑

S∈P([1,k])

fS(
−→a ,−→x )

where P([1, k]) represents the set of all subsets of [1, k]. We prove this by induction.
Supposing it is true for k − 1, we can then partition P([1, k]) into X, consisting of
those subsets which contain k, and A, consisting of those subsets which do not. Then∑

S∈P([1,k])

fS(
−→a ,−→x ) =

∑
S∈X

fS(
−→a ,−→x ) +

∑
S∈A

fS(
−→a ,−→x )
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Now, the inductive hypothesis applies, and we have∑
S∈X

fS(
−→a ,−→x ) = f(a1 + x1, . . . , ak−1 + xk−1, xk)

and ∑
S∈A

fS(
−→a ,−→x ) = f(a1 + x1, . . . , ak−1 + xk−1, ak)

and by applying multilinearity, we conclude that∑
S∈P([1,k])

fS(
−→a ,−→x ) =

∑
S∈X

fS(
−→a ,−→x ) +

∑
S∈A

fS(
−→a ,−→x )

= f(a1 + x1, . . . , ak−1 + xk−1, xk) + f(a1 + x1, . . . , ak−1 + xk−1, ak)

= f(−→a +−→x )

Lastly, we have

lim−→
h→0

∣∣∣f(−→a +
−→
h )− f(−→a )−

∑k
i=1 f{i}(

−→a ,
−→
h )
∣∣∣∣∣∣−→h ∣∣∣

= lim−→
h→0

∣∣∣∑S∈P([1,k]) fS(
−→a ,

−→
h )− f(−→a )−

∑k
i=1 f{i}(

−→a ,
−→
h )
∣∣∣

|
−→
h |

Now, after cancelling, the numerator will be left only with terms of the form fS(
−→a ,

−→
h )

where S contains at least two elements, and fS is therefore n-linear for n > 1. Thus
the first part of this proof shows that the quotient goes to 0.
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Exercise 2-15 Regard an n×n matrix as a point in the n-fold product Rn× . . .×Rn
by considering each column as a member of Rn. (Note: Spivak considers the rows
as elements of Rn, but we use columns here for convention.)

(a) Prove that det : Rn × . . .× Rn → R is differentiable and

D(det)(a1, . . . , an)(x1, . . . , xn) =

n∑
i=1

det

 | | |
a1 . . . xi . . . an
| | |


(b) If aij : R → R are differentiable, let A(t) be the matrix such that A(t)ij =

aij(t). If f(t) = det(A(t)), show that

f ′(t) =

n∑
j=1

det

a11(t) . . . a′1j(t) . . . a1n(t)
...

...
...

an1(t) . . . a′nj(t) . . . ann(t)


(c) If det(A(t)) ̸= 0 for all t and b1, . . . , bn : R → R are differentiable, let s1, . . . , sn :

R → R be the functions such that s1(t), . . . , sn(t) are solutions of the equations

n∑
j=1

aij(t)sj(t) = bi(t)

Show si is differentiable and find s′i(t).

(a) Proof. We take it for granted that det is multilinear, as this is one possible definition of
the determinant, and otherwise can easily be concluded from Laplace expansion along
various columns. Then det is differentiable by Exercise 2-14 part (b), and moreover
the result from that problem shows that

D(det)(a1, . . . , an)(x1, . . . , xn) =

n∑
i=1

det

 | | |
a1 . . . xi . . . an
| | |


(b) Proof. Note that f ′(t) is just a number, so we ignore the distinction between Df(t)
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and f ′(t). By the chain rule, and using the result from part (a),

Df(t) = D

det ◦


a11...
an1

 , . . . ,
a1n...
ann



 (t)

= D(det)


a11(t)...
an1(t)

 , . . . ,
a1n(t)...
ann(t)




a

′
11(t)
...

a′n1(t)

 , . . . ,
a

′
1n(t)
...

a′nn(t)




=

n∑
i=1

det

 | | |
a1(t) . . . a′i(t) . . . an(t)
| | |


(c) For any fixed t, we essentially have the condition thata11(t) . . . a1n(t)

...
. . .

...
an1(t) . . . ann(t)


s1(t)...
sn(t)

 =

b1(t)...
bn(t)


or more concisely, we can write

A(t)−→s (t) =
−→
b (t)

Since we are given that detA(t) ̸= 0, we know that A(t) is invertible. Then by
Cramer’s Rule,

si(t) =
det(Ai(t))

det(A(t))

where

Ai(t) =

a11(t) . . . b1(t) . . . a1n(t)
...

...
...

an1(t) . . . bn(t) . . . a1n(t)


Then si(t) is differentiable as the quotient of differentiable functions. To calculate
s′i(t), we have

s′i(t) =
det(A(t))D(det ◦Ai)(t)− det(Ai(t))D(det ◦A)(t)

[det(A(t))]2
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Define the following matrices for convenience:

Aj(t) =

 | | |
a1(t) . . . a′j(t) . . . an(t)
| | |



Aji (t) =



 | | | |
a1(t) . . . a′j(t) . . . bi(t) . . . an(t)

| | | |

 , i ̸= j

 | | |
a1(t) . . . b′i(t) . . . an(t)

| | |

 , i = j

Then the results from part (b), and the quotient rule,

s′i(t) =
det(A(t))

∑n
j=1 detA

j
i (t)− det(Ai(t))

∑n
j=1 detA

j(t)

[det(A(t))]2

Exercise 2-16 Suppose f : Rn → Rn is differentiable and has a differentiable inverse
f−1 : Rn → Rn. Show that

(f−1)′(a) = [f ′(f−1(a))]−1

Proof. By definition,
f ◦ f−1 = Id

Since both f and f−1 are differentiable, we can apply the chain rule in matrix form:

In = f ′(f−1(a)) · (f−1)′(a)

Since both f ′(f−1(a)) and (f−1)′(a) are n×n matrices, being single sided inverses is equiv-
alent to being inverses, so we conclude that

(f−1)′(a) = [f ′(f−1(a))]−1
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Exercise 2-17 Find the partial derivatives of the following functions:

(a) f(x, y, z) = xy

(b) f(x, y, z) = z

(c) f(x, y) = sin(x sin y)

(d) f(x, y, z) = sin(x sin(y sin z))

(e) f(x, y, z) = xy
z

(f) f(x, y, z) = xy+z

(g) f(x, y, z) = (x+ y)z

(h) f(x, y) = sin(xy)

(i) f(x, y) = [sin(xy)]cos 3

(a)

D1f(x, y, z) = yxy−1

D2f(x, y, z) = xy lnx

D3f(x, y, z) = 0

(b)

D1f(x, y, z) = 0

D2f(x, y, z) = 0

D3f(x, y, z) = 1

(c)

D1f(x, y) = sin y cos(x sin y)

D2f(x, y) = x cos y cos(x sin y)

(d)

D1f(x, y, z) = sin(y sin z) cos(x sin(y sin z))

D2f(x, y, z) = x sin z cos(y sin z) cos(x sin(y sin z))

D3f(x, y, z) = xy cos z cos(y sin z) cos(x sin(y sin z))

(e)

D1f(x, y, z) = yzxy
z−1

D2f(x, y, z) = zyz−1xy
z

lnx

D3f(x, y, z) = yzxy
z

lnx ln y
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(f)

D1f(x, y, z) = (y + z)xy+z−1

D2f(x, y, z) = xzxy lnxy+z lnx

D3f(x, y, z) = xy+z lnx

(g)

D1f(x, y, z) = z(x+ y)z−1

D2f(x, y, z) = z(x+ y)z−1

D3f(x, y, z) = (x+ y)z ln(x+ y)

(h)

D1f(x, y) = y cos(xy)

D2f(x, y) = y cos(xy)

(i)

D1f(x, y) = y cos 3[sin(xy)]cos 3−1 cos(xy)

D2f(x, y) = x cos 3[sin(xy)]cos 3−1 cos(xy)

Exercise 2-18 If g : R → R is continuous, find the partial derivatives of each of the
following functions:

(a) f(x, y) =
∫ x+y
a

g

(b) f(x, y) =
∫ x
y
g

(c) f(x, y) =
∫ xy
a
g

(d) f(x, y) =
∫ (

∫ y
b
g)

a
g

(a) By the fundamental theorem of calculus,

D1f(x, y) = g(x+ y)

D2f(x, y) = g(x+ y)

(b) Let a ∈ R. Then ∫ x

y

g =

∫ x

a

g −
∫ y

a

g

so

D1f(x, y) = g(x)

D2f(x, y) = −g(y)
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(c)

D1f(x, y) = yg(xy)

D2f(x, y) = xg(xy)

(d)

D1f(x, y) = 0

D2f(x, y) = g

(∫ y

b

g

)
g(y)

Exercise 2-19 If

f(x, y) = xx
xx
y

+ (lnx)(arctan(arctan(arctan(sin(cosxy)− ln(x+ y)))))

Find D2f(1, y).

Since we are calculating D2, we treat x as constant, and in particular, we can substitute in
x = 1. So we have

g2(y) = f(1, y) = 11
11
y︸ ︷︷ ︸

=1

+(ln 1)︸ ︷︷ ︸
=0

(arctan(arctan(arctan(sin(cos y)− ln(1 + y)))))

So g2(y) = 1 for all y, and thus g′2(y) = D2f(1, y) = 0.

Exercise 2-20 Find the partial derivatives of f in terms of g, h, g′, h′.

(a) f(x, y) = g(x)h(y)

(b) f(x, y) = g(x)h(y)

(c) f(x, y) = g(x)

(d) f(x, y) = g(y)

(e) f(x, y) = g(x+ y)

(a)

D1f(x, y) = h(y)g′(x)

D2f(x, y) = g(x)h′(y)

(b)

D1f(x, y) = h(y)g(x)h(y)−1

D2f(x, y) = g(x)h(y) ln(g(x))
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(c)

D1f(x, y) = g′(x)

D2f(x, y) = 0

(d)

D1f(x, y) = 0

D2f(x, y) = g′(y)

(e)

D1f(x, y) = g′(x+ y)

D2f(x, y) = g′(x+ y)

Exercise 2-21 Let g1, g2 : R2 → R be continuous. Define f : R2 → R by

f(x, y) =

∫ x

0

g1(t, 0)dt+

∫ y

0

g2(x, t)dt

(a) Show that D2f(x, y) = g2(x, y).

(b) How should f be defined such that D1f(x, y) = g1(x, y)?

(c) Find a function f : R2 → R such that D1f(x, y) = x and D2f(x, y) = y. Find
one such that D1f(x, y) = y and D2f(x, y) = x.

(a) Proof. Define
h2(y) := f(x, y)

Then

D2f(x, y) = h′2(y) =
d

dy

∫ x

0

g1(t, 0)dt+
d

dy

∫ y

0

g2(x, t)dt

Since the first integral is constant with respect to y,

d

dy

∫ x

0

g1(t, 0)dt = 0

By the fundamental theorem of calculus,

d

dy

∫ y

0

g2(x, t)dt = g2(x, y)

Thus
D2f(x, y) = h′2(y) = g2(x, y)
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(b) Define

f(x, y) =

∫ x

0

g1(t, y)dt+

∫ y

0

g2(0, t)dt

Then by a similar argument as above, D1f(x, y) = g1(x, y).

(c) The function f(x, y) = x2

2 + y2

2 satisfies

D1f(x, y) = x,D2f(x, y) = y

The function f(x, y) = xy satisfies

D1f(x, y) = y,D2f(x, y) = x

Exercise 2-22 If f : R2 → R and D2f = 0, show that f is independent of the second
variable. If D1f = D2f = 0, show that f is constant.

Proof. Fix some x ∈ R, and define hx(y) = f(x, y). Since D2f = 0, h′x(y) = 0 everywhere,
so hx is constant. Thus for any y1, y2 ∈ R,

f(x, y1) = hx(y1) = hx(y2) = f(x, y2)

and thus f is independent of the second variable.

When D1f = 0, f is independent of the first variable as well. Moreover, we showed in
Exercise 2-3 that functions which are independent of both variables are constant, so f is
constant.

Exercise 2-23 Let A = {(x, y) ∈ R2 : x < 0, or x ≥ 0 and y ̸= 0}.

(a) If f : A→ R and D1f = D2f = 0, show that f is constant.

(b) Find a function f : A→ R such that D2f = 0 but f is not independent of the
second variable.

Note: The set A as defined here is the plane excluding the nonnegative x-axis.

(a) Proof. Let (x1, y1), (x2, y2) ∈ R2 be arbitrary. Suppose y1 ̸= 0 and y2 ̸= 0. Define
gx(y) = f(x, y) and hy(x) = f(x, y). Pick some a < 0. Then

f(x1, y1)− f(x2, y2) = f(x1, y1)− f(a, y1) + f(a, y1)− f(a, y2) + f(a, y2)− f(x2, y2)

= hy1(x1)− hy1(a) + ga(y1)− ga(y2) + hy2(a)− hy2(x2)

Since y1 ̸= 0, hy1 is defined on all of R and h′y1 is identically, hy1 is constant. Similarly,
hy2 is constant, and ga is also constant since a < 0. Thus

f(x1, y1)− f(x2, y2) = hy1(x1)− hy1(a)︸ ︷︷ ︸
=0

+ ga(y1)− ga(y2)︸ ︷︷ ︸
=0

+hy2(a)− hy2(x2)︸ ︷︷ ︸
=0

= 0
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The case where y1 = 0 or y2 = 0 is proved similarly. (Geometrically, we have connected
the points (x1, y1) and (x2, y2) using three segments, but this can be adjusted to use
only two or one if either y-coordinate is 0.) Thus f(x1, y1) = f(x2, y2) for all points,
and thus f is constant.

(b) Define f : A→ R by

f(x, y) =

{
1, x = 0, y > 0

0, otherwise

Pick some point (x, y). Then there exists an interval (y − ε, y + ε) ⊆ A. Moreover, f
is constant on this interval. Thus D2f(x, y) = 0 everywhere, but f is not constant.

Exercise 2-24 Define f : R2 → R by

f(x, y) =

{
xy x

2−y2
x2+y2 , (x, y) ̸= 0

0, (x, y) = 0

(a) Show that D2f(x, 0) = x for all x and D1f(0, y) = −y for all y.

(b) Show that D1,2f(0, 0) ̸= D2,1f(0, 0).

(a) Proof. Define gx(y) = g(x, y) and hy(x) = f(x, y). Then

D2f(x, 0) = g′x(0)

=
d

dy

(
xy
x2 − y2

x2 + y2

)∣∣∣∣
y=0

=

(
x
x2 − y2

x2 + y2
+ xy

−2x2y − 2y3 − 2x2y + 2y3

(x2 + y2)2

)∣∣∣∣
y=0

= x
x2

x2

And

D1f(0, y) = h′y(0)

=
d

dx

(
xy
x2 − y2

x2 + y2

)∣∣∣∣
x=0

=

(
y
x2 − y2

x2 + y2
+ xy

2x3 + 2xy2 − 2x3 + 2xy2

(x2 + y2)2

)∣∣∣∣
x=0

= y
−y2

y2

= −y
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(b) Taking the derivative of the functions we computed in part (a),

D1,2f(0, 0) =
d

dy
D1f(0, y) =

d

dy
(−y) = −1

D2,1f(0, 0) =
d

dx
D2f(x, 0) =

d

dx
x = 1

so
D1,2f(0, 0) = −1 ̸= 1 = D2,1f(0, 0)

Exercise 2-25 Define f : R → R by

f(x) =

{
e−x

−2

, x ̸= 0

0, x = 0

Show that f is C∞, and f (i)(0) = 0 for all i.

Proof. For points x ̸= 0, we have

f ′(x) =
2

x3
e−x

−2

and

f ′′(x) =
−6

x4
e−x

−2

+
4

x6
e−x

−2

Claim: In general, for any i > 0 and x ̸= 0, f (i)(x) is composed of terms of the form

a

xb
e−x

−2

, a ∈ Z, b ∈ Z≥0

We prove this by induction. As shown, we already know this is true for i = 1, 2. Now
suppose it is true for i = k. Then for k + 1, it is sufficient to show that each term of the
above form differentiates into further terms of that form. Differentiating,

d

dx

a

xb
e−x

−2

=
−ab
xb+1

e−x
−2

+
2a

xb+3
e−x

−2

and the two terms are also of the form requested. Thus the claim is proved. This shows
that f (i)(x) exists for all i when x ̸= 0.

For x = 0, we use L’Hopital’s rule:

f ′(0) = lim
h→0

e−h
−2

h

= lim
h→0

1
h

eh−2

(LH) = lim
h→0

− 1
h2

−2h−3eh−2

= lim
h→0

h

2eh−2

= 0
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Similarly, for higher derivatives, we can apply the claim proved above to write

f (i)(x) =

n∑
j=1

aj
xbj

e−x
−2

, aj ∈ Z, bj ∈ Z≥0

for some finite n. Then

f (i+1)(0) = lim
h→0

f (i)(h)

h

= lim
h→0

∑n
j=1

aj

hbj
e−h

−2

h

=

n∑
j=1

(
lim
h→0

aj
hbj+1

e−h
−2

)

=

n∑
j=1

(
aj lim

h→0

1

hbj+1

eh−2

)

(LH) =

n∑
j=1

(
aj lim

h→0

−(bj+1)

hbj+2

−2
h3 eh

−2

)

=

n∑
j=1

(
aj
bj + 1

2
lim
h→0

ex
−2

hbj−1

)
...

= 0

Thus f (i)(x) exists for all i, x, so f is C∞, and f (i)(0) = 0 for all i.
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Exercise 2-26 Let

f(x) =

{
e−(x−1)−2

e−(x+1)−2

, x ∈ (−1, 1)

0, x /∈ (−1, 1)

(a) Show that f : R → R is a C∞ function which is positive on (−1, 1) and 0
elsewhere.

(b) Show that there is a C∞ function s : R → [0, 1] such that s(x) = 0 for x ≤ 0
and s(x) = 1 for x ≥ ε.

(c) If a = (a1, . . . , an) ∈ Rn, define ga : Rn → R by

ga(x) = ga(x1, . . . , xn) = f(
x1 − a1

ε
) · . . . · f(xn − an

ε
)

Show that ga is a C∞ function which is positive on

(a1 − ε, a1 + ε)× . . .× (an − ε, an + ε)

(d) If A ⊆ Rn is open and C ⊆ A is compact, show that there is a nonnegative C∞

function h : A → R such that f(x) > 0 for x ∈ C and f = 0 outside of some
closed set contained in A.

(e) Show that we can choose such an h so that h : A → [0, 1] and h(x) = 1 for
x ∈ C.

(a) Proof. By definition, f is 0 outside of (−1, 1), and it must be positive on (−1, 1) since
each of the exponential factors are positive.

To show that f is C∞, define f1, f2 : (−1, 1) → R by

f1(x) = e−(x−1)−2

f2(x) = e−(x+1)−2

We proved in Exercise 2-25 that both f1, f2 are C∞, so

f ′(x) = f1(x)f
′
2(x) + f ′1(x)f2(x)

and higher order derivatives will in general be sums of products of f
(i)
1 (x) and f

(j)
2 (x),

which all exist and are continuous. Thus f is C∞.

(b) Proof. Fix ε > 0. Then define

s(x) =


1, x ≥ 2ε

f(1− x
ε )

f( xε )+f(1−
x
ε )
, −ε < x < 2ε

0, x ≤ −ε
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By definition, s(x) = 0 for x ≤ −ε and s(x) = 1 for x ≥ 2ε.

On the interval (−ε, 0], 1− x
ε ≥ 1, so f(1− x

ε ) = 0 and thus s = 0. So s = 0 for any
x ≤ 0.

Similarly, for the interval [ε, 2ε), xε ≥ 1, so f(xε ) = 0 and

s(x) =
f(1− x

ε )

f(1− x
ε )

= 1

So s = 1 for any x ≥ ε.

To prove that s is C∞, we can obvioulsy ignore the constant regions.

On (0, ε), at least one of f(xε ), f(1−
x
ε ) will be positive, so the quotient rule says that

s′(x) exists. In general, we can continue to apply the quotient rule, since the quotient
will never be zero, and f is smooth. Thus s(i)(x) exists and is continuous for all i and
x ∈ (0, ε), and we conclude that s is C∞.

(c) Proof. The fact that ga is positive follows from the fact that for each i,∣∣∣∣xi − ai
ε

∣∣∣∣ < 1

so f(xi−aiε ) > 0. Thus their product ga is positive.

To show that ga is C∞, we need to prove that the mixed partials of all orders exist.
Here, we can actually prove a more general result:

Lemma

If f1, . . . , fn : R → R are C∞, then f : Rn → R defined by

f(x1, . . . , xn) := f1(x1) · . . . · fn(xn)

is C∞.

Proof. To prove that derivatives of all orders exist and are continuous, pick any index
i. Then define

gi(xi) = fi(xi)

∏
j ̸=i

fj(xj)


Then gi(xi) is just a constant multiple of fi(xi), so g

′
i(xi) exists. Moreover, f ′i is also

C∞, so the function

Dif(x1, . . . , xn) = f1(x1) . . . f
′
i(xi) . . . fn(xn)

satisfies the hypotheses of this lemma and we can differentiate it again using the above
method. So derivatives of all orders exist and are continuous. Thus f is C∞.

We can then apply the above lemma to conclude that ga is C∞.
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(d) Proof. For each x = (x1, . . . , xn) ∈ C, there exists εx such that the rectangle

Rx = (x1 − εx, x1 + εx)× . . .× (xn − εx, xn + εx) ⊆ A

In fact, we may choose εx small enough such that the closed rectangle is contained in
A as well. Let O be the collection of Rx for x ∈ C. Since C is compact, we pick a
finite subcover O′ = {Rxi}

m
i=1. Then define h : A→ R by

h(x1, . . . , xn) =

m∑
i=1

gxi(x1, . . . , xn)

h is C∞ since it is the product of C∞ functions (by the lemma in part (d)). For any
y ∈ C, O′ covers C, so y ∈ Rxi for some xi. Then gxi > 0, and each other gxj is at
least nonnegative, so h(y) > 0.

Now let Rxi be the closed rectangle about xi.

B =

m⋃
i=1

Rxi

We showed that we can pick ε small enough that Rxi ⊆ A. Thus B is a closed set
contained in A. Moreover, if y /∈ B, then y /∈ Rxi for any i, and hence h(y) = 0. So h
is 0 on outside of a closed set contained in A.

(e) Proof. Since h is C∞, it is continuous, and hence achieves a minimum value on C.
Since h is positive on C, this minimum value ε = minx∈C h(x) is positive. Let sε :
R → [0, 1] be as defined in part (b). Then the function

sε ◦ h : Rn → [0, 1]

is still C∞ (since the composition of C∞ functions is C∞ using repeated applications of
the chain rule, similarly to the lemma in part (c)). Letting B be as defined previously,
if y /∈ B then h(y) = 0, so sε(h(y)) = sε(0) = 0. Thus sε ◦h is still of the form in part
(d).

Moreover, whenever x ∈ C, h(x) ≥ ε so sε(h(x)) = 1.

Exercise 2-27 Define g, h : {x ∈ R2 : |x| ≤ 1} → R3 by

g(x, y) = (x, y,
√
1− x2 − y2)

h(x, y) = (x, y,−
√
1− x2 − y2)

Let f : {x ∈ R3 : |x| = 1} : R. Show that the maximum of f is either the maximum
of f ◦ g or the maximum of f ◦ h on {x ∈ R2 : |x| ≤ 1}.

Proof. Let D2 = {x ∈ R2 : |x| ≤ 1} and C3 = {x ∈ R3 : |x| = 1}. Then supposing that
f has a maximum m = maxx∈D2

f(x), then there exists at least one point x = (x1, x2, x3)
such that f(x) = m. Then we have the cases x3 ≥ 0 and x3 < 0.
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Case 1: Since |x| = 1, x21 + x22 + x23 = 1, and hence

x3 =
√

1− x21 − x22

Thus we have g(x1, x2) = x, so (f ◦ g)(x1, x2) = m. (f ◦ g) certainly cannot achieve a
higher value, or else it would contradict m being the maximum of f , so m is also the
maximum of g.

Case 2: Similar to Case 1, but we use h(x1, x2) instead, and we find that (f ◦ h) achieves the
maximum m.

Thus we see that m is the maximum of at least one of f ◦ g or f ◦ h on D2.

Exercise 2-28 Find expressions for the partial derivatives of the following functions:

(a) F (x, y) = f(g(x)k(y), g(x) + h(y))

(b) F (x, y, z) = f(g(x+ y), h(y + z))

(c) F (x, y, z) = f(xy, yz, zx)

(d) F (x, y) = f(x, g(x), h(x, y))

(a) Let f(∗) = f(g(x)k(y), g(x) + h(y)). Using the chain rule for partial derivatives,

D1F (x, y) = D1f(∗)Dx[g(x)k(y)] +D2f(∗)Dx[g(x) + h(y)]

= k(y)g′(x)D1f(∗) + g′(y)D2f(∗)
D2F (x, y) = D1f(∗)Dy[g(x)k(y)] +D2f(∗)Dy[g(x) + h(y)]

= g(x)k′(y)D1f(∗) + h′(y)D2f(∗)

(b) Let f(∗) = f(g(x+ y), h(y + z)). Then

D1F (x, y, z) = D1f(∗)Dxg(x+ y) +D2f(∗)Dxh(y + z)

= g′(x+ y)D1f(∗)
D2F (x, y, z) = D1f(∗)Dyg(x+ y) +D2f(∗)Dyh(y + z)

= g′(x+ y)D1f(∗) + h′(y + z)D2f(∗)
D3F (x, y, z) = D1f(∗)Dzg(x+ y) +D2f(∗)Dzh(y + z)

= h′(y + z)D2f(∗)

(c) Let f(∗) = f(xy, yz, zx). Omitting zero terms,

D1F (x, y, z) = yxy−1D1f(∗) + zx ln zD3f(∗)
D2F (x, y, z) = xy lnxD1f(∗) + zyz−1D2f(∗)
D3F (x, y, z) = yz ln yD2f(∗) + xzx−1D3f(∗)
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(c) Let f(∗) = f(x, g(x), h(x, y)). Then

D1F (x, y) = D1f(∗) + g′(x)D2f(∗) +D1h(x, y)D3f(∗)
D2F (x, y) = D2h(x, y)D3f(∗)

Exercise 2-29 Let f : Rn → R. For −→x ∈ Rn, if the limit

lim
t→0

f(a+ t−→x )− f(a)

t

exists, it is called the directional derivative of f at a in the direction −→x , denoted
D−→x (a).

(a) Show that Deif(a) = Dif(a).

(b) Show that Dt−→x f(a) = tD−→x f(a).

(c) If f is differentiable at a, show that D−→x f(a) = Df(a)(−→x ) and therefore
D−→x+−→y f(a) = D−→x f(a) +D−→y f(a).

(a) Proof. Immediate from the definitions.

(b) Proof. Fix t ∈ R. Then

lim
s→0

f(a+ s(t−→x ))− f(a)

s
= t lim

s→0

f(a+ st−→x )− f(a)

st

= t lim
st→0

f(a+ (st)−→x )− f(a)

(st)

= tD−→x (a)

(c) Proof. Since the derivative exists, we know that

lim
t−→x→0

f(a+ t−→x )− f(a)−Df(a)(t−→x )
t|−→x |

= 0

We can multiply both sides by |−→x | to clear the denominator, and apply linearity of
Df(a) to see that

lim
t→0

f(a+ t−→x )− f(a)− tDf(a)(−→x )
t

= 0

=⇒ lim
t→0

f(a+ t−→x )− f(a)

t
= Df(a)(−→x )

and thus Df(a)(−→x ) = D−→x f(a). Since Df(a) is linear,

D−→x+−→y f(a) = Df(a)(−→x +−→y )
= Df(a)(−→x ) +Df(a)(−→y )
= D−→x f(a) +D−→y f(a)
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Exercise 2-30 Let f be defined as in Exercise 2-4. Show that D−→x f(0, 0) exists for
all x, but if g ̸= 0, then D−→x+−→y f(0, 0) = D−→x f(0, 0) + D−→y f(0, 0) is not true for all
x, y.

Proof. The result of Exercise 2-4 part (a) says that for x ∈ R2, defining hx(t) = f(tx) means
that hx is differentiable at (0, 0). This means that D−→x f(0, 0) exists for all

−→x . Similarly, as
the result in part (b) shows, De1f(0) = De2f(0) = 0. However, if g is nonzero, then we can
take a directional derivative in some direction which is a linear combination of e1 and e2,
so the linearity condition fails.

Exercise 2-31 Let f : R2 → R be defined as in Exercise 1-26. Show that Dxf(0, 0)
exists for all x, even though f is not continuous at (0, 0).

Proof. As we showed in the proof of Exercise 1-26 part (b), f is 0 in an interval about (0, 0)
in each direction, and is thus differentiable.

Exercise 2-32

(a) Let f : R → R be defined by

f(x) =

{
x2 sin 1

x , x ̸= 0

0, x = 0

Show that f is differentiable at 0 but f ′ is not continuous at 0.

(b) Let f : R2 → R be defined by

f(x, y) =

{
(x2 + y2) sin 1√

x2+y2
, (x, y) ̸= 0

0, (x, y) = 0

Show that f is differentiable at (0, 0) but Dif is not continuous at (0, 0).

(a) Proof. Let ε > 0. Then whenver |x− 0| < δ = ε, we have∣∣∣∣f(x)− f(0)

x
− 0

∣∣∣∣ = ∣∣∣∣f(x)x
∣∣∣∣ = ∣∣∣∣x sin 1

x

∣∣∣∣ < ε

Thus f is differentiable at 0 with f ′(0) = 0.

If we differentiate f elsewhere, we find that

f ′(x) =

{
2x sin 1

x − cos 1
x , x ̸= 0

0, x = 0
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But

lim
x→0

2x sin
1

x
− cos

1

x
= − lim

x→0
cos

1

x

which doesn’t exist. Thus f ′ is not continuous at 0 (it has an oscillating discontinuity).

(b) Proof. Let ε > 0. Then whenever |(x, y)| =
√
x2 + y2 < δ = ε, we have∣∣∣∣f(x, y)− f(0, 0)

|(x, y)|

∣∣∣∣ =
∣∣∣∣∣ f(x, y)√

x2 + y2

∣∣∣∣∣ =
∣∣∣∣∣√x2 + y2 sin

1√
x2 + y2

∣∣∣∣∣ ≤√x2 + y2 < ε

Thus

lim
(x,y)→(0,0)

|f(x, y)− f(0, 0)− 0(x, y)|
|(x, y)|

= 0

so Df(0, 0) exists and is the zero transformation. But in the directions e1, e2, f is
simply the single variable case considered in part (a), so we knowDif is not continuous
at (0, 0).

Exercise 2-33 Show that the continuity of D1f
j at a may be eliminated from the

hypothesis of Theorem 2-8.

Proof. In the proof of Theorem 2-8, we attempted to prove that

lim−→
h→0

∣∣∣f (−→a + [
−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = 0

for all j. We did this by using the continuity ofDjf at a to extend its differentiability nearby.
However, in the case of the first partial derivative D1f , the continuous differentiability
condition already shows us that

lim−→
h→0

|f(−→a + h1e1)− f(−→a )−D1f(
−→a )h1|∣∣∣−→h ∣∣∣ = 0

so we can omit continuity. (Obviously, any other direction would also work.)

Exercise 2-34 A function f : Rn → R is homogeneous of degree m if f(tx) =
tmf(x) for all x. If f is also differentiable, show that

n∑
i=1

xiDif(x) = mf(x)
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Proof. Define g(t) = f(tx). Then Dxf(x) = g′(1). Moreover, we showed in Exercise 2-30
that D∗ is linear, so

Dxf(x) =

n∑
i=1

xiDif(x)

At the same time, we know that g(t) = f(tx) = tmf(x). Differentiating with respect to t,

g′(x) = mtm−1f(x)

so
n∑
i=1

xiDif(x) = Dxf(x) = g′(1) = mf(x)

Exercise 2-35 If f : Rn → R is diferentiable and f(0) = 0, prove that there exist
gi : Rn → R such that

f(x) =

n∑
i=1

xigi(x)

Proof. Since f is differentiable, the directional derivative Dxf(tx) exists for all t, x. Define
hx(t) = f(tx). Then h′x(t) = Dxf(tx). Thus hx is differentiable. Then by the fundamental
theorem of calculus,

f(x) = f(1x) =

∫ 1

0

h′x(t)dt =

∫ 1

0

Dxf(tx)dt

Since D∗ is linear with respect to direction, we then have

f(x) =

∫ 1

0

n∑
i=1

xiD1f(tx)dt =

n∑
i=1

xi

∫ 1

0

D1f(tx)dt

Then defining gi(x) =
∫ 1

0
D1f(tx)dt, we have found gi satisfying

f(x) =

n∑
i=1

xigi(x)

Exercise 2-36 Let A ⊆ Rn be an open set and f : A → Rn a continuously differ-
entiable one-to-one function such that det f ′(x) ̸= 0 for all x. Show that f(A) is an
open set and f−1 : f(A) → A is differentiable. Show also that f(B) is open for any
open set B ⊆ A.

Proof. Let y ∈ f(A). Then since f is one-to-one, there exists a unique x ∈ A such that
f(x) = y. Since f is continuously differentiable at x and det f ′(x) ̸= 0, the Inverse Function
Theorem tells us there exist open sets V ⊆ A containing x andW ⊆ Rn such that f : V →W
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has an inverse. ThusW ⊆ f(A) and y ∈W , so f(A) is open. Moreover, the Inverse Function
Theorem also says f−1 is differentiable at y. But this is true for every y ∈ f(A), so f−1

is differentiable. Lastly, let B ⊆ A be open. Then the restriction f : B → Rn is also
continuously differentiable and one-to-one, so f(B) is open.

Exercise 2-37

(a) Let f : R2 → R be a continuously differentiable function. Show that f is not
one-to-one.

(b) Generalize this result to the case of a continuously differentiable function f :
Rn → Rm with m < n.

(a) Proof. If D1f(x, y) = 0 for all (x, y) ∈ R2, then f is independent of the first variable
and is not one-to-one. So suppose there exists some (x1, y1) ∈ R2 withD1f(x1, y1) ̸= 0.
Since f is continuously differentiable, there exists an open set A containing (x1, y1)
such that D1f(x, y) ̸= 0 for any (x, y) ∈ A. Then define g : A → R2 by g(x, y) =
(f(x, y), y). Then the derivative is given by

g′(x, y) =

[
D1f(x, y) D2f(x, y)

0 1

]
=⇒ det g′(x, y) = D1f(x, y) ̸= 0

In particular, det g′(x1, y1) ̸= 0. Then by the Inverse Function Theorem, there exists
an open set V containing (x1, y1) and an open set W containing (f(x1, y1), y1) such
that g : V → W has a continuous, differentiable inverse g−1 : W → V . Then pick
some y2 ̸= y1 such that (f(x1, y1), y2) ∈W . Then we have

g(g−1(f(x1, y1), y2)) = (f(x1, y1), y2)

but by definition,

g(g−1(f(x1, y1), y2)) = (f(g−1(f(x1, y1), y2)), g
−1
2 (f(x1, y1), y2))

So
f(x1, y1) = f(g−1(f(x1, y1), y2))

While the x coordinate of g−1(f(x1, y1), y2) is unknown, the y coordinate is certainly
y2. Thus we have

f(x1, y1) = f(∗, y2)
But we mandated that y1 ̸= y2, so (x1, y1) ̸= (∗, y2). So f is not one-to-one.

(b) Proof.

Exercise 2-38

(a) If f : R → R satisfies f ′(a) ̸= 0 for all a ∈ R, show that f is one-to-one (on all
of R).

(b) Define f : R2 → R2 by f(x, y) = (ex cos y, ex sin y). Show that det f ′(x, y) ̸= 0
for all (x, y) but f is not one-to-one.
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(a) Proof. Suppose without loss of generality that f ′(a) > 0 for some a ∈ R. One can
prove in single variable analysis that if g = f ′ for some function f , then g satisfies the
intermediate value property. If f ′(b) < 0 for some b ∈ R, then there exists c between
a and b such that f ′(c) = 0, contradicting the assumption. So we must have f ′(x) > 0
for all x. Thus f is strictly increasing (or decreasing), so it is one-to-one.

(b) Proof. The Jacobian matrix is given by

f ′(x, y) =

[
ex cos y ex sin y
−ex sin y ex cos y

]
so

det f ′(x, y) = ex(sin2 y + cos2 y) = ex ̸= 0

But for any (x, y), we have
f(x, y) = f(x, y + 2π)

so f is not one-to-one.

Exercise 2-39 Use the function f : R → R defined by

f(x) =

{
x
2 + x2 sin 1

x , x ̸= 0

0, x = 0

To show that continuity of the derivative cannot be eliminated from the hypothesis
of the Inverse Function Theorem.

First, we verify that f is differentiable at 0. We have

lim
h→0

f(h)− f(0)

h
= lim
h→0

1

2
+ h sin

1

h
=

1

2
+ lim
h→0

h sin
1

h
=

1

2

and by the formula f is clearly differentiable everywhere else. So f is differentiable in an
open set around 0. However, I claim that for any open set V around 0, f is not injective
onto f(V ).

To see this, let V be an open set aroud 0. Then pick n large enough that

a =
1

2πn
∈ V

Now, we have

f ′(a) =
1

2
+ 2a sin

1

a
− cos

1

a
=

1

2
− 1 = −1

2
< 0

Thus there exists b < a with f(b) > f(a) and b > 0. Now, pick m large enough that

c =
1

2πm
< b

Then we have
f(c) =

c

2
<
a

2
= f(a)
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So f(c) < f(a) < f(b), and b ∈ [c, a]. Pick some y with f(a) < y < f(b). By the
Intermediate Value Theorem, there exists x1 ∈ (c, b) with f(x1) = y, and x2 ∈ (b, a) with
f(x2) = y, so f is not one-to-one onto f(V ). Thus the Inverse Function Theorem is false
for f .

Exercise 2-40 Use the implicit function theorem to redo Problem 2-15 (c). For
reference, this problem is reprinted here:

If aij : R → R are differentiable, let A(t) be the matrix such that A(t)ij = aij(t). If
det(A(t)) ̸= 0 for all t and b1, . . . , bn : R → R are differentiable, let s1, . . . , sn : R → R
be the functions such that s1(t), . . . , sn(t) are the solutions of the equations

n∑
j=1

aji(t)sj(t) = bi(t)

Show that si is differentiable and find s′i(t).

Proof. Define F : R× Rn → Rn such that the component functions are given by

F i(t, x) = −bi(t) +
n∑
j=1

aji(t)xj

Then F i can alternately be written as

F i = −bi ◦ (π2, . . . , πn) +

n∑
j=1

(aji ◦ π1)πj

which makes it clear that it can be written as sums, products, and compositions of differen-
tiable functions. If we assume that the aij and bi are additionally continuously differentiable,
then F is also continuously differentiable.

Now, fix t1. Let M(t, x) be the matrix with ijth entry given by Dj+1F
i(t, x). To calculate

the matrix of partial derivatives, for k ≥ 2 we have

DkF
i(t1, x) = Dk

 n∑
j=1

aji(t1)xj


=

n∑
j=1

aji(t1)ejδik

= aki(t1)ek

Thus M(t1, x) is simply the matrix [A(t1)]
T , where A(t1) has ij-th entry given by aij(t1).

By assumption, det[A(t1)]
T = detA(t1) ̸= 0, so detM(t1, x) ̸= 0 and the Implicit Function

Theorem applies. Then there exists an open set A ⊆ R containing t and a function g : A→
Rn such that

F (t, g(t)) = 0

57



But this happens precisely when each component function is zero, so for each component
we have

−bi(t) +
n∑
j=1

aji(t)g
j(t) = 0 ⇐⇒

n∑
j=1

aji(t)g
j(t) = bi(t)

Thus we may let sj = gj . Since detA(t) ̸= 0 for all t we are able to ”patch” the local
definitions of gj into a global function without issue. Moreover, the Implicit Function
Theorem tells us that g is differentiable at t1, so each sj is everywhere.

To calculate s′i, we know that F i(t,−→s (t)) = 0. Taking partial derivatives on both sides, we
have

D1F
i(t,−→s (t)) = 0

D2F
i(t,−→s (t))s′1(t) = 0

D3F
i(t,−→s (t))s′2(t) = 0

...

Dn+1(t,
−→s (t))s′n(t) = 0

which we can combine as

D1F
i(t,−→s (t)) +

n∑
j=1

Dj+1F
i(t,−→s (t))s′j(t) = 0

Consider the system of equations this forms. We can rewrite it in matrix-vector multiplica-
tion using our definition of M(t, x) from above as

M(t,−→s (t))s′(t) = −(D1F
i(t,−→s (t)))

Moreover, the ith coordinate of the vector (D1F
i(t,−→s (t))) is given by

−b′i(t) +
n∑
j=1

a′ji(t)sj(t)

Since M(t,−→s (t)) is invertible by assumption, we find that

s′(t) = [M(t,−→s (t))]−1

b
′
1(t)−

∑n
j=1 a

′
j1(t)sj(t)

...
b′n(t)−

∑n
j=1 a

′
jn(t)sj(t)


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Exercise 2-41 Let f : R×R → R be differentiable. For each x ∈ R define gx : R → R
by gx(y) = f(x, y). Suppose that for each x there is a unique y with g′x(y). Then let
c(x) be this y.

(a) If D2,2f(x, y) ̸= 0 for all (x, y), show that c is differentiable and

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))

(b) Show that if c′(x) = 0, then for some y we have

D2,1f(x, y) = 0

D2f(x, y) = 0

(c) Let f(x, y) = x(y ln y − y)− y lnx. Find

max
1
2≤x≤2

(
min

1
3≤y≤1

f(x, y)

)

Note: Spivak does not include this, but we must assume that f is twice continuously
differentiable.

(a) Proof. Note that by our definition, D2f(x, y) = g′x(y). So y = c(x) precisely when
D2f(x, y) = 0. Note that D2f is a function R × R → R, and the matrix M =
(Dj+1(D2f)

i(x, y)) is simply the matrix with sole entry D2,2f(x, y). By assumption,
D2,2f(x, y) ̸= 0, so detM ̸= 0 and the Implicit Function Theorem applies to D2f , and
we conclude that c is differentiable.

Now, the function x 7→ D2f(x, c(x)) is a function R → R and is 0 everywhere, so we
can differentiate it:

D2,1f(x, c(x)) +D2,2f(x, c(x))c
′(x) = 0

which we can rearrange as

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))

(b) Proof. Pick y = c(x). Then by definition, g′x(c(x)) = 0, and D2f(x, c(x)) = g′x(c(x)),
so D2f(x, c(x)) = 0. Moreover, from part (a),

D2,1f(x, c(x)) = −c′(x)D2,2f(x, c(x)) = 0

so this choice of y works.
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(c) For any fixed x,
min

1
3≤y≤1

f(x, y) = min
1
3≤y≤1

gx(y)

We already know that g′x(c(x)) = 0, so it is a critical point. If we calculate g′′x(y) =
D2,2f(x, y) for any y, we get

D2f(x, y) = x(ln y + 1− 1)− lnx = x ln y − lnx

D2,2f(x, y) =
x

y

which is strictly positive (as both x, y must be positive for this function to be defined).
Thus gx is concave upward, and the critical point at c(x) is in fact a global minimum.1

So if c(x) ∈ [ 13 , 1], then the minimum is at c(x). If c(x) < 1
3 , then the minimum is at

1
3 , and if c(x) > 1, then the minimum is at 1.

If we explicitly calculate c(x), we use the fact that D2f(x, c(x)) = 0 to find

ln c(x) =
lnx

x
=⇒ c(x) = e

ln x
x = x

√
x

and the derivative of this is positive, so c is strictly increasing. Thus there exists a
unique α with c(α) = 1

3 , and x < α =⇒ c(x) < 1
3 . Similarly, x > 1 =⇒ c(x) > 1.

So we can explicitly find the minimum of gx:

min
1
3≤y≤1

gx(y) =


f(x, 13 ), x < α

f(x, c(x)), α ≤ x ≤ 1

f(x, 1), x > 1

=


x(

ln 1
3

3 − 1
3 )−

ln x
3 , x < α

x( x
√
x ln x

x − x
√
x)− x

√
x lnx, α ≤ x ≤ 1

−x− lnx, x > 1

=


−x ln 3−x−ln x

3 , x < α

−x x
√
x, α ≤ x ≤ 1

−x− lnx, x > 1

Call the above function h(x). Then

h′(x) =


− ln 3−1

3 − 1
3x , x < α

d
dx (−xc(x)), α < x < 1

−1− 1
x , x > 1

=


− ln 3−1

3 − 1
3x , x < α

−c(x)− xc′(x), α < x < 1

−1− 1
x , x > 1

1Credit for work past this part to the solution presented here
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Now, since D2,2f(x, y) ̸= 0 for all x, y, part a) applies and

c′(x) = −D2,1f(x, c(x))

D2,2f(x, c(x))
= −

ln c(x)− 1
x

x
c(x)

= −
ln x−1
x
x
c(x)

= −c(x) lnx− 1

x2

Thus

h′(x) =


− ln 3−1

3 − 1
3x , x < α

−c(x)x+1−ln x
x , α < x < 1

−1− 1
x , x > 1

Note that x > lnx, so x+1−ln x
x > 0 and c(x) > 0, so h′(x) is negative everywhere

(except possibly the boundary points α, 1, but it is continuous there). Thus the
minimum of h on [12 , 2] is given when x = 1

2 . To check whether 1
2 < α, simply note

that c( 12 ) =
1
4 <

1
3 , so

1
2 < α. Thus

max
1
2≤x≤2

(
min

1
2≤y≤2

f(x, y)

)
= h

(
1

2

)
=

− ln 3− 1− 2 ln 1
2

6
=

ln 3
4 − 1

6

1.3 Chapter 3 Exercises

Exercise 3-1 Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x ∈ [0, 12 )

1, x ∈ [12 , 1]

Show that f is integrable and
∫
[0,1]×[0,1]

f = 1
2 .

Proof. Let ε > 0. Choose a partition P with subrectangles given by

A =

[
0,

1

2
− ε

2

]
× [0, 1]

B =

[
1

2
− ε

2
,
1

2
+
ε

2

]
× [0, 1]

C =

[
1

2
+
ε

2
, 1

]
× [0, 1]

Then

mA(f) =MA(f) = 0

mB(f) = 0,MB(f) = 1

mC(f) =MC(f) = 1

and

v(B) = ε
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So

U(f,P)− L(f,P) = v(B)(MB(f)−mB(f))

= v(B) = ε

So f is integrable by the alternate criterion for integrability. Moreover,

U(f,P) = v(A)MA(f) + v(B)MB(f) + v(C)MC(f) = v(B ⊔ C) = 1

2
+
ε

2

and similarly

L(f,P) =
1

2
− ε

2

So L ≥ 1
2 and U ≤ 1

2 , but we know that U = L so
∫
A
f = 1

2 .

Exercise 3-2 Let f : A → R be integrable and let g = f except at finitely many
points. Show that g is integrable and

∫
A
f =

∫
A
g.

Proof. Refer to Exercise 3-3. Its proof does not depend on this problem, and we will use
the fact that

∫
A
f + g =

∫
A
f +

∫
A
g when f, g are integrable.

Let ε > 0 be arbitrary. We aim to show that g − f is integrable with
∫
A
g − f = 0. Since

g ̸= f at only finitely many points, it is bounded. Let µ = max{|f − g|}. Let p1, . . . , pk be
those points where g − f ̸= 0. Let S1, . . . , Sk be the subrectangles they are in for a given
partition (pick them small enough that they are distinct). Then choose P such that

k∑
i=1

v(Si) < ε

Then

U(g − f,P)− L(g − f,P) =
∑
S∈P

[MS(g − f)−mS(g − f)]v(S)

=

k∑
i=1

[MSi(g − f)−mSi(g − f)]v(Si)

=

k∑
i=1

v(Si)

< ε

So g− f is integrable and a similar argument shows
∫
A
g− f = 0. So

∫
A
g =

∫
A
g− f + f =∫

A
g − f +

∫
A
f =

∫
Af .
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Exercise 3-3 Let f, g : A→ R be integrable.

(a) For any partition P of A and subrectangle S ∈ P, show that

mS(f) +mS(g) ≤ mS(f + g)

and
MS(f + g) ≤MS(f) +MS(g)

so that
L(f,P) + L(g,P) ≤ L(f + g,P)

and
U(f + g,P) ≤ U(f,P) + U(g,P)

(b) Show that f + g is integrable and
∫
A
f + g =

∫
A
f +

∫
A
g.

(c) For any constant c, show that
∫
A
cf = c

∫
A
f .

(a) Proof. Let S ∈ P. Then for any point x ∈ S, we have

(f + g)(x) = f(x) + g(x) ≥ mS(f) +mS(g)

Thus
mS(f) +mS(g) ≤ mS(f + g)

Similarly,
MS(f + g) ≤MS(f) +MS(g)

Thus we have

L(f,P) + L(g,P) =
∑
S∈P

v(S)[mS(f) +mS(g)]

≤
∑
S∈P

v(S)mS(f + g)

= L(f + g,P)

Similarly,
U(f + g,P) ≤ U(f,P) + U(g,P)

(b) Proof. Let ε > 0 be arbitrary. Pick P1,P2 such that

U(f1,P1)− L(f1,P1) <
ε

2

U(f2,P2)− L(f2,P2) <
ε

2
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Let Q be the common refinement of P1,P2. Then

U(f1 + f2,Q)− L(f1 + f2,Q) =
∑
S∈Q

v(S)[MS(f1 + f2)−mS(f1 + f2)]

≤
∑
S∈Q

v(S)[MS(f1) +MS(f2)−mS(f1)−mS(f2)]

= U(f1,Q) + U(f2,Q)− L(f1,Q)− L(f2,Q)

≤ U(f1,P1)− L(f1,P1) + U(f2,P2)− L(f2,P2)

< ε

So f1 + f2 is integrable and a similar argument shows
∫
A
f1 + f2 =

∫
A
f1 +

∫
A
f2.

(c) Proof. Let P be a partition and let S ∈ P. Since S is a closed rectangle, it is
compact, so there exists x ∈ S with f(x) = MS(f). Then (cf)(x) = cMS(f) so
MS(cf) ≥ cMS(f). But for any y ∈ S, we also have (cf)(y) = cf(y) ≤ cMS(f) so
MS(cf) = cMS(f). Similarly, mS(cf) = cmS(f).

Now, let ε > 0. Then there exists a partition P with

U(f,P)− L(f,P) <
ε

c

Then we have

U(cf,P)− L(cf,P) =
∑
S∈P

v(S)[MS(cf)−mS(cf)]

=
∑
S∈P

cv(S)[MS(f)−mS(f)]

= c[U(f,P)− L(f,P)]

< ε

So that cf is integrable. Now, let ε > 0 be arbitrary. Then there exists a partition P
such that

U(f,P) ≤
∫
A

f +
ε

c

Then we have

U(cf,P) ≤ c

∫
A

+ε

So
∫
A
cf = c

∫
A
f .

Exercise 3-4 Let f : A→ R and let P be a partition of A. Show that f is integrable
if and only if, for each subrectangle S ∈ P the restriction f |S of f to S is integrable,
and in this case

∫
A
f =

∑
S

∫
S
f |S .
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Proof. ( =⇒ ) Suppose that f is integrable on A, and let P be given. Let ε > 0. Then there
exists a partition P ′ of A with

U(f,P ′)− L(f,P ′) < ε

Now let Q be the common refinement of P and P ′. Then each subrectangle of Q is entirely
contained within a subrectangle of P. In other words, for any S ∈ P, we may enumerate
S1, . . . , Sk ∈ Q such that S1⊔ . . .⊔Sk = S, which means that S = {S1, . . . , Sk} is a partition
of S. Thus

U(f |S ,S)− L(f |S ,S) =
∑
S′∈S

v(S′)[MS′(f |S)−mS′(f |S)]

≤ v(S)[MS(f)−mS(f)]

≤
∑
S′′∈P

v(S′′)[MS′′(f)−mS′′(f)]

= U(f,P)− L(f,P)

< ε

So f |S is integrable on S.

( ⇐= ) Let P be given, and suppose each f |S is integrable on the resepctive S. Let ε > 0.
Then let N be the number of subrectangles in the partition P. For each S, pick a partition
PS such that

U(f |S ,PS)− L(f |S ,PS) <
ε

N

Now, suppose that PS = (PS1 , . . . ,PSn ). Then

Q1 :=
⋃
S∈P

PS1

is a partition of [a1, b1]. Let Q := (Q1, . . . ,Qn). Then Q is a refinement of P, and moreover,
for any S ∈ P, QS (which is the collection of subrectangles in Q which are contained in S)
is a refinement of PS . Thus

U(f,Q)− L(f,Q) =
∑
S′∈Q

v(S′)[MS′(f)−mS′(f)]

=
∑
S∈P

∑
S′′∈QS

v(S′′)[MS′′(f)−mS′′(f)]

≤
∑
S∈P

∑
S′′∈PS

v(S′′)[MS′′(f)−mS′′(f)]

=
∑
S∈P

[U(f |S ,PS)− L(f |S ,PS)]

<
∑
S∈P

ε

N

= ε

So f is integrable on A. A similar argument shows that
∫
A
f =

∑
S

∫
S
f |S .

65



Exercise 3-5 Let f, g : A → R be integrable and suppose f ≤ g. Show that∫
A
f ≤

∫
A
g.

Proof. Let P be a partition of A. Then for any S ∈ P, MS(f) ≤MS(g). Thus

U(f,P) =
∑
S∈P

v(S)MS(f) ≤
∑
S∈P

v(S)MS(g) = U(g,P)

Since we know f and g are integrable, we conclude that∫
A

f = inf U(f,P) ≤ inf U(g,P) =

∫
A

g

Exercise 3-6 If f : A → R is integrable, show that |f | is integrable and |
∫
A
f | ≤∫

A
|f |.

Proof. Let ε > 0. Let P be a partition such that

U(f,P)− L(f,P) < ε

Let S ∈ P. If MS(f) ≥ mS(f) ≥ 0, then MS(|f |) = MS(f) and mS(|f |) = mS(f). If
mS(f) ≤ MS(f) ≤ 0, then MS(|f |) = −mS(f) and mS(|f |) = −MS(f). If MS(f) > 0 and
mS(f) < 0, then I claim that MS(|f |) ≤ max{|MS(f)|, |mS(f)|}.

To see this, note that for any x ∈ S, if f(x) < 0 then |f(x)| = −f(x) ≤ −mS(f) = |mS(f)|.
If f(x) > 0, then |f(x)| = f(x) ≤MS(f) = |MS(f)|. So MS(|f |) ≤ max{|MS(f)|, |mS(f)|}.
Using the fact that mS(|f |) ≥ 0, we have

MS(|f |)−mS(|f |) ≤MS(|f |)
≤ max{|MS(f)|, |mS(f)|}

=

{
MS(f), |MS(f)| ≥ |mS(f)|
−mS(f), |mS(f)| > |MS(f)|

≤MS(f)−mS(f)

As a result, we have the following:

MS(|f |)−mS(|f |) ≤


MS(f)−mS(f), MS(f) ≥ mS(f) ≥ 0

−mS(f)− (−MS(f)), mS(f) ≤MS(f) ≤ 0

MS(f)−mS(f), MS(f) > 0,mS(f) < 0

=MS(f)−mS(f)
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Thus, we have

U(|f |,P)− L(|f |,P) =
∑
S∈P

v(S)[MS(|f |)−mS(|f |)]

≤
∑
S∈P

v(S)[MS(f)−mS(f)]

= U(f,P)− L(f,P)

< ε

So |f | is integrable.

For any partition P, and any S ∈ P, we showed that MS(|f |) ≤ max{|Ms(f)|, |mS(f)|}.
However, we can make a stronger statement, that MS(|f |) = max{|MS(f)|, |mS(f)|}. In-
deed, since S is compact there exists x, y ∈ S with f(x) =MS(f) and f(y) = mS(f). Then
|f |(x) = |MS(f)| and |f |(y) = |mS(f)| so |f | attains the value of max{|MS(f)|, |mS(f)|}.
Thus |MS(f)| ≤MS(|f |). So∣∣∣∣∫

A

f

∣∣∣∣ ≤ |U(f,P)| =

∣∣∣∣∣∑
S∈P

v(S)MS(f)

∣∣∣∣∣ ≤ ∑
S∈P

v(S)|MS(f)| ≤
∑
S∈P

v(S)MS(|f |) = U(|f |,P)

So for any partition P, U(|f |,P) ≥ |
∫
A
f | so

∫
A
|f | ≥ |

∫
A
f |.

Exercise 3-7 Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x /∈ Q or y /∈ Q
1
q , x ∈ Q, y = p

q ∈ Q

where we assume that y = p
q is given in lowest terms. Show that f is integrable and∫

[0,1]×[0,1]
f = 0.

Proof. First, note that for any partition P the density of Q implies that L(f,P) = 0. So it
suffices to show that U = 0.

Let ε > 0. Pick a partition P as follows: Choose N large enough that

1

N
<
ε

2

Then there are finitely many y = p/q ∈ Q such that q < N . Denote them by y1, . . . , yk.
Then pick intervals I1, . . . , Ik about each such that the total length of the intervals is less
than ε/2 (and such that the Ii are disjoint). Let P2 be the partition of [0, 1] given by these
intervals, with the gaps filled in appropriately.

Let P1 be the single partition {0, 1}. Then P = (P1,P2) consists of subrectangles of the
form [0, 1]× I, where I is either one of the Ii we defined previously, or it is not (in this case,
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it is a gap between them). Let L denote the set of all subrectangles of the form [0, 1]× Ii,
and let R denote the set of all other subrectangles. Then

U(f,P) =
∑
S∈P

v(S)MS(f) =
∑
S∈L

v(S)MS(f) +
∑
S∈R

v(S)MS(f)

Now, if S ∈ L, then f attains a value of at most 1 on S, so MS(f) ≤ 1. But if MS(f) ∈ R,
then by construction there is no point (x, y) ∈ S with y = p/q and q < N . Thus

f(x, y) =
1

q
<

1

N
<
ε

2

so MS(f) ≤ ε
2 . Thus∑

S∈L
v(S)MS(f) +

∑
S∈R

v(S)MS(f) ≤
∑
S∈L

v(S) +
ε

2

∑
S∈R

v(S) <
ε

2
+
ε

2
= ε

Thus U = 0. So f is integrable and
∫
[0,1]×[0,1]

f = 0.

Exercise 3-8 Prove that A = [a1, b1] × . . . × [an, bn] does not have content zero if
ai < bi for each i.

Proof. Let O be a finite cover of A by closed rectangles. Without loss of generality we may
assume that each rectangle is contained within A. Then let Ti = {ti0, . . . , tiki} be the set of
endpoints of the rectangles in the ith direction (that is, if O = {[c1, d1]× . . .× [cn, dn]} ∈ O,
then c1, d1 ∈ T1 and ci, di ∈ Ti for any i). Without loss of generality we may order them so
that ai = ti0 ≤ . . . ≤ tiki = bi. Then each v(Oi) for Oi ∈ O is the sum of v(Ai) for Ai of the
form [t1j1−1, t

1
j1
] × . . . × [tnjn−1, t

n
jn
]. Moreover, each of those rectangles is contained within

some Oi. So
n∑
i=1

v(Oi) ≥
k1·×·kn∑
j=1

v(Ai) =

n∏
j=1

(bj − aj)

So A does not have content zero.

Exercise 3-9

(a) Show that an unbounded set cannot have content zero.

(b) Give an example of a closed set of measure zero which does not have content
zero.

(a) Proof. Let A be an unboudned set and O a finite cover of A by closed rectangles.
Then there exists a closed rectangle M such that⋃

O∈O
O ⊆M

But since A is unbounded it contains points outside M . So O cannot be a cover of
A, contradiction. Thus A is in fact not covered by any finite set of closed (or open)
rectangles, so it cannot have content zero.
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(b) Proof. Q is closed and has measure zero (this follows from the fact that it is countable).
However, it is unbounded, and thus does not have content zero by part a).

Exercise 3-10

(a) If C is a set of content zero, show that the boundary of C has content zero.

(b) Give an example of a bounded set C of measure zero such that the boundary
of C does not have measure zero.

(a) Proof. Let O be a finite cover of C by closed rectangles. I claim that O contains ∂C.
To see this, suppose that there exists a point x ∈ ∂C such that x /∈ O for each O ∈ O.
Then

x ∈
k⋂
i=1

Rn \Oi

But since each Oi is closed, Rn \ Oi is open, and this is a finite intersection of open
sets, which is open. Then since x ∈ ∂C, there exists a point y ∈ C with

y ∈
k⋂
i=1

Rn \Oi

But this contradicts the assumption that O is a cover of C. Thus O covers ∂C. So
any closed cover of C is a cover of ∂C. Then let ε > 0. We may produce a finite cover
of C by closed rectangles with total volume less than ε. This cover works for ∂C as
well. Thus ∂C has content zero.

(b) Pick Q∩ [0, 1]. This is a bounded set of measure zero. But ∂(Q∩ [0, 1]) = [0, 1], which
does not have measure zero.

Exercise 3-11 Let A be the union of open intervals (ai, bi) such that each rational
number in (0, 1) is contained in some (ai, bi), as in Exercise 1-18. If

∞∑
i=1

bi − ai < 1

show that ∂A does not have measure zero.

Proof. Suppose that ∂A has measure zero. Pick a cover O of ∂A by open intervals such that

∑
O∈O

v(O) < 1−
∞∑
i=1

bi − ai

which we rewrite as

1 >
∑
O∈O

+

∞∑
i=1

bi − ai
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From Exercise 1-18, we know that ∂A = [0, 1] \ A. So the collection of intervals in O
combined with the open intervals which make up A form a cover of [0, 1] by open intervals.
Call this cover O′. Then we know ∑

O∈O′

v(O) ≥ 1

But we also have ∑
O∈O

v(O) +

∞∑
i=1

bi − ai ≥
∑
O∈O′

v(O)

So

1 >
∑
O∈O

v(O) +

∞∑
i=1

bi − ai ≥
∑
O∈O′

v(O) ≥ 1

and we conclude that 1 > 1, contradiction. So ∂A does not have measure zero.

Exercise 3-12 Let f : [a, b] → R be an increasing function. Show that {x :
f is discontinuous at x} has measure zero.

Proof. I claim that for any n, there are at most n(f(b)− f(a)) points with o(f, x) > 1
n .

To prove this, suppose there are more than n(f(b) − f(a)) such points, x1, . . . , xk. Then
we may pick y0, . . . , yk with a = y0 < x1 < y1 < . . . < xk < yk = b. Then because f is
increasing, for each xi we have

o(f, xi) ≤ f(yi)− f(yi−1)

Then by a telescoping argument,

k∑
i=1

o(f, xi) ≤ f(yk)− f(y0) = f(b)− f(a)

But we also have

k∑
i=1

o(f, xi) ≥
k∑
i=1

1

n
=
k

n
>
n(f(b)− f(a))

n
= f(b)− f(a)

contradiction. Thus there are at most n(f(b) − f(a)) such points. Recall that f is discon-
tinuous at x precisely when o(f, x) > 0. But

{x : o(f, x) > 0} =

∞⋃
n=1

{x : o(f, x) >
1

n
}

So {x : f is discontinuous at x} is the countable union of finite sets and thus has measure
zero.
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Exercise 3-13

(a) Show that the collection of all rectangles [a1, b1]× . . .× [an, bn] with all ai and
bi rational can be arranged in a sequence.

(b) If A ⊆ Rn is any set and O is an open cover of A, show that there is a sequence
O1, O2, . . . of members of O which also cover A.

(a) Proof. This collection may be placed in bijection with Q2n, which is a finite Cartesian
product of countable sets, so it is countable.

(b) Proof. For each point x ∈ A, x ∈ O for some O ∈ O, and O is open, so there exists an
open rectangle Rx ⊆ O containing x. Moreover, we demand that each endpoint of Rx
is rational. Then the set of R = {Rx : x ∈ A} is a subset of the set of all rectangles
with rational endpoints, which we showed is countable. Thus R is countable, so we
may order its elements as R1, R2, . . ..

We then pick a countable subcover O′ of O by picking O′
1 such that R1 ⊆ O′

1, and
so on. We may skip terms if Ri is already contained in a previously chosen open set.
This gives a countable subcover of R, and R covers A, so this is a countable subcover
of A.

Exercise 3-14 Show that if f, g : A→ R are integrable, then fg is as well.

Proof. Since f and g are both integrable, they are discontinuous on sets C1, C2 ⊆ A of
measure zero. For any x such that x /∈ C1 and x /∈ C2, f, g are both continuous at x so fg
is continuous at x. Thus C3, the set of points where fg is continuous, is a subset of C1 ∪C2

and has measure zero. So fg is integrable.

Exercise 3-15 Show that if C has content zero, then C ⊆ A for some closed rectangle
A and C is Jordan measurable with

∫
A
χC = 0

Proof. We showed in Exercise 3-9 part a) that any unbounded set does not have content
zero. So C ⊆ A for a closed rectangle A. We showed in Exercise 3-10 part a) that ∂C has
content zero whenever C has content zero. So C is Jordan-measurable.

Now pick a partition P of A. For every subrectangle S of P, we cannot have S ⊆ C, since
otherwise C would not have content zero. So mS(χC) = 0 for each S and thus L(f,P) = 0.
This is true for all partitions P, so ∫

A

χC = L = 0

Exercise 3-16 Give an example of a bounded set C of measure zero such that
∫
A
χC

does not exist.
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Set C = Q∩ [0, 1]. Then χC is the Dirichlet function, which is discontinuous on [0, 1] (since
both irrationals and rationals are dense in [0, 1]). So χC is not discontinuous on a set of
measure zero, so

∫
A
χC does not exist.

Exercise 3-17 If C is a bounded set of measure zero and
∫
A
χC exists, show that∫

A
χC = 0.

Proof. See the second paragraph of the argument from Exercise 3-15.

Exercise 3-18 If f : A→ R is nonnegative and
∫
A
f = 0, show that {x : f(x) ̸= 0}

has measure zero.

Proof. Consider the set Bn = {x : f(x) ≥ 1
n} for any n. I claim that Bn has content zero.

Suppose it does not. Then there exists ε > 0 such that any cover of Bn has total volume
no less than ε. Then let P be any partition. If S is the collection of subrectangles which
intersect Bn, then MS(f) ≥ 1

n for any S ∈ S. So

U(f,P) =
∑
S∈P

v(S)MS(f) ≥
∑
S∈S

v(S)MS(f) ≥
1

n

∑
S∈S

v(S) ≥ ε

n

So U ≥ ε
n > 0, but this contradicts the assumption that

∫
A
f = 0. So Bn has content zero.

Thus

{x : f(x) ̸= 0} =

∞⋃
n=1

Bn

has measure zero.

Exercise 3-19 Let U be the union of open intervals (ai, bi) such that each rational
number in (0, 1) is contained in some (ai, bi), and

∞∑
i=1

bi − ai < 1

as in Exercise 3-11. Show that if f = χU except on a set of measure zero, then f is
not integrable on [0, 1].

Proof. In Exercise 3-11 we showed that ∂U = [0, 1] \ U does not have measure zero. χU is
discontinuous on ∂U , so it is discontinuous on a set that is not of measure zero, and thus
not integrable. Then we need to show that f is also discontinuous on a set not of measure
zero.

Let x ∈ ∂U , and suppose that f(x) = χU (x). Suppose for contradiction, suppose that f is
continuous at x. Since x ∈ ∂U and ∂U = [0, 1] \ U , x /∈ U . Thus f(x) = χU (x) = 0. If
f is continuous at x, then for any ε > 0 there exists a neighborhood around x such that
|f(y)| < ε for y in the neighborhood. We will show that this is not the case.
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Let ε = 1
2 . Let V be any neighborhood around x contained in [0, 1]. Then there exists

a rational q ∈ V . q ∈ U which is open, so there exists an open rectangle R containing q
contained in U ∩ V . So χU = 1 on an open rectangle within V . So if |f(y)| < ε for any
y ∈ V , we must have f ̸= χU on R. But R is not a set of measure zero, so this contradicts
the assumption that f = χU on a set of measure zero. So f is not continuous at x.

We have shown that for any x ∈ ∂U such that f(x) = χU (x), f is discontinuous at x. Then
we must show that the set of x ∈ ∂U with f(x) = χU (x) does not have measure zero.

Suppose that it does. Let ε > 0. Then there exists a cover U of {x ∈ ∂U : f(x) = χU (x)} by
open intervals with total length less than ε/2. We also know that {x ∈ [0, 1] : f(x) ̸= χU (x)}
has measure zero by assumption, so {x ∈ ∂U : f(x) ̸= χU (x)} also has measure zero and we
may cover it by an open cover O with total length less than ε/2.

Now for any x ∈ ∂U , we must have f(x) = χU (x) or f(x) ̸= χU (x), so U ∪ O covers ∂U .
Now we have ∑

(ci,di)∈U∪O

di − ci ≤
∑

(ci,di)∈U

di − ci +
∑

(ci,di)∈O

di − ci < ε

So ∂U has measure zero. But in Exercise 3-11 we showed that this is not the case. So the
assumption that {x ∈ ∂U : f(x) = χU (x)} has measure zero is incorrect. But we showed
that f is discontinuous on this set, and it does not have measure zero, so f is not integrable
on [0, 1].

Exercise 3-20 Show that an increasing function f : [a, b] → R is integrable on [a, b].

Proof. In Exercise 3-12 we showed that f is discontinuous on a set of measure zero. So it is
integrable on [a, b].

Exercise 3-21 If A is a closed rectangle, show that C ⊆ A is Jordan-measurable if
and only if for every ε > 0 there is a partition P of A such that∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

where S1 consists of all subrectangles intersecting C and S2 all subrectangles con-
tained in C.

We first prove the following fact:

Lemma

If A ⊆ Rn and x ∈ intA, y ∈ extA, then there exists z = tx+(1− t)y with 0 ≤ t ≤ 1
such that z ∈ ∂A. (Intuitively, this z lies along the line segment between x and y).
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Proof. To see this, first note for sufficiently small t > 0, tx + (1 − t)y ∈ A since x ∈ intA.
Thus the set {0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A} is nonempty. Moreover, it is clearly bounded.
Then let

t′ = sup{0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A}

Now, first note that t′ < 1. This is because y ∈ extA, so there exists a ball around y entirely
contained in Rn \A.

I claim that z = t′x + (1 − t′)y ∈ ∂A. To see this, let Br(z) be any open ball around z.
Br(z) contains a point in A, as we can simply pick tx+(1−t)y for t ≤ t′ such that t′−t < r.
Then we need to show that Br(z) contains a point in Rn \A.

Let z′ = (t′ + ε)x+(1− t′ − ε)y, where ε < r and t′ + ε < 1 (possible because t′ < 1). Then
|z − z′| = ε < r, so z′ ∈ Br(z). But t′ + ε > t′, so t′ + ε /∈ {0 ≤ t ≤ 1 : tx+ (1− t)y ∈ A}.
Since we provided that t′ + ε < 1, we conclude that z′ /∈ A. So z ∈ ∂A.

Now, continuing to the main proof:

Proof. ( =⇒ ) Suppose that C ⊆ A is Jordan-measurable. ∂C has measure zero, and is
compact, so we may pick a finite collection of closed rectangles O whose interiors cover ∂C
with total volume is less than ε. Then apply Lemma ?? to pick a partition P such that
every subrectangle S ∈ P is either contained in some O ∈ O or does not intersect ∂C. If
S ∈ P and S intersects C but is not contained in C, I claim that there exists z ∈ S with
z ∈ ∂C.

Indeed, we can pick x, y ∈ S such that x ∈ C and y /∈ C. Then if either of these points is
in ∂C, then we are done. Otherwise, x ∈ intC and y ∈ extC. By the Lemma, there exists
z = tx+ (1− t)y with 0 ≤ t ≤ 1 such that z ∈ ∂C. Since S is convex, z ∈ S. So the claim
is proved. Then S intersects ∂C, so we must have S ⊆ O for some O ∈ O. Thus∑

S∈S1

v(S)−
∑
S∈S2

v(S) ≤
∑
O∈O

v(O) < ε

( ⇐= ) Suppose that C ⊆ A satisfies the condition that for every ε > 0 there is a partition
P such that ∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

I claim that S1 \ S2 covers ∂C. To see this, let x ∈ ∂C. Then x ∈ S for some S ∈ P. Then
S ∈ S1 or S /∈ S1. But if S /∈ S1, then there exists an open rectangle (S) around x entirely
contained in extC, contradicting x ∈ ∂C. So S ∈ S1. But similarly, if S ∈ S2 then that
contradicts x ∈ ∂C. So S ∈ S1 \ S2.

Thus S1 \ S2 covers ∂C, and by assumption it can be made as small as required. So ∂C has
measure zero and C is Jordan-measurable.

Exercise 3-22 If A is Jordan-measurable and ε > 0, show that there exists a compact
Jordan-measurable set C ⊆ A such that

∫
A\C 1 < ε.
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Proof. Let A be Jordan-measurable and let ε > 0. Then by Exercise 3-21, we may pick a
partition P such that ∑

S∈S1

v(S)−
∑
S∈S2

v(S) < ε

where S1 is the collection of subrectangles intersecting A and S2 is the collection of subrect-
angles contained in A. Then C =

⋃
S2 is a union of finite closed rectangles and thus closed.

Moreover, C ⊆ A. Since A is bounded, C is also bounded and thus compact. So we need
to show that it is Jordan-measurable.

I claim that ∂C ⊆
⋃
S∈S2

∂S. Let x ∈ ∂C. Then consider the sequence of open balls (Bn),
where Bn = B1/n(x). Then for each Bn, there exists some point yn ∈ C. Each yn ∈ S for
some S ∈ S2, but there are only finitely many such S, so there is some S′ such that yn ∈ S′

for infinitely many n. Moreover, each Bn contains a point not contained in C, which is thus
also not contained in S′. So x ∈ ∂S′. Thus the claim is proved.

We take without proof the fact that a rectangle is Jordan-measurable. Then ∂S has measure
zero for each S ∈ S2, so the finite union

⋃
S∈S2

∂S also has measure zero, and thus ∂C has
measure zero and C is Jordan measurable

Now, because C ⊆ A, we have
∫
A\C 1 =

∫
A
1−

∫
C
1. Moreover, S1 covers A. So∫

A

1 ≤
∫
⋃

S1

1

and thus ∫
A\C

1 =

∫
A

1−
∫
C

1 ≤
∫
⋃

S1

1−
∫
C

1 =
∑
S∈S1

v(S)−
∑
S∈S2

v(S) < ε

Exercise 3-23 Let A ⊆ Rn and B ⊆ Rm. Let C ⊆ A × B be a set of n + m-
dimensional content zero. Let A′ ⊆ A be the set of all x ∈ A such that {y ∈
B : (x, y) ∈ C} is not of m-dimensional content zero. Show that A′ is a set of
n-dimensional measure zero.

Proof. First, because C has content zero, ∂C has content zero so χC is integrable on A×B
and

∫
A×B χC = 0. Let U(x) = U

∫
B
χC(x, y)dy. Then by Fubini’s Theorem,∫
A×B

χC =

∫
A

U = 0

Now, fix some x ∈ A, and let P be a partition of B.

If x ∈ A′, then there exists some εx > 0 such that any finite cover of {y ∈ B : (x, y) ∈ C} by
closed rectangles has total length at least εx. Let S1 be the collection of subrectangles S in
P that intersect {y ∈ B : (x, y) ∈ C}. Because S1 is a finite cover of {y ∈ B : (x, y) ∈ C},

U(χC ,P) =
∑
S∈S1

MS(χC)v(S) =
∑
S∈S1

v(S) ≥ εx
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Then U(x) = U
∫
B
χC ≥ εx.

Now, U is clearly nonnegative, and we know that
∫
A
U = 0. So by Exercise 3-18, {x : U(x) ̸=

0} has measure zero. But we just showed that A′ ⊆ {x : U(x) ̸= 0}, so A′ has measure
zero.

Exercise 3-24 Let C ⊆ [0, 1]× [0, 1] be the union of all {p/q} × [0, 1/q], where p/q
is a rational in [0, 1] in lowest terms. Show that it is not true that the set A′ in
Exercise 3-23 has content zero.

Proof. First we show that C has content zero. Let ε > 0. Then let

R0 = [0, 1]×
[
0,
ε

2

]
Then there a finite number of rationals p/q such that {p/q} × [0, 1/q] is not contained in
R0. Call these r1, . . . , rk = p1/q1, . . . , pk/qk. Then for 1 ≤ i ≤ k, let

Ri =

[
pi
qi

− qiε

2i+1
,
pi
qi

+
qiε

2i+1

]
×
[
0,

1

qi

]
Letting R = {R0, R1, . . . , Rk}, R is a finite cover of C by closed rectangles with

∑
R∈R

v(R) = v(R0) +

k∑
i=1

v(Ri) =
ε

2
+

k∑
i=1

ε

2i+1
≤ ε

2
+

∞∑
i=1

ε

2i+1
=
ε

2
+
ε

2
= ε

So C has content zero.

But for each rational p/q ∈ [0, 1], the set {y ∈ [0, 1] : (p/q, y) ∈ C} is simply the set [0, 1/q],
which does not have content zero. So A′ = Q∩ [0, 1], which does not have content zero.

Exercise 3-25 Use induction on n to show that [a1, b1] × . . . × [an, bn] is not a set
of measure zero (or content zero) if ai < bi.

Proof. In the base case, n = 1, let U be a cover of [a1, b1] by open intervals. Since [a1, b1] is
compact, we can assume U is finite. From here the base case proceeds as in Exercise 3-8.

Now suppose the theorem is true for n, and we will prove it for n + 1. Then [a1, b1] ×
. . . [an+1, bn+1] = ([a1, b1]× . . .× [an, bn])× [an+1, bn+1]. Let A = [a1, b1]× . . .× [an, bn] and
B = [an+1, bn+1]. By Fubini’s Theorem2∫

A×B
1 =

∫
A

(∫
B

1 dy

)
dx =

(∫
A

1 dx

)(∫
B

1 dy

)
2Credit for work past this point to https://hidenori-shinohara.github.io/2019/12/23/measure-zero-ex-3-

25.html
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Now, the constant function 1 is a nonnegative function, and Exercise 3-18 shows that if∫
A
1 dx = 0, then 1 is nonzero on a set of measure zero. But 1 is nonzero on A, which is not

a set of measure zero by the inductive hypothesis. So∫
A

1 dx > 0

and similarly ∫
B

1 dy > 0

so ∫
A×B

1 > 0

Now A×B is bounded. If it has measure zero, then Exercise 3-18 says that
∫
A×B χA×B =∫

A×B 1 = 0. But this is not the case, so A×B does not have measure zero.

Exercise 3-26 Let f : [a, b] → R be integrable and nonnegative and let Af =
{(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}. Show that Af is Jordan-measurable and has area∫ b
a
f .

Proof. Since f : [a, b] → R is integrable and nonnegative, there exists M > 0 such that
M > f(x) for any x.

Claim 1.1

Let

B = ([a, b]× {0})
C = {(x, f(x)) : x ∈ [a, b]}
D = {a} × [0,M ]

E = {b} × [0,M ]

F = {x : f is discontinuous at x} × [0,M ]

Then
∂Af ⊆ B ∪ C ∪D ∪ E ∪ F

To prove this, note that any (x, y) satisfies exactly one of the following conditions3:

1. (x, y) /∈ [a, b].

2. x = a.

3. x = b.

3Strictly speaking, conditions 5 and 8 are both filled by (x, 0) for x : f(x) = 0, but this does not detract
from the overall argument.
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4. (x, y) ∈ (a, b), y < 0.

5. (x, y) ∈ (a, b), y = 0.

6. (x, y) ∈ (a, b), 0 < y < f(x), f is continuous at x.

7. (x, y) ∈ (a, b), 0 < y < f(x), f is not continuous at x.

8. (x, y) ∈ (a, b), y = f(x).

9. (x, y) ∈ (a, b), y > f(x), f is continuous at x.

10. (x, y) ∈ (a, b), f(x) < y ≤M , f is not continuous at x.

11. (x, y) ∈ (a, b), y > M , f is not continuous at x.

For cases 2, 3, 5, 7, 8, 10, (x, y) ∈ B ∪C ∪D∪E ∪F . Thus we must show that (x, y) /∈ ∂Af
whenever conditions 1, 4, 6, 9, or 11 are met.

Case 1: We can pick an open rectangle R containing (x, y) such that (x1, y1) ∈ R =⇒
x1 /∈ [a, b]. So (x, y) ∈ extAf .

Case 4: We can pick an open rectangle R containing (x, y) such that (x1, y1) ∈ R =⇒
y1 < 0. So (x, y) ∈ extAf .

Case 6: Since f is continuous at x, there exists an interval (x− δ, x+ δ) such that f(x1) >
y + ε whenever x1 ∈ (x − δ, x + δ), for ε > 0 sufficiently small (where δ is chosen small
enough that this makes sense). Then the rectangle R = (x− δ, x+ δ)× (0, y+ ε) is an open
rectangle containing (x, y) which is contained in Af . So (x, y) ∈ intAf .

Case 9: Similarly to Case 4, since f is continuous at x, there exists an interval (x−δ, x+δ)
such that f(x1) < y − ε whenever x1 ∈ (x− δ, x+ δ) for ε > 0 sufficiently small. Then the
rectangle R = (x− δ, x+ δ)× (y − ε,M) shows that (x, y) ∈ extA.

Case 11: Similarly to Case 2, we may pick an open rectangle R containing (x, y) such that
(x1, y1) ∈ R =⇒ y1 > M =⇒ (x1, y1) /∈ Af . So (x, y) ∈ extAf .

Thus Claim 1 is proved.

Claim 1.2

The sets B, C, D, E, F each have measure zero.

The line interval [a, b]× {0} has measure zero, as for any ε > 0 we cover it by

Rε = [a, b]×
[
− ε

2(b− a)
,

ε

2(b− a)

]
which has v(Rε) = ε. So B has measure zero. A similar proof holds for the line segments
D and E.

The set {x : f is discontinuous at x} has measure zero since f is integrable. Let ε > 0.
Then we may pick a cover I of {x : f is discontinuous at x} by open intervals such that∑

(c,d)∈I

d− c <
ε

4M
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Then the collection U of rectangles of the form (c, d) × (−M
2 ,

3M
2 ) for (c, d) ∈ I forms a

cover of {x : f is discontinuous at x} × [0,M ], Moreover, consider the remaining set

S = [a, b] \
⋃
I∈I

I

Since each I is open, S is closed. It is also bounded, so it is compact. Moreover, f is
continuous at each x ∈ S. Since f is continuous on S compact, it is uniformly continuous.
Thus we may pick δ > 0 such that

x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε

4(b− a)

Moreover, pick δ such that mδ = b− a for some m ∈ N. Now let δi = [a+ (i− 1)δ, a+ iδ].
Then the collection {δi}mi=1 partitions the interval [a, b]. Now for each i, define the rectangle
Pi as follows: if S ∩ δi = ∅, then let Pi = δi × {0}. Otherwise, pick xi ∈ S ∩ δi. Then let

Pi = δi ×
[
f(xi)−

ε

4(b− a)
, f(xi) +

ε

4(b− a)

]
Let P = {P1, . . . , Pn}, and let U = {U : U ∈ U}. I claim that P ∪UUU is a cover of C ∪F .
Indeed, we already showed that U covers F , so U does as well.

Now, for any x ∈ [a, b], either x ∈ S or x /∈ S. If x /∈ S, then x ∈ I for some I ∈ I and thus
(x, f(x)) ∈ U for some U ∈ U . On the other hand, if x ∈ S, then x ∈ δi for some i (this
does not require x ∈ S, just x ∈ [a, b]). Then |x− xi| < δi, so

|f(x)− f(xi)| <
ε

4(b− a)

so (x, f(x)) ∈ Pi. Thus P ∪ U is a cover of C ∪ F by closed rectangles. Lastly, we have∑
U∈U

=
∑
U∈U

v(U) =
∑

(c,d)∈I

v((c, d)× (−M
2
,
3M

2
)) = 2M

∑
(c,d)∈I

d− c <
ε

2

and
m∑
i=1

v(Pi) =

m∑
i=1

δ · ε

2(b− a)
=

ε

2(b− a)
mδ =

ε

2

so the total volume of P ∪ U is less than ε. Thus C ∪ F has measure zero, and C and F
each do.

Thus Claim 2 is proved.

Now, by Claim 2, each of B,C,D,E, F has measure zero. So B∪C∪D∪E∪F has measure
zero, and by Claim 1 ∂Af ⊆ B∪C∪D∪E∪F , so ∂Af has measure zero. It is also bounded,
so Af is Jordan-measurable.

The last part of the proof is to show that v(Af ) =
∫ b
a
f . Since Af is Jordan-measurable,

χAf is integrable on [a, b]× [0,M ]. So by Fubini’s Theorem,

v(Af ) =

∫
[a,b]×[0,M ]

χAf =

∫ b

a

(
L

∫ M

0

χAf (x, y) dy

)
dx
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For each fixed x ∈ [a, b], gx = χAf (x, ·) is integrable as it is only discontinuous at f(x).
Thus

L

∫ M

0

χAf (x, y) dy =

∫ M

0

χAf (x, y) dy

Moreover, ∫ M

0

χAf (x, y) dy =

∫ f

0

(x)1 dy = f(x)

So we have

v(Af ) =

∫ b

a

(∫ M

0

χAf (x, y) dy

)
dx−

∫ b

a

f(x) dx =

∫ b

a

f

Exercise 3-27 If f : [a, b]× [a, b] → R is continuous, show that∫ b

a

∫ y

a

f(x, y) dxdy =

∫ b

a

∫ b

x

f(x, y) dy dx

Proof. Define C = {(x, y) ∈ [a, b] : y ≥ x}. Then C has boundary ∂C = ({a} × [a, b]) ∪
([a, b]× {b}) ∪ {(x, x) : x ∈ [a, b]} which are all line segments, and thus have measure zero.
So C is Jordan-measurable and χCf is integrable on [a, b] × [a, b]. By Fubini’s Theorem,
since f is continuous,∫

[a,b]×[a,b]

χCf =

∫ b

a

∫ b

a

χC(x, y)f(x, y) dy dx =

∫ b

a

∫ b

x

f(x, y) dy dx

But applying it in the opposite order,∫
[a,b]×[a,b]

χCf =

∫ b

a

∫ b

a

χC(x, y)f(x, y) dx dy =

∫ b

a

∫ y

a

f(x, y) dxdy

Exercise 3-28 Use Fubini’s theorem to prove that D1,2f = D2,1f if both are con-
tinuous.

Proof. Suppose that D1,2f and D2,1 both exist and are continuous. Then D1,2f −D2,1f is
continuous. Suppose there exists a such that D1,2f(a)−D2,1f(a) > 0 (for the case < 0 the
proof is analogous). Then there exists a rectangle A = [a, b]× [c, d] containing a such that

D1,2f(x)−D2,1f(x) > ε

for any x ∈ A and ε > 0 smaller thanD1,2f(a)−D2,1f(a). SinceD1,2f−D2,1f is continuous,
it is integrable on A. So∫

A

D1,2f −D2,1f ≥
∫
A

ε = ε

∫
A

1 = εv(A) > 0
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But by Fubini’s Theorem,∫
A

D1,2f =

∫ b

a

∫ d

c

D1,2f(x, y) dy dx

=

∫ b

a

(∫ d

c

d

dy
D1f(x, y) dy

)
dx

=

∫ b

a

D1f(x, d)−D1f(x, c) dx

= f(b, d)− f(b, c)− f(a, d) + f(a, c)

Similarly, ∫
A

D2,1f =

∫ d

c

∫ b

a

D2,1f(x, y) dx dy

=

∫ d

c

D2f(b, y)−D2f(a, y) dy

= f(b, d)− f(a, d)− f(b, c) + f(a, c)

So∫
A

D1,2f −D2,1f = f(b, d)− f(b, c)− f(a, d) + f(a, c)− f(b, d) + f(a, d) + f(b, c)− f(a, c)

= 0

contradiction. Thus D1,2f −D2,1f = 0 and D1,2f = D2,1f .

Exercise 3-29 Use Fubini’s theorem to derive an expression for the volume of a
set of R3 obtained by revolving a Jordan-measurable set in the yz-plane about the
z-axis.

Exercise 3-30 Let C ⊆ [0, 1] × [0, 1] contain at most one point on each horizontal
and each vertical line, with ∂C = [0, 1]× [0, 1], as in Exercise 1-17. Show that∫

[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy =

∫
[0,1]

(∫
[0,1]

χC(x, y) dy

)
dx

but ∫
[0,1]×[0,1]

χC

does not exist.

Proof. Fix some y ∈ [0, 1]. Then A intersects [0, 1]× {y} at at most one point, so hy(x) =
χC(x, y) is zero everywhere except possibly one point. Thus it is nonzero at a finite number
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of points, so ∫
[0,1]

χC(x, y) dx = 0

so ∫
[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy = 0

Similarly, for any x ∈ [0, 1], A intersects {x}×[0, 1] at at most one point, so gx(y) = χC(x, y)
is nonzero at a finite number of points, so∫

[0,1]

χC(x, y) dy = 0

and ∫
[0,1]

(∫
[0,1]

χC(x, y) dy

)
dx =

∫
[0,1]

(∫
[0,1]

χC(x, y) dx

)
dy = 0

On the other hand, ∂A = [0, 1] × [0, 1] by assumption, which does not have measure zero
and thus χC is not integrable on [0, 1]× [0, 1].

Exercise 3-31 If A = [a1, b1] × . . . × [an, bn] and f : A → R is continuous, define
F : A→ R by

F (x) =

∫
[a1,x1]×...×[an,xn]

f

What is DiF (x) for x ∈ intA?

Define G1 : R → R by

G1(y) = F (y, x2, . . . , xn) =

∫
[a1,y]×...×[an,xn]

f

and g1 : R → R by
g1(y) = f(y, x2, . . . , xn)

Since f is continuous, we may apply Fubini’s theorem to write

G1(y) =

∫ y

a1

(∫
[a2,x2]×...×[an,xn]

f(y, x2, . . . , xn) dx

)
dy

(where xi represents a variable being integrated against, as opposed to xi which is the ith
component of x). So by the Fundamental Theorem of Calculus,

G′
1(y) =

(∫
[a2,x2]×...×[an,xn]

f(y, x2, . . . , xn) dx

)
=

∫ x2

a2

. . .

∫ xn

an

f(y, x2, . . . , xn) dxn . . . dx2

We can make a similar argument for gi for any i, so that

DiF (x) = g′i(y) =

∫ x1

a1

. . .
�
�
�

∫ xi

ai

. . .

∫ xn

an

f(x1, . . . , xi−1, xi, x
i+1, . . . , xn) dxn . . .��dxi . . . dx

1
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where the strikethroughs indicate that the ith variables is not integrated against (that is,
we integrate against all other variables but hold xi constant).

Exercise 3-32 Let f : [a, b]× [c, d] → R be continuous and suppose D2f is continu-

ous. Define F (y) =
∫ b
a
f(x, y) dx. Prove Leibnitz’s rule:

F ′(y) =

∫ b

a

D2f(x, y) dx

Proof. Define gx(y) : [c, d] → R by

gx(y) = f(x, y)

Then by definition,
g′x(y) = D2f(x, y)

Since D2f is continuous, by the Fundamental Theorem of Calculus,

f(x, y) = gx(y) = gx(c) +

∫ y

c

g′x(t) dt = f(x, c) +

∫ y

c

D2f(x, t) dt

So

F (y) =

∫ b

a

(
f(x, c) +

∫ y

c

D2f(x, t) dt

)
dx =

∫ b

a

f(x, c) dx+

∫ b

a

∫ y

c

D2f(x, t) dt dx

Now, by Fubini’s Theorem we have∫ b

a

∫ y

c

D2f(x, t) dt dx =

∫ y

c

∫ b

a

D2f(x, t) dx dt

so

F ′(y) =
d

dy

∫ b

a

∫ y

c

D2f(x, t) dt dx =
d

dy

∫ y

c

∫ b

a

D2f(x, t) dx dt =

∫ b

a

D2f(x, y) dx

Exercise 3-33 If f : [a, b]× [c, d] → R is continuous and D2f is continuous, define

F (x, y) =

∫ x

a

f(t, y) dt

(a) Find D1F and D2F .

(b) If G(x) =
∫ g(x)
a

f(t, x) dt, find G′(x).

(a) Define hy(x) = f(x, y). Let Fy(x) = F (x, y), so that D1F (x, y) = F ′
y(x). Then

Fy(x) = F (x, y) =

∫ x

a

f(t, y) dt =

∫ x

a

hy(t) dt
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so

D1F (x, y) = F ′
y(x) =

d

dx

∫ x

a

hy(t) dt = hy(x) = f(x, y)

Now, defineHx(y) = F (x, y) =
∫ x
a
f(t, y) dt, so thatD2F (x, y) = H ′

x(y). By Leibnitz’s
rule from Exercise 3-32,

D2F (x, y) = H ′
x(y) =

∫ x

a

D2f(t, y) dt

(b) Here we have G(x) = F (g(x), x). By the Chain Rule,

G′(x) = D1F (g(x), x)g
′(x) +D2F (g(x), x) = f(g(x), x)g′(x) +

∫ x

a

D2f(t, x) dt

Exercise 3-34 Let g1, g2 : R2 → R be continuously differentiable and suppose
D1g2 = D2g1. As in Exercise 2-21, let

f(x, y) =

∫ x

0

g1(t, 0) dt+

∫ y

0

g2(x, t) dt

Show that D1f(x, y) = g1(x, y).

Proof. Differentiating term by term, the Fundamental Theorem of Calculus gives us

d

dx

∫ x

0

g1(t, 0) dt = g1(x, 0)

Now, since g2 is continuously differentiable, it is also continuous, so by Leibnitz’s Rule
(considering D1 rather than D2),

d

dx

∫ y

0

g2(x, t) dt =

∫ y

0

D1g2(x, t) dt

By assumption, D1g2 = D2g1, so∫ y

0

D1g2(x, t) dt =

∫ y

0

D2g1(x, t) dt

Then by the Fundamental Theorem of Calculus,

D1f(x, y) =
d

dx

∫ x

0

g1(t, 0) dt+
d

dx

∫ y

0

g2(x, t) dt = g1(x, 0)+

∫ y

0

D2g1(x, t) dt = g1(x, y)
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Exercise 3-35

(a) Let g : Rn → Rn be a linear transformation of one of the following types:{
g(ei) = ei, i ̸= j

g(ej) = aej ,{
g(ei) = ei, i ̸= j

g(ej) = ej + ek,
g(ek) = ek, k ̸= i, k ̸= j

g(ei) = ej

g(ej) = ei

If U is a rectangle, show that v(g(U)) = |det g|v(U).

(b) Prove that v(g(U)) = |det g|v(U) for any linear transformation g : Rn → Rn.

(a) Proof. First note that the scaling factor of g is scale invariant, for any of the above
cases. For instance, let U = [a1, b1] × . . . × [an, bn]. Let x = (a1, . . . , an). Then let
y ∈ U . Since g is linear,

g(y) = g(y − x+ x) = g(y − x) + g(x)

So g(U) = g(U − x) + g(x), and thus g(U) is a translated version of g(U − x), which
has the same volume. Thus we may assume that U = [0, b1]× . . .× [0, bn].

Let −→y i = biei, so that −→y 1, . . . ,
−→y n are the edges of U . Then g(U) is the rectangle

with edges given by g(−→y 1), . . . , g(
−→y n).

Case 1: We have

g(−→y i) = big(ei) =

{
biei, i ̸= j

abiei, i = j

so g(U) = [0, b1]× . . .× [0, abj ]× . . .× [0, bn]. Then

v(g(U)) = b1b2 . . . abj . . . bn = a(b1 . . . bn) = av(U)

Now, the matrix of g is

[g] =



1 0 . . . . . . 0

0
. . .

. . .
. . .

...
...

. . . a
. . .

...
...

. . .
. . .

. . . 0
0 . . . . . . 0 1


so

det g = det[g] = a
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Case 2: Since g is linear, it is continuous. Assume without loss of generality that
j = 1 and k = 2. Then g(U) = V × [0, b3]× . . .× [0, bn], where

V ⊆ R2 = {(x, y) : 0 ≤ x ≤ b1, x ≤ y ≤ x+ b2}

is a rhombus. Then by Fubini’s Theorem, (lettingM be any rectangle bounding g(U))

v(g(U)) =

∫
M

χg(U)

=

∫ b1

0

∫ x+b2

x

(∫ b3

0

. . .

∫ bn

0

dxn . . . dx3

)
dy dx

= b3 . . . bn

∫ b1

0

∫ x+b2

x

dy dx

= b3 . . . bn

∫ b1

0

b2

= b1 . . . bn

= v(U)

The matrix of g is given by

[g] =



1 0 . . . . . . 0

0
. . .

. . . 1
...

...
. . . a

. . .
...

...
. . .

. . .
. . . 0

0 . . . . . . 0 1


(where the off-diagonal 1 is an arbitrary off-diagonal location), which has determinant
1.

Case 3: We have

g(U) = [0, b1]× . . .× [0, bj ]︸ ︷︷ ︸
ith position

× . . .× [0, bi]︸ ︷︷ ︸
jth position

× . . .× [0, bn]

which has v(g(U)) = b1 . . . bn = v(U). The matrix of g is simply the identity matrix
with two columns switched, so det g = −1 and |det g| = 1.

(b) Proof. If det g = 0, then g(U) has volume zero for any U . If det g ̸= 0, then
RREF([g]) = In. Moreover, note that the elementary row operations correspond
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to the following matrices:



1
. . .

a
. . .

1


, scaling of a row



1
. . .

0 1
. . .

1 0
. . .

1


, row swap



1
. . .

1 a
. . .

. . .

1


, addition of rows

The first two ERO matrices directly correspond to Cases 1 and 3, respectively.

For the third matrix, suppose the ERO in question sends Ri to Ri + aRj . Then this
ERO matrix may be written as [g1][g2][g3], where g3 scales Rj by a (Case 1), g2 is a
Case 2 transformation which sends ei to ei + ej , and g1 scales Rj by 1/a (Case 1).

Thus any invertible transformation has a matrix which may be written as

[g] = [g1] . . . [gk] RREF([g]) = [g1] . . . [gk]

where each of the gk is of one of the three types considered above. By the property of
the determinant,

det[g] = det([g1] . . . [gk]) = det([g1]) . . . det([gk])

By applying part a), we have

v(g(U)) = v(g1(. . . (gk(U))))

= |det g1|v(g2(. . . (gk(U))))

= |det g1| . . . |det gk|v(U)

= |det g1 . . . det gk|v(U)

= |det g|v(U)
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Exercise 3-36 (Cavalieri’s Principle) Let A and B be Jordan-measurable subsets of
R3. Let Ac = {(x, y) : (x, y, c) ∈ A} and define Bc similarly. Suppose each Ac and
Bc are Jordan-measurable and have the same area. Show that A and B have the
same volume.

Proof. LetM = [a1, b1]× [a2, b2]× [a3, b3] be a closed rectangle which bounds both A and B.
Since A is Jordan-measurable, χA is integrable on M , and so is χB . By Fubini’s Theorem,∫

M

χA =

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χA(x, y) dx

)
dy

where our use of the integral sign is justified since Ac is Jordan measurable. Then we may
write ∫

[a1,b1]×[a2,b2]

χA(x, y) dx =

∫
[a1,b1]×[a2,b2]

χAy

This is precisely the area of Ay, which by assumption is the area of By. So∫
M

χA =

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χA(x, y) dx

)
dy

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χAy

)
dy

=

∫ b3

a3

v(Ay)

=

∫ b3

a3

v(By)

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χBy

)
dy

=

∫ b3

a3

(∫
[a1,b1]×[a2,b2]

χB(x, y) dx

)
dy

=

∫
M

χB

so v(A) = v(B).
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Exercise 3-37

(a) Suppose that f : (0, 1) → R is a nonnegative continuous function. Show that

ext

∫
(0,1)

f

exists if and only if

lim
ε→0+

∫ 1−ε

ε

f

exists.

(b) Define

An :=

[
1− 1

2n
, 1− 1

2n+1

]
Suppose that f : R → R satisfies∫

An

f =
(−1)n

n

and f = 0 outside of
⋃∞
i=1Ai. Suppose also that f does not change sign on the

interiors of any of the An. Show that

ext

∫
(0,1)

f

does not exist, but

lim
ε→0+

ext

∫
(ε,1−ε)

f = − ln 2

Note: The hypothesis that f does not change sign is not included in Spivak’s
original exercise. Spivak’s exercise is incorrect as written, but this is not the
only possible hypothesis to rectify the issue.

(a) Proof. ( =⇒ ) Suppose that

ext

∫
(0,1)

f

exists. Let Φ be some partition of unity subordinate to an admissible open cover O of
(0, 1). Now, let ε > 0. Then let Φε be the finite collection of φ ∈ Φ which are nonzero
on [ε, 1− ε]. Then we have∫ 1−ε

ε

f =

∫ 1−ε

ε

f
∑
φ∈Φε

φ =
∑
φ∈Φε

∫ 1−ε

ε

φf
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Now, since f is nonnegative, we have∑
φ∈Φε

∫ 1−ε

ε

φf ≤
∑
φ∈Φε

∫
Cφ

φf ≤
∑
φ∈Φ

∫
Cφ

φf = ext

∫
(0,1)

f

So
∫ 1−ε
ε

f is bounded above. Moreover, let ε′ < ε. Since f is nonnegative, we have∫ 1−ε

ε

f ≤
∫ 1−ε′

ε′
f

so

lim
ε→0+

∫ 1−ε

ε

f

exists.

( ⇐= ) Suppose that

lim
ε→0+

∫ 1−ε

ε

f

exists. For any n ∈ N, let

An :=

[
1

2n+1
,
1

2n

]
∪
[
1− 1

2n
, 1− 1

2n+1

]
By Exercise 2-26 there exists a C∞ function φn such that φn > 0 on An but φn = 0
outside of some closed set contained in(

1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)
which can be smoothly extended to have domain (−1, 2). Now, (0, 1) =

⋃∞
i=1Ai, so

for any x ∈ (0, 1) at least one φn is nonzero at x. Moreover, it is clear that only
finitely many are nonzero at x. So

∞∑
i=1

φi(x) > 0

and we may define the C∞ function ψn : (−1, 2) → R by

ψn(x) =
φn(x)∑∞
i=1 φi(x)

Then Ψ = {ψ1, ψ2, . . .} is a partition of unity subordinate to the open cover

O =

{(
1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)}∞

n=1

Now, let Sk be the partial sum

Sk :=

k∑
n=1

∫
Cφn

φn|f | =
k∑

n=1

∫
Cφn

φn|f |
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For each φi we have

Cφi ⊆
(

1

2k+2
, 1− 1

2k+2

)
so

Sk =

k∑
n=1

∫ 1− 1

2k+2

1

2k+2

φif =

∫ 1− 1

2k+2

1

2k+2

k∑
i=1

φif ≤
∫ 1− 1

2k+2

1

2k+2

f ≤ lim
ε→0+

∫ 1−ε

ε

f

where the last inequality follows since f is nonnegative. Moreover, since f is nonneg-
ative we have ∫

Cφi

φif ≥ 0

so we have an increasing, bounded above series which thus converges. So f is extended
integrable on (0, 1).

(b) Proof. To show that

ext

∫
(0,1)

f

does not exist, we will exhibit a partition of unity Φ subordinate to an admissible open
cover O of (0, 1) such that

ext
Φ

∫
(0,1)

f =
∑
φ∈Φ

∫
Cφ

φ|f |

does not converge. Define

On =

(
1

2n+2
,

1

2n−1

)
∪
(
1− 1

2n−1
, 1− 1

2n+2

)
for each n, and let O = {On}n∈N be our open cover. By Exercise 2-26, pick ψn so
that ψn > 0 on An but ψn = 0 outside of some closed set contained in On. Then only
finitely many (but at least one) ψi are nonzero at any given point x ∈ (0, 1), so write

φn(x) =
ψn(x)∑∞
i=1 ψi(x)

Φ = {φ1, φ2, . . .} is our desired partition of unity subordinate to O.

Since
⋃∞
i=1Ai = [1/2, 1) and f = 0 outside of

⋃∞
i=1Ai, we have

supp(φn|f |) ⊆
(
1− 1

2n−1
, 1− 1

2n+2

)
so that∫

Cφn

φn|f | =
∫
suppφn|f |

φn|f | =
∫
An−1

φn|f |+
∫
An

φn|f |+
∫
An+1

φn|f |
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(for n = 1 the first term is omitted). Letting

Sk =

k∑
i=1

∫
Cφi

φi|f |

we have

∞∑
i=1

∫
Cφi

φi|f | ≥ Sk

=

k∑
i=1

(∫
Ai−1

φi|f |+
∫
Ai

φi|f |+
∫
Ai+1

φi|f |

)

=

k−1∑
i=1

∫
Ai

φi+1|f |+
k∑
i=1

∫
Ai

φi|f |+
k+1∑
i=2

∫
Ai

φi−1|f |

≥
k−1∑
i=1

∫
Ai

φi+1|f |+
k∑
i=1

∫
Ai

φi|f |+
k∑
i=2

∫
Ai

φi−1|f |

=

∫
A1

|f |(φ2 + φ1) +

k−1∑
i=2

(∫
Ai

|f |(φi+1 + φi + φi−1)

)
+

∫
Ak

|f |(φk + φk−1)

≥
∫
A1

|f |(φ2 + φ1) +

k−1∑
i=2

(∫
Ai

|f |(φi+1 + φi + φi−1)

)
Note that by construction, φ1 and φ2 are the only nonzero φ on A1, and φi−1, φi, φi+1

are the only nonzero φ on Ai for i ≥ 2. Thus this simplifies to∫
A1

|f |+
k−1∑
i=2

∫
Ai

|f | ≥
k−1∑
i=1

∣∣∣∣∫
Ai

f

∣∣∣∣ = k−1∑
i=1

1

n

so (Sk) is the sequence of partial sums of the harmonic series, which diverges. Thus
extΦ

∫
(0,1)

f does not exist.

But in contrast, we have

ext

∫
(ε,1−ε)

f =

M−1∑
i=1

∫
Ai

f +

∫
(1−1/2M ,1−ε)

f

where M is the largest integer such that 1− 1/2M ≤ 1− ε. If M is even then we have

M−1∑
i=1

∫
Ai

f ≤ ext

∫
(ε,1−ε)

f ≤
M∑
i=1

∫
Ai

f

and if M is odd then

M−1∑
i=1

∫
Ai

f ≥ ext

∫
(ε,1−ε)

f ≥
M∑
i=1

∫
Ai

f
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so

lim
ε→0

ext

∫
(ε,1−ε)

f =

∞∑
i=1

∫
Ai

f =

M∑
i=1

(−1)i

i
= − ln 2

Exercise 3-38 Let An be a closed set contained in (n, n+1). Suppose that f : R → R
satisfies ∫

Ai

f =
(−1)i

i

and f = 0 outside of
⋃∞
i=1Ai. Find two partitions of unity Φ,Ψ for R such that∑

φ∈Φ

∫
Cφ

φf

and ∑
ψ∈Ψ

∫
Cψ

ψf

both converge absolutely, but to different values.

Proof. First, pick C∞ functions g1, g2, . . . : R → [0, 1] such that gi = 1 on Ai and gi = 0
outside of a closed set contained in (i, i+1). Now, let φn = g2n−1+g2n. Then the collection
Φ = {φ1, φ2, . . .}, together with appropriately chosen functions, forms a partition of unity
for R. We have∫

Cφn

φnf =

∫
Cg2n−1

f +

∫
Cg2n

f =

∫
A2n−1

f +

∫
A2n

f =
−1

2n− 1
+

1

2n
= − 1

4n2 − 2n

Thus

ext
Φ

∫
R
f =

∞∑
i=1

∫
Cφi

φif =

∞∑
i=1

− 1

4n2 − 2n
= − ln 2

If we instead pick ψ1 = g1 and ψn = g2n+g2n+1, then Ψ = {ψ1, ψ2, . . .} (with appropriately
chosen functions) forms a partition of unity and we similarly have

ext
Ψ

∫
R
f =

∫
A1

f +

∞∑
i=2

(∫
A2n

f +

∫
A2n+1

f

)
= −1 +

∞∑
i=2

1

4n2 + 2n
= −1

6
− ln 2

Both of the series indicated converge absolutely since they converge, and do not change
sign.

Exercise 3-39 Prove Theorem ?? without the assumption detu′(x) ̸= 0 using Sard’s
Theorem.

Proof. Suppose u : A → Rn is injective and continuously differentiable, with A open. Let
C be the set of points x ∈ A such that detu′(x) = 0. detu′(x) is composed of products
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and sums of the partial derivatives, which are continuous, so x 7→ detu′(x) is continuous.
So C is a closed set in A, which means that A \ C is open in A and thus in Rn. Then the
restriction of u to A \ C is an injective, continuously differentiable function defined on an
open set with detu′(x) ̸= 0 for x ∈ A \ C. By Theorem ??, we have

ext

∫
u(A\C)

f = ext

∫
A\C

(f ◦ u)|detu′|

Since u is injective, u(A \C) = u(A) \ u(C). By Sard’s Theorem, u(C) has measure zero so

ext

∫
u(A)

f = ext

∫
u(A)\u(C)

f + ext

∫
u(C)

f = ext

∫
u(A)\u(C)

f

Now, since (f ◦ u)|detu′| = 0 on C, and

ext

∫
A\C

|detu′| = ext

∫
A

|detu′|

By Sard’s Theorem, u(C) has measure zero. So we have

ext

∫
u(A)

1 = ext

∫
u(A)\u(C)

1 = ext

∫
u(A\C)

1 = ext

∫
A\C

|detu′| = ext

∫
A

|detu′|

Exercise 3-40

(a) If g : Rn → Rn is continuously differentiable and det g′(a) ̸= 0, prove that in
some open set containing a we can write g = T ◦ gn ◦ . . . ◦ g1, where gi is of the
form

gi(x) = (x1, . . . , fi(x), . . . , xn)

for some fi : Rn → R, and where T is a linear transformation.

Note: Spivak failed to require that g be C1.

(b) Show that if fi does not depend on xj , i ̸= j, then we can take T = I if and
only if g′(a) is diagonal.

Note: Spivak’s original question does not include the stipulation that fi does
not depend on the other variables, but it is incorrect as stated.

(a) Proof. First note that it suffices to prove the case g′(a) = I. In the general case, we
would consider (Dg(a))−1 ◦g, and then g may be written as Dg(a) composed with the
representation produced in the identity case.

Recursively define the following:

g1(x) = (g1(x), x2, . . . , xn)

g2(x) = (x1, g
2(g−1

1 (x)), x3, . . . , xn)

...

gn(x) = (x1, . . . , xn−1, g
n(g−1

1 (. . . (g−1
n−1(x)))))
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The fact that each g−1
i exists is by the Inverse Function Theorem, since each has

g′i(a) = I and thus there is an open set around a where all gi are invertible. It follows
that

g = gn ◦ . . . ◦ g1

(b) ( =⇒ ) Suppose T = I. Then if j ̸= i, we have

Djgi(a) = Dj(g
i ◦ (g−1

1 ◦ . . . ◦ g−1
i−1)(a))

= Djg
i(g−1

1 ◦ . . . ◦ g−1
i−1)(a)︸ ︷︷ ︸

=0

Dj(g1 ◦ . . . ◦ gi−1)(a)

= 0

so g′(a) is diagonal.

( ⇐= ) Suppose

g′(a) =

a1 . . .

an


where each ai is nonzero. Then g ◦ [Dg(a)]−1 satisfies

(g ◦ [Dg(a)]−1)′(a) = g′(Dg(a)−1(a))[g′([Dg(a)]−1(a))]−1 = I

So we have g = gn ◦ . . . ◦ g1 ◦Dg(a). Since Dg(a) is of the form

Dg(a) = f1 ◦ . . . ◦ fn

we can write
g = gn ◦ . . . ◦ g1 ◦ f1 ◦ . . . ◦ fn

Since fi only depends on and changes the ith coordinate, and the same is true for gi,
we can freely interchange them so long as the relative order of gi, fi is preserved for
each i. So this becomes

g = (gn ◦ fn) ◦ . . . ◦ (g1 ◦ f1)
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Define f : {r : r > 0} × (0, 2π) → R2 by f(r, θ) = (r cos θ, r sin θ).

(a) Show that f is injective, compute f ′(r, θ), and show that det f ′(r, θ) ̸= 0 for all
(r, θ). Show that f({r : r > 0}×(0, 2π)) is the set A = {x < 0 or x ≥ 0, y ̸= 0},
as in Exercise 2-23.

(b) If P = f−1, show that P (x, y) = (r(x, y), θ(x, y)), where

r(x, y) =
√
x2 + y2

θ(x, y) =



arctan y
x , x > 0, y > 0

π + arctan y
x , x < 0

2π + arctan y
x , x > 0, y < 0

π
2 , x = 0, y > 0
3π
2 , x = 0, y < 0

Find P ′(x, y). P is called the polar coordinate system on A.

(c) Let C ⊆ A be the region between the circles of radius r1 and r2 and the half-
lines through 0 which make angles of θ1 and θ2 with the x-axis. If h : C → R
is integrable and h(x, y) = g(r(x, y), θ(x, y)), show that∫

C

h =

∫ r2

r1

∫ θ2

θ1

rg(r, θ) dθ dr

If Br = {(x, y) : x2 + y2 ≤ r2}, show that∫
Br

h =

∫ r

0

∫ 2π

0

rg(r, θ) dθ dr

(c) If Cr = [−r, r]× [−r, r], show that∫
Br

e−(x2+y2) dx dy = π(1− e−r
2

)

and ∫
Cr

e−(x2+y2) dx dy =

(∫ r

−r
e−x

2

dx

)2

(e) Prove that

lim
r→∞

∫
Br

e−(x2+y2) dx dy = lim
r→∞

∫
Cr

e−(x2+y2) dx dy

and conclude that ∫ ∞

−∞
e−x

2

=
√
π
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(a) Proof. Suppose r1 cos θ1 = r2 cos θ2 and r1 sin θ1 = r2 sin θ2. Then

r21 = r21(cos
2 θ1 + sin2 θ1) = r22(cos

2 θ2 + sin2 θ2) = r22

so r1 = r2. So sin θ1 = sin θ2 and cos θ1 = cos θ2, and we conclude that θ1 = θ2. We
have

det f ′(r, θ) = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r > 0

f(r, θ) ∈ R2 \ A only if y = 0 and x ≥ 0, which implies sin θ = 0 and cos θ > 0 and
thus θ = 0, or sin θ = cos θ = 0 which is impossible. So f({r : r > 0} × (0, 2π)) ⊆ A.
Let A = (x, y). Then take

r =
√
x2 + y2

θ =



arctan y
x , x > 0, y > 0

π + arctan y
x , x < 0

2π + arctan y
x , x > 0, y < 0

π
2 , x = 0, y > 0
3π
2 , x = 0, y < 0

So A ⊆ f({r : r > 0} × (0, 2π)) and we have equality.

(b) Proof. It suffices to check that r(f(r, θ)) = r and θ(f(r, θ)) = θ. The first equality is
easy:

r(f(r, θ)) =
√
r2 cos2 θ + r2 sin2 θ = r

For the second: 

0 < θ < π
2 =⇒ cos θ > 0, sin θ > 0

π
2 < θ < 3π

2 =⇒ cos θ < 0
3π
2 < θ < 2π =⇒ cos θ > 0, sin θ < 0

θ = π
2 =⇒ cos θ = 0, sin θ > 0

θ = 3π
2 =⇒ cos θ = 0, sin θ < 0

Since r > 0, all of the following remain true when cos θ is replaced by f1 and sin θ by
f2. So we have

0 < θ < π
2 =⇒ θ(f(r, θ)) = arctan tan θ = θ

π
2 < θ < 3π

2 =⇒ θ(f(r, θ)) = π + arctan tan θ = θ
3π
2 < θ < 2π =⇒ θ(f(r, θ)) = 2π + arctan tan θ = θ

θ = π
2 =⇒ θ(f(r, θ)) = π

2 = θ

θ = 3π
2 =⇒ θ(f(r, θ)) = 3π

2 = θ
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We have

D1P
1(x, y) = D1r(x, y) =

x√
x2 + y2

D2P
1(x, y) = D2r(x, y) =

y√
x2 + y2

D1P
2(x, y) = D1θ(x, y) =

1

1 + y2

x2

(
− y

x2

)
= − y

x2 + y2

D2P
2(x, y) = D2θ(x, y) =


1

1+ y2

x2

1
x = x

x2+y2 , x ̸= 0

0, x = 0

so

P ′(x, y) =

[
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

]

(c) Proof. Let C ′ = P (C) = (r1, r2)×(0, 2π), so that C = P−1C. Note also that h = g◦P .
P−1 is continuously differentiable by the Inverse Function Theorem, so by the Change
of Variables theorem,∫

C

h =

∫
C′
(h ◦ P−1)|det(P−1)′| =

∫
C′
(h ◦ P−1)

1

|detP ′|
=

∫
C′
g

1

|detP ′|

We can calculate,

detP ′(x, y) =
x2 + y2√
x2 + y2

3 =
1√

x2 + y2
=

1

r

So ∫
C′
rg =

∫
(r1,r2)×(0,2π)

rg

By Fubini’s Theorem, this becomes∫
C

h =

∫ r2

r1

∫ 2π

0

rg(r, θ) dθ dr

Similarly, let B′
r = P (Br) = (0, r)× (0, 2π). By similar logic,∫

Br

h =

∫
B′
r

(h ◦ P−1)
1

|detP ′|
=

∫
B′
r

gr =

∫
(0,r)×(0,2π)

gr =

∫ r

0

∫ 2π

0

rg(r, θ) dθ dr

(d) Proof. Using the result from part c),∫
Br

e−(x2+y2) dx dy =

∫ r

0

∫ 2π

0

re−r
2

dθ dr =

∫ r

0

2πre−r
2

dr = −πe−r
2

|r0 = π(1−e−r
2

)
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By Fubini’s Theorem,∫
Cr

e−(x2+y2) dx dy =

∫ r

−r

(∫ r

−r
e−x

2

e−y
2

dy

)
dx

=

∫ r

−r
e−x

2

(∫ r

−r
e−y

2

dy

)
dx

=

(∫ r

−r
e−x

2

dx

)2

(e) Proof. The quantity e−(x2+y2) is positive everywhere. So for any r, there exists r′ > r
such that Cr ⊆ Br′ , giving∫

Cr

e−(x2+y2) dx dy ≤
∫
Br′

e−(x2+y2) dx dy

But we can also pick r′′ so that Br ⊆ Cr′′ so that the other direction is true. This
shows that

lim
r→∞

∫
Br

e−(x2+y2) dx dy = lim
r→∞

∫
Cr

e−(x2+y2) dx dy

Then we have ∫ ∞

−∞
e−x

2

dx = lim
r→∞

∫ r

−r
e−x

2

dx

= lim
r→∞

√∫
Cr

e−x2+y2 dx dy

=

√
lim
r→∞

∫
Cr

e−x2+y2 dx dy

=

√
lim
r→∞

∫
Br

e−x2+y2 dx dy

=
√

lim
r→∞

π(1− e−r2)

=
√
π
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Definitions

angle preserving, 7

Cavalieri’s Principle, 88

directional derivative, 51

inner product preserving, 6

Leibnitz’s rule, 83

norm preserving, 6

orthogonal, 11

polar coordinate system, 96
Pythagorean Identity, 11

Taylor polynomial, 24
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