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Introduction

This document contains exercises to selected solutions in the book Calculus on Manifolds, by
Michael Spivak. These solutions were written as part of personal self-study during Summer
2024.



Chapter 1

Solutions to Selected Exercises

1.1 Chapter 1 Exercises

Exercise 1-1 Prove that |z| < Y7, |2;| for any z € R™.

Proof. Let x = (1,...,%,) € R™ be arbitrary. For each 1 < ¢ < n, let us denote by (z;)

the vector [0 ... z; ... O]T, with the x; term in the ith coordinate. Then for each 1,
we have the following:

|(@i)] = V/(2:)? = |

Moreover, by construction we have = (x1) + ...+ (z,,). By repeated application of the
triangle inequality, we have

o =1 ()] <D @) =) |l O
=1 i=1 1

1=

Exercise 1-2 When does equality hold for the triangle inequality?

I claim that |z + y| = |2| + |y| if and only if y = Az for some A > 0, or x = 0.

Proof. x = 0 clearly satisfies the triangle inequality, so assume x # 0. Following the proof
of the triangle inequality given by Spivak, we already see that z,y being linearly dependent



is certainly a necessary condition. Thus, assume that y = Az for some A € R. Then

o+ y)> = (i + w)?
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When A > 0 we have
2 + [Axf? + 2M|z| = |2 + 2fal| x| + A2 f? = (J2] + [Ax])? = (Ja] + |y])?

where equality follows by taking the square root on both sides.

When A < 0 this becomes

2] + [Ax]? + 2M|z] = |2 + —2fzl|Ax] + Az = (2] = [Az])? = (2] — |y])?

By taking square roots on both sides, we have |z 4+ y| = |z| — |y| # |z| + |y| where the
inequality holds since x # 0, A # 0 means that |y| # 0. Thus y = Az for A >0, or x =0 is

a necessary and sufficient condition. O
Exercise 1-3 Prove that |x — y| < |z| + |y| for any z,y € R™.
Proof. Let x,y € R™ be arbitrary. Then
|z —yl =z + (=1xy)| < ||+ [(=1) *yl = [z[ + [ = Uyl = |z| + |yl O
Exercise 1-4 Prove that ||z| — |y|| < |z — y|.
Proof. We expand:
n
=y =S (s — )
i=1
n n n
=2 @i+ )yl -2
i=1 i=1 i=1
> |2* + |y|? — 2|=||y|(by Cauchy-Schwarz)
= (lz| —[yl)?
Taking square roots on both sides (using the fact that it is order-preserving), we get
[z =yl = |lz] = [yll O



Exercise 1-5 The quantity |y — z| is called the distance between x and y. Prove
and interpret geometrically the inequality |z — x| < |z —y| + |y — z|.

Proof. Noting that |z — x| = |(z — y) + (y — 2)|, this is a simple application of the triangle
inequality. This says that the sum of the lengths of any two sides of a triangle must be
greater than the length of the third. O

Exercise 1-6 Let f, g be integrable on [a, b].

()Provethat|f fal < ff2 beQ%

(b) If equality holds, must it be true that f = Ag for some A € R? What if f, g are
required to be continuous?

(¢) Show that the Cauchy-Schwarz inequality is a special case of (a).

(a) Proof. We consider the cases 0 = f:(f — Ag)? for some A € R, and 0 < f:(f —Ag)?
for all A.

Case 1: Here, we have

O/ab(ng)z/abeQ)\ngr)\Q Q/lef22)\/abfg+/\2/abgz

if A =0, then f (and thus fg) is zero on a set of measure 1, immediately making both
sides of the inequality 0. Thus assume that A # 0, which implies

[redfreifs
L (L 0
(£7)(1
L)1)

Taking the square root on both sides gives | f fgl < f f?) f )z, as desired.
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Case 2: Here, we have

/ab(f—g)2>0=>/abf2+/abg2>2/abfg



Squaring both sides,

/b 2 1, L, 1 b b

fa] <|5 / i I / 9 +5 / f / g

a 2 a 2 a 2 a a

and the rest of the proof is identical to the first case. O

(b) Proof. Examining the proof of part (a), we must have 0 = f:( f — A\g)? for equality
to hold. This implies f — Ag is 0 almost everywhere, so f = Ag almost everywhere.
However, it may not be the case that f = Ag everywhere (consider f = 0 and g = 0
except at countably many points). When f, g are required to be continuous, then they
cannot differ on a set of measure zero, so equality implies f = Ag for some A € R. [

(¢) Proof. Let x,y € R™ be arbitrary. Define f : [0,n) — R such that f = x; on the
interval [i — 1,4) and define g similarly for y. Then

n n n n n n
/ fQZszz:WlQ’/ gz:zy?=|y|27/ fg="> iy
0 i=1 0 i=1 0 i=1

Then by part a,
n b b %
=‘/ fg‘<</ f2> (/ 92> — eIy O
0 a a

N

n
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Exercise 1-7 A linear transformation 7' : R™ — R" is norm preserving if |T'(x)| =
|z| for all z € R™, and inner product preserving if (Tz,Ty) = (x,y) for all
z,y € R™.

(a) Prove that T is norm preserving if and only if T is inner product preserving.

(b) Prove that such a linear transformation 7T is one-to-one and T~! is of the same
sort.

J

(a) Proof. ( = ) Suppose T is norm preserving. Then for any z,y € R™, we use bilin-
earity of the inner product:

(Tz,Ty) = (Tw =Ty + Ty, Ty)
= (Tx — Ty, Ty) +(Ty,Ty)
=Tz —-Ty,Ty—Tx+Tz)+ |Ty|
=(Te—Ty, Ty —Tx)+ (Tex—Ty,Tz) + |Ty|
= |Tz| - (Ty, Tz) + |Ty| — [Tz — Ty|
which gives
1
(Tx, Ty) = B (|ITx| +|Ty| — |T(z —y)|) (by linearity of T')
1
= 5(\$| +lyl— |z —y|) (by norm preserving)
= (z,9)



where the last line follows through a similar calculation as the first part.

( <) Suppose T is inner product preserving. Then for any x € R™,
|Tx| = (Tx, Tx) = {x,x) = ||
where the second equality follows since T' preserves inner products. O

Proof. Suppose T is inner product/norm preserving. Suppose Tx = Ty. Since T is
linear, we have T'(x —y) = 0. So |T(x — y)| = 0. But T is norm preserving, so
|z —y| = 0, which occurs only when z —y = 0, showing that x = y. So T is one-to-one.

Let T—! denote the inverse of T  (which exists since T is an injective endomorphism
on finite dimensional vector spaces). Then let z € R™ be arbitrary. Since T is norm
preserving, we have

T | = |TT x| = ||

so T~ is norm preserving as well. O

Exercise 1-8 If x,y € R™ are nonzero, then the angle between z and y is denoted
/(z,y), which is defined as arccos ( (@.y) ) This is well-defined since

Cauchy-Schwarz. The linear transformation 7" is angle preserving if 7" is one-to-one
and for any z,y # 0 we have £(Tx,Ty) = Z(x,y).

() | <1 by

|z |yl [z[-Tyl | =

(a) Prove that if T is norm preserving, then 7' is angle preserving.

(b) If thereis a basis z1, ..., z, of R"” and numbers Ay, ..., A, such that Tz; = \;z;,
prove that T is angle preserving only if all |);| are equal. (Note: Spivak’s
original exercise has an if and only if here, but this is false.)

(¢) What are all angle preserving T : R™ — R"?

(a)

(b)

Proof. Since T is both norm preserving and inner product preserving by

we have
(Tz,Ty) _ (z,y)
Tx|-|Tyl =] - [yl
" (T2, 7y) (@.9)
L, 1Yy LY
Z(Txz,Ty) = arccos <) = arccos < ) = L(z,y) O
T - [Tyl jz] - [yl

Proof. Proof by contrapositive. Suppose |\;| # |);| for some ¢ # j. Then consider the

vectors
P i v
B E i



Since z;, x; are linearly independent, neither v; or vy is the zero vector. Then we have

|4 |
<CEZ' +£L'j,$1' — \z;|$]
|24 |

E

cos Z(v1,v2) = cos arccos

i + 2w — 17575
|z
EZIR
_

\

i + @l — ]

@
=0

il — {2zl ?

On the other hand,

COSs Z(T(’Ul),T(’UQ)) = COS Z()\le + )\jxj, /\ixi - >\J||;CZ||$J)
J
A7zl = A3 ]?

|z

where the last inequality holds since |\;| # [\;| = \? # )\?. So if [A;| # |A;|, then
T is not angle preserving. So T is angle preserving only if |A\;| = [A;] for all4,5. O

(c) Intuitively, the answer is that 7" must consist of only rotation and scaling by a constant
factor. More rigorously, the singular values of T' must all be 01 = ... = 0,, = k for
some k > 0. We do not provide a full proof here.

Exercise 1-9 If 0 < < m, then let T : R? — R? have the matrix in the standard
basis given by

—sinf cosf

[ cosf  sin 0]

Show that T is angle preserving, and that for any = # 0, Z(z,Tx) = 6.

.

Proof. To show that T is one-to-one, we instead prove that T is invertible. Consider the

matrix
T cos(—0)  sin(—6)
" |—sin(—6) cos(—0)
Then
;. [ cosf sinf] [cosf —sind
T = |—sinf cos 9] [sin@ cos @ ]
B cos? 6 + sin” 0 —cosfsinf + cos O sin f
- | —cosfsinf + cos 0 sin sin? 0 + cos? 0
o
o1

Since T is square and TT" = I, we have T'T = I so T is invertible and thus must be
one-to-one.



Let x,y # 0 € R? be arbitrary. Suppose = (21, %2), ¥y = (y1,¥2). Then

cos £ (x,y) = T1Y1 + T2y2
Vi + a3y + 3

Moreover, Ta = (21 cos +x9sind, x5 cos§ —xq sinf) and Ty = (y1 cos O+ yo sin 6, ys cos § —
y1 sin@. Then we have

(Tz, Ty) = (x1 cos 0 + x2sin0)(y; cosf + yasin @) + (x2 cos @ — x1 sin ) (y2 cos § — y; sin 0)

= 2131 (cos?  + sin” §) 421y, (cos O sin @ — sin 6 cos §)

=1 =0
+ 2oy1 (sin @ cos O — sin @ cos 0) +z2ys (sin 6 4 cos? §)

=0 =1
=21y1 + T2y2 = (T, V)

and
|Tx| = /(1 cos O + x5 5in0)2 + (x5 cosf — x; sin h)2
= \/x% (cos? 0 + sin® 0) + 23 (sin? 6 + cos? 0)
_Jaea
= |z|
Similarly,
Tyl = |yl
Then
<T:E7Ty>>
/(Txz,Ty) = arccos (
(2] [TolITy)
= arccos ((:E,y))
|2|[yl
= L(z,y)

Lastly, using the fact that |x| = [Tz,
(x, Tx)
Z(x, Tx) = arccos (
||| T

23 cos O + x1298in 0 + 23 cos§ — r1z2 800
= arccos

|z|?
2 2
= arccos | cos le t
|z[?
= arccos cos



Exercise 1-10 If T : R™ — R" is a linear transformation, show that there is a
number M such that |T'(h)| < M]|h| for h € R™.

Proof. By singular value decomposition, there are orthonormal bases B = {u1,...,umn} C
R™ and C = {vy,...,v,} C R™ as well as scalars o > ... > 7, > 0 such that Tu; = o;v;
for all i (with Tu; = 0 for any j > n). Then for any h € R™, if we suppose that h =
aiuq + ...+ @y, then we have

|Th| = |T(a1u1 + ... + amm)|
=la1Tus + ...+ amTum|

=la10101 + ... + QO |

(where the indices only run to n if n < m). Now since C is orthonormal, the Pythagorean
identity gives

la101v1 + ...+ A Omm|? = a20) + ...+ a2,02, < (op)*(a? + ... +d2)
But since B is also orthonormal, we have (a? + ...+ a2,) = |h|?. So
Th|* < of|hl* = |Th| < o1]h]

so our choice of M = o1 works. O

Exercise 1-11 If z,y € R™ and z,w € R™, show that {(z, 2), (y,w)) = (z,y)+(z, w),
and that |(x,2)| = /|z|? + |2|?. Recall that (z,z) € R™™ is the concatenation of x
and z.

Proof. For the first statement,

n+m

(2, 2)(yw) = ) (@, 2)ily,w)i
i=1

=2 (@ 2)ilg w)i + 3@ 2 (4 W)

n m
=D T+ ) 5w
1=1 j=1
= (z,y) + (z,w)
For the second statement,
|z, 2)* = ((z,2), (2, 2)) = (&, 2) + (2, 2) = |2]* + |2
where the second equality is by the first statement. Taking square roots on both sides

recovers |(z, z)| = v/|z|? + |2|2. O

10



Exercise 1-12 Let (R™)* denote the dual space of R™, which is the space of all linear
functions f : R™ — R. If x € R", then define ¢, € (R™)* such that ¢,(y) == (z,y).
Define T': R™ — (R™)* such that T'(z) = ¢,. Show that T is one-to-one and conclude
that each ¢ € (R™)* is ¢, for a unique = € R™.

Proof. Suppose ¢, = ¢,. Then (z,z) = (y, 2z) for all z € R". Choosing z = « — y, this gives
0= <$7Z> - <y,Z> = <13—y72’> = (x—y,z—y) = |x—y|

which implies that |z — y| is the zero vector. So & = y. The rest of the proof follows since
dimR™ = dim(R™)*, so T is injective between vector spaces of the same dimension and is
thus surjective and bijective. O

Exercise 1-13 (Pythagorean Identity) If z,y € R™, then = and y are called
orthogonal if (x,y) = 0. If z and y are orthogonal, prove that |z + y|*> = |z|? + |y|*.

Proof. By the definition of the norm and bilinearity of the inner product,

lz+yl? ={z+y,z+y)
= (z,z) + (y,y) +2(z,y)
=0
= |z* + [yl O

Exercise 1-14 Prove that the arbitrary union of open sets is open. Prove that the
finite intersection of open sets is open. Show that an infinite union of open sets need
not be open.

Proof. Let U = |J,c; Us be the union of some open sets over an arbitrary indexing set I.
Then for any = € U, x € U; for some i. Then « € B C U; for some open rectangle B. Since
BCU;, BCU,soxe BCU. SoU is open.

Let U = U; N U for some open sets Uy, Us. Let © € U be arbitrary. Then = € B, (z) C Uy
and z € B,,(x) C Uy for some radii r1,r2. Taking r = min{ry,r2} > 0, we have z €
B,(z) € B, CU; and B,(z) C B, C Us, so x € B.(z) C U. By induction, this extends to
any finite intersection.

The intersection of the sets (—1/n,1/n) for n € N is the singleton {0}, which is not open. [

Exercise 1-15 Prove that the open ball B,(a) = {z € R" : |z — a| < r} is indeed
open.

Proof. When r = 0, B,(a) = @ which is vacuously open. If r > 0, then pick some z €
B.(a). Let v = r — |z — a|. Then if z = (x1,...,2,), consider the box B with sides

11



(x1—7"/n, 147" /n)x. . . X (xn—1" /0, zn+7" /n). For any other y € B, we have |z;—y;| < 1'/n
by construction, so
|t —y| <|z1 —wyi] 4+ ...+ |20 —yn| <77

By the triangle inequality,
y—al=ly—z—(a-a)<|ly—2zl+la—2[<r'+]a—z|=r—|z—a|+|z—a|=r

So y € B,(a), and thus B C B,(a). So B,(a) is open. O

Exercise 1-16 Find the interior, exterior, and boundary of the following sets:
1. A={z eR": |z| <1}
2. B={zeR":|z| =1}

3. C:={x € R": each coordinate z; € Q}

1. We proved in [Exercise 1-15|that B;1(0) C A is open. So B1(0) C int A.

I claim that R™ \ A = ext A. Let € R" \ A. Then take the open ball B, _(z). For
any y € Bz —1(x), the reverse triangle inequality tells us

lyl = [ly — 2| — |«]]
Since y € Bjy—1(), |y — x| < |z| = 1. So |y — x| — |z| < —1, and thus
yl = |ly — | = ||| = 1

soy € R"\ A. Thus R"\ A C ext A, but ext A CR™\ A (this is easy to see based on
the definition of ext A), so R™ \ A = ext A.

Lastly, for any x with |z| = 1, pick any open ball B, (x). Then the point y = = + fx
has
| —x|:‘1x‘zf lz| <r
Y 2"l 7 2
=1
So y € B,(x). Moreover,
r
yl = (1+5) Jal >1
2/ <~
=1

soy € R™\ A. On the other hand, a similar calculation shows that z = x — fz € B,(x)
isin A. So the set of points with |z| = 1 is a subset of A. But int ALUJAUext A = R™,
and we have already partitioned R"™, so our subsets must be equalities and we must
have int A={z : |z| <1}, 0A ={z: |jz| =1}, ext A= {x: |z] > 1.

2. By the same argument as before, the set of |x| > 1 is a subset of ext B. By a similar
argument, the set of |z| < 1 is also a subset of ext B. Lastly, the same argument
shows that B itself is not a subset of int B. But B cannot be in ext B, so we must
have int B =@, 0B = {z : |z| = 1}, ext B = {x : |z| # 1}.

12



3. Let x € R™ be arbitrary. Then let D = (y1,21) X ... X (Yn,2n) be an arbitrary
open rectangle containing x. By the density of Q in R, we can pick rational numbers
q; € (yi, 7). Then the point ¢ = (q1,...,¢,) € C and g € D, so D contains points of C.
Similarly, we can construct a point with all irrational coordinates p = (p1,...,pn) ¢ C
and p € D, so D contains points of R"\ C. Thus z € 9C. x was arbitrary, so 9C = R"
and intC = extC = @.

Exercise 1-17 Construct a set A C [0, 1] x [0, 1] such that A contains at most one
point on each horizontal and each vertical line but has ext A = [0, 1] x [0, 1].

We construct sets recursively as follows: for Ay, pick a point in each quadrant of [0, 1] x [0, 1],
such that none lie on the same horizontal or vertical line. For As, pick a point in each
sixteenth of [0, 1] x [0, 1] such that none lie on the same horizontal or vertical line, and none
lie on the same horizontal or vertical line as the points in A;. Continue doing this, picking
4 points for A; such that no point x € A; shares a vertical or horizontal line with a point
y € Uj_; Ak. This is possible because each choice of point removes only a single vertical
line and horizontal line from our possible choices, which is a set of measure zero, so we
always have a set of measure one to choose from. Then take our set to be A = Uzo; A;. By
construction, this set satisfies the vertical/horizontal line property. This set has no interior,
since a nontrivial open rectangle being a subset of A would violate the vertical/horizontal
line condition. Moreover, for any point € [0, 1] x [0, 1] and any radius r, we simply look in a
(4%)-ant of length r/2 or less in order to find a point y that is close to z. So A = [0, 1] x [0, 1].

Exercise 1-18 If A C [0,1] is the union of open intervals (a;,b;) such that any
rational number in (0, 1) is in (a;, b;) for some i, prove that 0A = [0,1] \ A.

Proof. Since A is the union of open intervals, A is open and thus int A = A. T claim that
ext A = R™\ [0,1]. Clearly R™\ [0,1] C ext A. Then take some point x € [0,1]. For any
open interval (a, b) containing z, the density of Q tells us that there is a rational number in
(a,b)N10,1], so x ¢ ext A. So ext = R™\ [0, 1], int A = A, and this forces 94 = [0,1]\ A. O

Exercise 1-19 If A is a closed set that contains every rational r € [0, 1], show that
[0,1] C A.

Proof. Suppose not. Then there is some z € [0,1] with x € R” \ A. z must be in (0, 1),
which is open. Moreover, x € R™\ A, which is open since A is closed, so z € (R™\ A)N(0,1)
which is open (since the finite intersection of open sets is open). Take some open interval
x € (a,b) C (R™\ A)N(0,1). By the density of Q, there is a rational r in (a,b). But r € A
by definition, so (a,b) € R™ \ A, so R™\ A isn’t open, which contradicts the assumption
that A is closed. So we must have [0,1] C A. O

[ Exercise 1-20 Prove that a compact subset of R™ is closed and bounded. ]

13



Proof. Suppose K C R™ is compact. The collection of open rectangles (i — 1,7+ 1) x (j —
L,j4+1)...x(k=1,k+1) fori,j,...,k € Z covers R, so it covers K. Then a finite number
of these boxes covers K, so it is bounded.

We wish to show that R™ \ K is open. Suppose it is not. Then there is some z € R" \ K
such that for all open balls B,(z), By(x) N K # &. We can construct a sequence of points
Y1,Y2,- .. € K as follows: Pick some ry, say r1 = 1. Then B, (x) contains some point y; € K.
Let ro = |y1 — x| (note this is strictly less than r since y1 € By, (z) = |y1 — x| < r1).
Next, B,.,(z) contains some other point yo € K, and |y2 — z| < ro = |y1 — z|. Continue this
to construct a sequence of points y1,ys,... € K such that |y — x| > |ya — x| > .. ..

We use this sequence to create an open cover of K. Let r; = |y; — z|. Let C be the closed
ball with radius ro and center z. The set R™ \ C is open, since its complement C' is closed.
Now let R; :== {y : 742 < |y—2| < r;} be the open ring with outer radius r; and inner radius
rive. Then | JR; = {y : l[y—z| < r1} = B, (x) contains all points with distance |y —z| < ry.
R™\ C contains all points with distance |y — x| > ra. But r2 <ry, 80 R*\CUJR; = R™.

Thus the collection O = {R™\ C, Ry, Ry, ...} covers R” and thus K. But if we pick only a
finite number of these, then there is some R; in the finite subcover such that i is maximal
in the subcover, so the points y;+2,yit3, ... are not contained in the subcover, and thus K
is not compact. So if K is compact, then it is closed. O

Exercise 1-21

1. If A is closed and = ¢ A prove that there is a number d > 0 such that y —x > d
for all y € A.

2. If A is closed, B is compact, and AN B = &, prove that there is d > 0 such
that |y — x| > d for all y € A and = € B.

3. Give a counterexample in R? if A and B are closed but neither is compact.

1. Proof. Since A is closed, R™\ A is open. Let « ¢ A. Then x € R™\ A, so there is an open
ball B,(x) C R"\ A. Then we have [t —y| <r = y€ B, (vr) CR"\A = y ¢ A,
and thus for any y € A we must have |z —y| > r. O

2. Proof. For each point b € B, part (a) tells us there is a distance 7, such that |b—y| > 7y
for any y € A. Consider the collection of open balls (B,,2(b))sep. This collection
covers B, so we pick a finite subcover {Brbl/g(bl),BTb2/2(b2), ooy By, o(bn)}. For
any € B, x € B,, /3(b;) for some i. Then by the reverse triangle inequality, for any
y € A, we have

ly —z| = |y —bi — (x = b;)| > ||y — bi| — [z — bil|

Since y € A, |y — bi| > 1p,. Since x € B, j2(bi), |v —bi| <1p,/2 <1y, < |y — by]. So
the quantity |y — b;| — |z — b;| is positive, so

Tb; Tb; min i<n Tb;
ly—al 2 ly = bil = |z = bil 21y, — o = Z%

14



Since rp, > 0 for all ¢ and there are finite ¢, minr;, is well defined and positive. Thus
for arbitrary y € A, x € B, we have |y — x| > minr, /2 = d > 0. O

3. We deﬁne two sets as follows: first, pick A = N. Next, pick B = {x1, 3, ...}, where
=i+ == l+1 Since z; is never an integer ANB = @. However, let r > 0 be arbitrary.

Then pick 7 large enough that —5 < r. Choosing z = x;, y = 7, we have

[z —y| = [z —i] = <r

1] 1
i+1] i+1

Exercise 1-22 If U is open and C C U is compact, show that there is a compact
set D such that C Cint D and D C U.

Proof. Since U is open, R™\ U is closed. Thus by part (b), there is a distance
d such that |y — 2| < d for any x € C and y € R*\ U. Let B, = By(z) be the open ball
of radius d and center z. Let B, = By(z) = {y : |y — 2| < d} be the closed ball of radius d
and center x.

The collection (B;)zec is an open cover of C compact, so we pick a finite subcollection
By,,...,Bg,. Thenlet D =B, U...UB,, . We have B;, D B, for all ¢, so

i=1 i=1

so C C D. Moreover, for any point y € R*\ U and € D, z € B,, for some i. Then
|z — x;] < d/2, and |y — x;| > d, so

d d
|3/—$|2|\y—$i|—|x—$i”2d—§:§>0

so DNR"\ U = @ and thus D C U. O

Exercise 1-23 If f: A — R™ and a € A, show that lim,_,, f(z) =b = (b1,...,bm)
if and only if lim, ., f*(z) = b; for each i (recall f? is the ith component function).

Proof. ( = ) Suppose lim,_,, f(x) = b. Then for any ¢ > 0, there is § > 0 such that
|z —a] < and x € A implies |f(z) — b| < e. Then for any such x, we have |fi(x) — b;|? <

Z;”Zl |f9(z) = bj|? = |f(x) —b]* <% so |fi(x) — b;| < e. So limg_, fi(x) = b;.
Suppose lim,_., fz(rr) = b, for each i. Then for any € > 0, pick é; > 0 for each ¢ such that
|z —al <& = |f(z) —b;| <e/\/m. Let 6 = miné;. Then for any x with |z — a| < 6,

—b)? = Zw ) = bi|? < e?/m = €2

so |f(xz) —b| < € and thus lim,_,, f(z) = b. O

15



Exercise 1-24 Prove that f : A — R™ is continuous at a if and only if each f? is.

Proof. Immediate from O

Exercise 1-25 Prove that a linear transformation 7" : R™ — R™ is continuous.

Proof. From [Exercise 1-10, we know that there exists M > 0 such that |T'(h)| < M]|h| for
all h. Then at any point a € R™, let € > 0 be arbitrary. Set 6 = /M. Then for any x € R"
with | — a| < §, we have

\T(z)—T(a)|:|T(:c—a)|§M|x—a|<M%:s O

Exercise 1-26 Let A = {(z,y) € R? : 2 > 0 and 0 < y < z?}.

(a) Show that every straight line through (0,0) contains an interval around (0, 0)
which is in R? \ A.

(b) Define f : R2 - R by f(z) =0ifz ¢ A and f(z) = 1if z € A. For h € R?
define g, : R — R by gn(t) = f(th). Show that each gy, is continuous at 0, but
f is not continuous at (0,0). (This problem shows that f is continuous in any
direction, but not continuous as a two-variable function).

(a) Proof. Suppose y = ma defines a straight line through (0,0). When m = 0 one can
verify that that the entire line is in R\ A since y = 0. (For a vertical line we similarly
have x = 0 so the line is in R™ \ A). Then consider the interval [—|m|,|m|]. The
portion of the line with x < 0 is automatically in R? \ A, but for any = € (0, |m|],

2 <|mlr=y
so the entire interval [—|m|, |m]] is in R? \ A. O

(b) Proof. Pick some g;. By part (a), there is an interval about 0 such that th € R?\ A4,
5o gn(t) = 0. So gx(t) = 0 on an interval about 0, so lim;_,0 gn(¢f) = 0 = g, (0). Thus
each g, is continuous at 0.

To show f is not continuous at 0, pick € = 1/2. Let 6 > 0 be arbitrary. Assume ¢ < 1
since this will automatically prove larger §. Then the point = (§/2,46%/5) is in A, so
f(z) = 1. Moreover,

§ 6 6 46
—0l = <1 <24
|z — 0] |x|_2+5_2+5<6
But |f(z) — f(0)] = |1] =1 > ¢, so f is not continuous at 0. O

Exercise 1-27 Prove that {x € R : |z — a| < r} is open using the topological
condition.
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Proof. Consider the function f : R™ — R with f(z) = |z — a|. To prove f is continuous,
pick some point y. Then let € > 0 and set § = ¢. Then we have

-yl <d = [f@) - fWl=lle—a-ly—dl<|z—a-(y—a)=|z -y <i=¢

so f is continuous. Thus the preimage of the open ball B,.(0) under f is open, but this is
precisely the set {z € R" : f(z) = |z —a| <r}.t O

Exercise 1-28 Suppose A C R" is not closed. Show that there exists an unbounded
continuous function f: A — R.

Proof. Let A C R™ be not closed. Then R™\ A is not open, so there exists a point € R™\ A
such that every B,.(x) contains a point in A. Then define f : A — R by
1
fw) =
W=l

To verify that this function is continuous, first consider the function |y — z|. Letting a € A
be arbitrary, for any ¢ > 0 set § = ¢. Then for any b € A with |b — a| < §,

1f() = fla)| =b—z|—la—z]|<|b—a| <d=¢
So y — |y — x| is continuous. Then since |y — z| # 0 for y € A, and f is the quotient of
nonzero continuous functions, f is continuous.

To show that f is unbounded, pick M > 0. Then by our choice of z, the ball By (x)
contains a point y € A. Then
1

_ - M ]
ly — 2|

f(y)

>

i‘»—t‘ —

Exercise 1-29 Let K C R” be compact, and let f : K — R be continuous. Show
that f attains a maximum and minimum value.

Proof. Since K is compact and f is continuous, f(K) is compact. Specifically, it is bounded,
so let @ = sup f(K). We want to show o € f(K). By way of contradiction, suppose
a ¢ f(K). Then since f(K) is closed, R\ f(K) is open, so there is an interval (o — e, a+¢)
that doesn’t intersect f(K). But then o — ¢ is also an upper bound for f(K), contradicting
that fact that o = sup f(K). So we must have sup f(K) = max f(K) € f(K), and thus
there is a y € K such that f(y) = max f(K). The proof for the minimum is similar. O

Exercise 1-30 Let f : [a,b] — R be increasing. Let x1,...,z, € [a,b] be distinct.
Show that

n

> o(f,:) < f(b) - f(a)

i=1
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Proof. Note that since f is increasing, for any [c,d] C [a, b], we have

max f(z) = f(d), I[nldI]l f(z) = f(c)

)

In particular, M (f,z,d) = f(x+0) and m(f,z,9) = f(x—9),s0 f(z+9)— f(x—0) > o(f, ).

We may suppose that the x; are ordered, so that z; < ... < x,. Pick § small enough that
|ziy1 — x;] < 0 for all 6. This gives us disjoint intervals [z — 8,21 + 9], ..., [xn — 0,2y, + J].
Then we have

o(fowi) <Y flas+6) = fla; =)

=1

)= flan —=6)+ ...+ f(x1 +0) — f(z1 =)

N'Ms

o>,

= f(zn +

| S —

>0 >0
+ flan-1+0) — ... = flw1 —0) + f(z1 — 6) — f(a)
>0
= f(b) - f(a)

The first and last intervals may be adjusted slightly for the case where z; = a or x,, =b. [

1.2 Chapter 2 Exercises

Exercise 2-1 Prove that if a function f : R™ — R™ is differentiable at a € R™, then
it is continuous at a.

Proof. Suppose f: R™ — R™ is differentiable at a € R™. Then D f(a) is linear transforma-
tion. By there exists a number M > 0 such that

[Df(a)(h)]
|h|

Then since f is differentiable at a, there exists § > 0 such that for any |h| < 4,

[f(a+h) = f(a) = Df(a)(h)]
||

> M, VheR"

<1

Now let € > 0 be arbitrary, and pick ¢’ = min {6, ﬁ} Then for any = with |z — a| < ¢

we have

[f(x) = fla)| = [f(z) = f(a) = Df(a)(x — a) + Df(a)(x — a)|
< |f(x) = fla) = Df(a)(x — a)| + [Df(a)(z — a)|
< |z —a|l+ Mz — a

<(M+1) c

- O
M+l ©
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Exercise 2-2 A function f : R? — R is independent of the second variable
if for any © € R and y;,y2 € R we have f(z,y1) = f(x,y2). Show that f is
independent of the second variable if and only if there is a function g : R — R such
that f(z,y) = g(z). What is f(a,b) in terms of ¢'?

Proof. (=) Suppose f is independent of the second variable. Then define g(z) = f(z, 0).
For any z,y we have

f(z,y) = f(2,0) = g(x)
(<= ) Suppose g(z) = f(x,y). Then let z,y1,y2 € R be arbitrary. We have
flxon) = g(x) = f(z,12) O
Claim: f'(a,b) = [¢'(a) 0].
Proof. Fix (a,b) € R% Then let € > 0. Since g is differentiable at a, there exists § > 0 such
that for any |h| < 4,
lg(a+h) —g(a) — g'(a)(h)]
||

Then if h = (hq, ho) satisfies |h| < §, it must also be the case that |h1] < |(h1,h2)| < 6.
Thus for any |(hi, he)| = |h| < §, we have

<e€

f(a,—|—h1,b+h2)_f(a7b)_ [g/(a) 0] |:Z;:|

_lgla+h1) —g(a) — g'(a)(h1)|

|h| - ||
Smw+hﬂ—%?—JWKMH<E
Thus we have f’(a,b) = [¢'(a) 0]. O

Exercise 2-3 Define when a function f : R? — R is independent of the first variable,
and find f’(a,b) for such f. Which functions are independent of both the first and
second variables?

A function f;R? — R is independent of the first variable if for any z1,z2,y € R we
have f(z1,y) = f(z2,y), or equivalently if there exists h : R — R such that f(z,y) = h(y).
In this case, f'(a,b) = [O h’(b)]. If a function is independent of both variables, then
fla1,b1) = f(az,b1) = f(az,be) for any (a1, b1), (az,by) € R? so f is constant.
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Exercise 2-4 Let g be a continuous real-valued function on the unit circle such that
9(0,1) = g(1,0) = 0 and g(—z) = —g(z). Define f : R? — R by

f(z) = {|m|g (ﬁ) ,x #0
0, =

(a) If € R? and h, : R — R is defined by h,(t) = f(tz), show that h, is
differentiable.

(b) Show that f is not differentiable at (0,0) unless g = 0 everywhere.

(a) Proof. If x = 0 then h is identically 0 and is differentiable. If x # 0, then for ¢ # 0 we

have

o) = ltelg () =i (sin() ) = sisn(0lelg () =¢ [l ()]

g(—z)=—g(x)

We also have h(0) = f(0) = 0 = 0|z|g (\%I) so h is a linear function of ¢t. Thus it is
differentiable from single-variable analysis.

(b) Proof. Suppose that f can be differentiated. Then since Df(0,0) is linear, it is

uniquely determined by its behavior on the basis {e1,e2}. In particular, pick € > 0.
Then there exists a § > 0 such that whenever 0 < |h| < § we have

|f(h) = f(0,0) = Df(0,0)(h)|
1]

<e€

Then picking some hq € R with 0 < |hq| < 6,

| f(hre1) = f(0,0) =D f(0,0)(hyes)|
_ |haDf(0,0)(eq)|

Df(0,0)(er)] = = =0 <e
[Df(0,0)(e1)] ] Terl

This works for all epsilon, so Df(0,0)(e1) = 0. Similarly, D f(0,0)(e3) = 0, so Df(0,0)

is the zero transformation. Now suppose g(z) # 0 for some z. Then for ¢ = g(x) and

arbitrary, ¢,

£ (52) — £(0,0)— DF(0,0) (22|
. ( 2 > %g (5;//22)
%]

Sz g
2 2

so f is not differentiable. Thus f is only differentiable when g(z) = 0 everywhere.
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Exercise 2-5 Let f : R? — R be defined by

z|y| , (z, 0
f(x,y):{\/m o7
0 (z,y) =0

Show that f is a function of the kind considered in so that f is not
differentiable at (0, 0).

Proof. Let

_ x§|y|2’(x,y) 7é0
g(m,y) - {0,+y (x,y) =0

Then for (z,y) # 0 we have

(2, 9)lg (fé’ Z))) =22 +y%g < \/QC;: vl \/z2y+ y2>

2 _|_y
__zlyl
/1'2 +y2
= f(z,y)
Moreover,
1.0)= % =0=L0_ 401
gL, = = = == )
Vi Vi
e -yl s
—r =Yy Ty
—T, — = = — = — x’
so f is of the form in However,
11 1\ 1
—, —= = _— = — O
(73 78) - (75) —27
so g is not 0 everywhere and thus f is not differentiable at (0,0). O

Exercise 2-6 Let f : R> — R be defined by f(x,y) = /|zy|. Show that f is not
differentiable at (0, 0).

Proof. Following the proof of part (a), first suppose f is differentiable at (0, 0).
Then Df(0,0) exists, and it is determined by its behavior on the basis {ej,ea}. Letting
€ > 0 be arbitrary, there must exist § > 0 such that for any 0 < |h| <,

|f(h) = f(0,0) = DF(0,0)()] _
1]
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Pick some hy € R with 0 < |h1| < é. Then

IDf(0,0)(e1)| = |h1Df|(;L)17|O)(61)| _ |f(hier) — f(O,|(})L)le—1|Df(O,O)(hlel) .

So |Df(0,0)(e1)| < € for all e, and thus Df(0,0)(e;) = 0. Similarly, Df(0,0)(e2) = 0, so

Df(0,0) is the zero transformation. However, let e = %, and let 0 > 0 be arbitrary. Then

the point (z,y) = (%, %) satisfies 0 < |(z,y)| < J, but

Fe.y) = £0,0) = DAO.O)wy)| Vo

|(z, y)] \/7%2

so no 0 works and f is not differentiable. O

IV
o™

Sl

Exercise 2-7 Let f: R™ — R be a function such that |f(z)| < |x|?. Show that f is
differentiable at 0.

Proof. Let A : R®™ — R be the zero transformation. Then let ¢ > 0 be arbitrary, and set
d = e. Whenever 0 < |z| < §, by assumption we have

|/ (@)

||

< |z|

In particular, | f(0)] < |02 =0 so f(0) = 0. Thus
[f(z) = f(0) = A(@)| _ [f(=)]

] ]

<|lz|<d=¢

so f is differentiable at 0 with derivative D f(0) = X the zero transformation. O

Exercise 2-8 Let f : R — R2. Prove that f is differentiable at a € R if and only if
f' and f? are, and that in this case

Proof. (=) Suppose f is differentiable at @ € R. Then let € > 0 be arbitrary. Since f is
differentiable, there exists § > 0 such that whenever 0 < |h| < § we have

[f(a+h) = fla) = Df(a)(h)|

<e
|l

If we suppose that D f(a)(h) has matrix representation given by

r@ =)
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then it is the case that
bh
Dfan) = %)

Now if we write for convenience (z,y) = f(a + h) — f(a) — Df(a)(h), then we know that
|z| < |(z,y)|, so whenever 0 < |h| < ¢
[fH(a+h) = fla) =bh| _ |z| _ [(x,9)] _ |flat+h) = fla) = Df(a)(h)]

= < = <e
|h |hl |h |h

so f! is differentiable at a. The proof for f2 is similar. Moreover, this proves that in this
case bh = (f1)'(a) and ch = (f?)'(a), so that

o= (]

( <= ) Now suppose that f! and f? are differentiable at a. Let ¢ > 0 be arbitrary. Then
there exist d1, 62 > 0 such that whenever 0 < |h| < §; we have

[fHath) = fHa) + () (@) _
7] 2

| ™

and whenever 0 < |h| < §; we have

|f?(a+h) = f2a) + (f2)(@B)] _
|h| 2

| ™

Let § = min{dy,d2}. Let A : R — R? have the matrix

Then whenever 0 < |h| < 6,

|hl Al
where
m _ [fl(a+h) — fHa) - fl)'(a)(h)]
Y fAla+h) = f2(a) = (f*)(a)(h)
Then { ]
[fla+h)— fla) = AR)| _ |1y lz| lyl e e _
) T SR T T2t

so f is differentiable at a, and once again we have

ra- - []
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Exercise 2-9 Two functions f,g : R — R are equal up to nth order at a € R if

lim fla+h)—gla+h)

h—0 h™ =0

(a) Show that a continuous function f is differentiable at a if and only if there is
a function g of the form g(z) = ag + a1(x — a) such that f and g are equal up
to first order at a. (Note: Spivak did not assume continuity in the original
exercise, but it is required in the if direction, and continuity in the only if
direction follows from differentiability).

(b) If f'(a),..., f(a) exist, show that f and the function g defined by

" i) (g _
o) =3 0 oy

1!
i=0

are equal up to nth order at a. (This is the nth degree Taylor polynomial of f
expanded about a).

(a) Proof. (=) Suppose f is differentiable at a. Then define

9(x) = f(a) + f'(a)(z — a)
We have

_ _ _ !
o fat k) fath) L flat k) fa) - F@)k)
h—0 h h—0 h
since f is differentiable, so f and g are equal up to first order.

( <) Now suppose g(z) = ag + a1(x — a) is equal to f up to first order. Since f
(and g) are continuous,

lim f(a+h) —g(a+h) = fla) —g(a) =0
so f(a) = g(a) = ag. Thus we have

fla+h) = f(a) —aih fla+h)—gla+h)

li =i =
0 h 0 h 0
so f is differentiable at a. O

(b) Proof. We induct on n. Suppose that for any function f, whenever f'(a), ..., f*=Y(a)
exist, then

LI (g ,
fay =t 3 W gy
i=0 .

7
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where "<' represents equality up to order n — 1. Now suppose that f'(a),..., f(")(a)
all exist. Then we have

fla+h) —glath) . fla+h) =50, L a+h—a)

}ng%) h - hli% hn
. fla+h) =320, Lu(a)hl
= lim : L
h—0 h™

Note that since f and g are continuous (where f is continuous since it is differentiable),
we have

Ny 0 ne)
tim f(a+0) ~ 30 Lon = ) - T S L0 = ) - @) =0

i=0 ’ i=1

Clearly g is differentiable and so is f, so f(a + h) — g(a + h) is differentiable, and thus
L’Hopital’s Rule applies. So

n @ (a) 4 n %) i
flath) = Sig oty flath) - 2 i

}?L% hn h—0 nhn—1
o Plath) -y @y
~ a0 -1
n— 7y (i) .
— llm f/(a + h) - Z'L:(]l (f )il (a) hz
h—0 hn—1

Since f"(a),...,f™(a) all exist, (f')(a),...,(f)" P (a) all exist, so the inductive
hypothesis applies and

! n—
o)~ 2l
SO »
o L0 = I L
h—0 pn—1
Thus .
n—1 (fH) )4
lim flath)—glath) = lim fllath) =3 Lu()h =0
h—0 h™ h—0 hn—1
so f and g are equal up to nth order. L)
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Exercise 2-10 Use the theorems of this section [Section 2.2] to find f’ for the
following:

(a) flz,y,2) =av.

(b) f(z,y,2) = (¥, 2).

(c) f(z,y) = sin(zsiny).

(d) f(z,y,2) = sin(zsin(ysin 2)).

(e) flz,y,2)=a"".

() flz,y,2) =zv.

(8) f(z,y,2) =(z+y)*

(h) f(z,y) = sin(zy).

(i) f(z,y) = [sin(zy)]*>.

() f(z,y) = (sin(zy), sin(z siny), z¥).

(a) We write

f — [ﬂ_l][wz] — (elno[ﬂl])[WQ] — e7r2~1no7r
. Then

f'(a,b,¢) = (€7 ") (a,b, )
= et (72 . Inorl) (a, b, ¢)

= a’(Ina(7?) (a,b, ) + b(lnox) (a, b, c)
1

= a’(Inan?® + ba(ﬂ'l)'(a7 b, c)

= a’(Inan?® + gﬂ'l)

= (ba®~1,a’Ina,0)

(b) Following easily from part (a) we have:

ress-[[ 3 -

~ [ba®t ablna 0O
10 0 1
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1

(c) Similarly to the example, we have f = sino(r! - sinor?). Thus,

f'(a,b) = (sino(r! - sin owg))’(a,b)
= cos(asinb)(7! - sinon?)/(a, b)
= cos(asinb)(sin b(7')’(a,b) + a(sin on?)’(a, b))
= cos(asin b) sin brr' 4 a cos(a sin b) cos br®

= (cos(asinb) sin b, a cos(a sin b) cos b)

(d) As above, we have
f =sino(n! - (sino(n? - (sinon?))))

SO

f'(a,b,c) = (sino(r! - (sino(n? - (sin ow?)))))'(a, b, ¢)

= Cos(a sin(bsinc))(n! - (sino(x? - (sinon®))))(a, b, ¢)

os(asin(bsin ¢))(sin(bsin ¢)r' 4 acos(bsin c)(r? - (sinon®))’(a, b, c))
= cos( sin(bsin ¢))(sin(bsin ¢)m! 4+ acos(bsin ¢)(sin er? + bcos en?))
= cos(asin(bsin ¢)) * (sin(bsin ¢), a cos(bsin ¢) sin ¢, ab cos(bsin ¢) cos ¢)

(e) Let g(x,y) = z¥. Then we have

f(ac,y72) = g(x,g(y7z))

so that
f=go(n',go(n® 7%)

Using our result from part (a),

uso=dosnen [ 50,

. . 10 0
— [pe,b°—1 b
= [pra a* Ina] {0 cbe ! bcmb]

= [b‘:abc’1 a”cb*'lna a”b°Inaln b}
(f) Letting g be as defined in part (e), we have
f=go(, a4
Thus
f'(a,b,c) = (go (', 7% + 7)) (a,b, c
= ¢'(a,b+¢) {_ W(ﬁl)/ga ) ]

= [(b+c)ab™t " lna [

[(b+c)abTe™t @’ Ina  aP™Inal
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(g) Again letting g be as in part (e), we have
f=go(nt +7 %

so that

)
_ /a ¢ (ﬂ—l +7T2)/(a7b7 C) -
_g( +0, ) (7T3)’(a,b7c) :|
— [e(a+b)"" (a+b)In(a+Db)] B (1) ﬂ

= [c(a+b) cla+b) (a+b)°In(a+b)]
(h) We can straightforwardly write this as
f =sino(x! - 7?)
Then
f'(a,b) = (sino(r* - 72))(a, b)
= cos(ab)(br! + an?)
= (bcos(ab), acos(ab))
(i) Using the same definition of g,
f=go(sino(r! - 7?),cos3)
Since cos 3 is constant,
f'(a,b) = (go (sino(n' - 72),cos3)) (a,b)

— (- 7?)(a,b) —}

= ¢'(sin(ab),cos3) | (cos3) (a,b) —

= [cos 3[sin(ab)]®>*?  [sin(ab)]**? Insin(ab)] {8 8}

= [bcos 3[sin(ab)]®**3  a cos 3[sin(ab)]*?]
(j) From parts (h), (c), and (a), respectively, we already know that
(sin(zy)) (a,b) = [beos(ab) acos(ab)]

(sin(z siny))’(a,b) = [cos(asinb)sinb acos(asinb) cosb]

(z¥)(a,b) = [ba®~! a’Ina

Then f’ is simply given by putting each of these matrices in as row vectors, such that

—  (sin(zy))'(a,b) - b cos(ab) a cos(ab)
f(a,b,c) = |— (sin(zsiny))'(a,b) —| = |cos(asinbd)sinb acos(asinb)cosb
- (2¥)'(a,b) - bab~! a’lna
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Exercise 2-11 Find f’ for the following (where g : R — R is continuous, and s € R
is fixed):

(@) flz,y)= [T
(b) flz,y)=[""g.

(©) flz,y,z) = [r@einwana) g

(a) Define F': R — R by
Flz) = / g(t) dt

Since g is continuous, the fundamental theorem of calculus tells us that

Then we can here write f as
f=Fo(n'+7?%

so that

f'(a,b) = (Fo(r' +7%))(a,b)
F'(a+b)(x' +7%)(a,b)

gla+ b)(7r1 + 7r2)
)

(
= (9(a+0),9(a+1b))
(b) Similarly, write
f=Fo(rt- 7%
Then

(c¢) First note that we can pick any s € R and separate this integral:

sin(z sin(y sin 2)) sin(z sin(y sin z)) s sin(z sin(y sin z)) z¥
f(x,y,Z)=/ g=/ g+/ g=/ g—/ g
zY s zY s s

Then using the same method as parts (a) and (b) of this problem, and using the results

from parts (d) and (a) of [Exercise 2-10} the Jacobian of the first term, evaluated at
(a, b, c), is given by

g(sin(asin(bsin c))) cos(asin(bsin ¢)) sin(bsin ¢)

ag(sin(asin(bsin c))) cos(asin(bsin ¢)) cos(bsin ¢) sin ¢
abg(sin(a sin(bsin c))) cos(asin(bsin ¢)) cos(bsin ¢) cos ¢

29



and the Jacobian of the second by

g(a’)ba""!
g(a®)abIna
0

Thus we have

g(sin(asin(bsinc))) cos(asin(bsin ¢)) sin(bsin ¢) — g(a®)ba’~? 4
f'(a,b,c) = |ag(sin(asin(bsin c))) cos(asin(bsin c)) cos(bsin c) sinc — g(a®)a’Ina
abg(sin(asin(bsin ¢))) cos(a sin(bsin ¢)) cos(bsin ¢) cos ¢
Exercise 2-12 A function f : R™ x R™ — RP is bilinear if for x,x;,22 € R",
Y,Y1,y2 € R™ and a € R we have
flaz,y) = af(z,y) = f(z, ay)
[+ w2,9) = f(z1,9) + f(22,9)
[y +y2) = f@, 1) + f(@,12)
(a) Prove that if f is bilinear, then
(k)0 | (R, K)|
(b) Prove that Df(a,b)(@,y) = f(a,y) + £(2,b).
(¢) Show that the formula for Dp(a,b) in Section 2.2 is a special case of (b).
(a) Proof. Suppose f is bilinear, and suppose h = (h1,...,h,), k = (k1,...,kn). Then

we can write

|/ (b, K) _

f(Z?ﬂ hi, E;nﬂ kj)

i = 1
R0 |(hE) (k)0

|(h, K]

|21 2oy ik f(eq, )]

1m
(hk)—
22 1
22!

Now we proved in the proof of Dp(a,b) that

IN

IN

I M: I

im 7”%
(hivkj)*)(] ‘(hla k])‘
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|(h, k)]

€, €5 lim |hikj|
i€5) (hik;)—0 |(h, k)]

lim 7|hikj|
(hisk;)—=0 | (R, kj)|

(€i,€5)
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so we have
|f(h, )|

i =0 O
B0 [(h k)|

(b) Proof. Note that

fla+z,b+y) — fla,b) — f(a,y) — f(2,0) = fla+z,b+y) — fla,b+y) — f(,b)
=fla+z,b+y)— fla,b+y) — f(z,0) = f(z,y) + f(z,y)
=fla+z,b+y) - fla,b+y) — f(z,b+y) + f(z,y)
=fla+z,b+y)— fla+z,b+y)+ flx,y)
= f(z,y)

Then we have

[fla+z,b+y) - fla,b) = fla,y) — f(x,0)] o (@9

lim = 1
(2.4)—0 (. y)] @u)=0 |(z,y)]
and by part (a) we know this limit is 0. O

(¢) Proof. Note that our work in part (a) implies that f is completely determined by its
values on the various pairs (e;,e;). So Dp(a,bd) is simply the case where n = m =1
and f(1,1) =1. O

N

Exercise 2-13 Define IP : R" x R" — R by IP(x,y) = (z,y).
(a) Find D(IP)(a,b) and (IP)'(a,b).

(b) If f,g : R — R™ are differentiable and h : R — R is defined by h(t) =
(f(t),g(t)), show that

H(a) = (f'(a)", g9(a)) +(f(a),g'(a)")

(Note that f’(a) is an n x 1 matrix; its transpose f’(a)? is a 1 x n matrix,
which we consider as a member of R™.)

(c) If f : R — R" is differentiable and | f(¢)| = 1 for all ¢, show that ( f'(t)T, f(t)) =
0.

(d) Exhibit a differentiable function f : R — R such that the function |f| defined
by | f|(t) = |f(¢)| is not differentiable.

(a) Since the (real) inner product is bilinear by definition, we can apply [Exercise 2-12|to
conclude that

D(IP)(avb)(xay) = IP(a,y)+IP(:c,b) - (a,y>+<x,b> - <a7y>+<b3x> - <(b7 a)7 (x,y))

Moreover, we can rewrite this to be

D(IP)(a,b)(x,y) = (b7 a)(x’y)T

31



from which we can conclude that
(IP) (a,b) = (b,a)
where (b, a) is the 1 x 2n matrix given by concatenating the row vectors b and a.
(b) Proof. Directly from the definition of h, we have
h=1IPo(f,g)

so the chain rule says that

h'(a) = IP'(f(a),g(a))

(¢) Proof. Define

Then by part (b),
K () =2(f' )7, f(1))

But the assumption that |f(¢)| is identically 1 means that h is constant, and thus

W)

5 0

FHORYIG)

(d) The identity function satisfies this, since x — |z| is not differentiable at = = 0.
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Exercise 2-14 Let FE;, i = 1,...,k be Euclidean spaces of various dimensions. A
function f: By x ... X B} — RP is called multilinear if for each choice of z; € Ej,
j # i, the function g : E; — RP defined by g(x) = f(x1,...,2%i—1, T, Tiy1,...,T) is
a linear transformation.

(a) If f is multilinear and i # j, show that for h = (hq,..., hg) with h; € E;, we

have
hm |f(a1,...,hi,...,hj,...,ak)| :O
h—0 |h
(b) Prove that
k
Df(ay,...,ar)(z1,...,2) = Zf(al,...,ai,l,xi,aiﬂ,...,ak)
i=1

(a) Proof. Suppose that dim E; = k; and dim E; = ky. Then define the function ¢ :
RFt x RF2 — RP by
g(x7y):f(al""7x7"'7y""’ak})
Then we need to prove that

g (i hy)

im =0
(hishi)—0 | (hi, hy)l

To do this, we first prove that g is bilinear. Using multilinearity, we have that

g(ax,y):f(al,...,a%...,y,...,ak):af(al,...,x,...,y,...,ak)=ag(x,y)
and
glx1 +x2,y) = flar,...,x1 + T2, ... Y, ..., QL)

= flar, -, &1,y Yyoooyar) + flar, ..., za, oy y, oo ak)
:g(xl,y)+g(m2,y)

The last property is similar. So g is bilinear, and [Exercise 2-12| part (a) tells us that

h—0 |h (hihy)=0 |(hi, hj)l

(b) Proof. For notational convenience, we define the following. Given a set of distinct
indices 41, ...,i, € [1, k], and vectors q = (a1y...,ak), h = (h1,..., hg), we write

ﬁ
f{i17~~-7in}(77 h) = f(ah...,hil,...7hi2,...,hin,...,ak)

%
In other words, if S C [1, k], then fS(E), h) passes in h; if i € S and a; otherwise.
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Now, we prove an extension of part (a), namely, that for any k-linear function f, if we
pick n < k indices i1,...,1,, then

ﬁ
iy (T 1)) B
m = -
| Al

—0

We skip the proof that fy; . ;.3 is n-linear, so this reduces to simply showing that
for any multilinear function (n > 1) we have

_>
o D]
ﬁ—ﬂ) |h|

Let d; = dim F; for each i. Suppose also that h; = (h;1,...,hiq,). Then

d dp,
f(has b)) ’f(Zj;l Rigs oo 2 0= i)
f‘ = _1>1m _}\

h —0 h

d d
i ‘Zjllzl ce Zj::l thl ce hk,jkf(ejlv ey ejk)
1m

ﬁ%ﬂ ’7‘
. |h1,hk7|
< Y el lim Dbt el
ji=1 jr=1 (h11.7'1 »ee 7hk‘jk)—>0 ‘ h ‘
d; dp
. [Py - P |
§ZZ|f(e cooen)| lim L Ik
P — s (B gy et )0 [(R1 s o P )|
d; dy,
= -Z|f(ej1>~--;€jk)|'0
Ji=1  gp=1
=0

Thus we have shown that any multilinear function satisfies
%
L HADL
7%0 | h |
Now, I claim that

flax 21, an+ag) = f(@ + 7)) = Z fs(@, )

SeP([1,k])

where P([1, k]) represents the set of all subsets of [1,%]. We prove this by induction.
Supposing it is true for k — 1, we can then partition P([1,k]) into X, consisting of
those subsets which contain k, and A, consisting of those subsets which do not. Then

Yo fs(@ @)= fs(@,F)+ > fo(d, )

SeP([1,k]) Sex SeA
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Now, the inductive hypothesis applies, and we have

Z fs(@, ) = flar + @1, ..., ap—1 + Th_1, 71)

SeXx

and

> fs(@, ) = flar + a1, ak-1 + Tho1, a)

ScA

and by applying multilinearity, we conclude that

Yo fs(@,T) =) fo(@T)+ D fo(W, )

SeP([L,k]) Sex SeA
= flar+21,... a1 + Tp—1,2) + flar + 21, .., Q-1 + Tp—1, a8)
=f(d+7)

Lastly, we have

F@ + 1) = (@) = by fiy (@ 1)

lim
=0 ‘ﬁ‘
— k -
y ‘ZSGP([M]) fs(@, h) = f(@) =i, fay (@, B )‘
= l1m

%
ﬁ*}O |h|

%
Now, after cancelling, the numerator will be left only with terms of the form fs(ﬁ, h)

where S contains at least two elements, and fg is therefore n-linear for n > 1. Thus
the first part of this proof shows that the quotient goes to 0. O

35



Exercise 2-15 Regard an n X n matrix as a point in the n-fold product R™ x...x R"
by considering each column as a member of R"™. (Note: Spivak considers the rows
as elements of R™, but we use columns here for convention.)

(a) Prove that det : R™ x ... x R™ — R is differentiable and
n |
D(det)(ay,...,an)(z1,...,p) = » _det [a1 ... @ ... an
i=1 | | |

(b) If a;; : R — R are differentiable, let A(¢) be the matrix such that A(t);; =
a;j(t). If f(t) = det(A(t)), show that

all(t) coo a’lj (t) coo aln(t)

)= i det
=1

i) .. () ... aua(®)

(c) Ifdet(A(t)) # Oforallt and by, ...,by, : R — R are differentiable, let s1,. .., s, :
R — R be the functions such that s1(¢), ..., s,(t) are solutions of the equations

> aii(t)s;(t) = bi(t)

Show s; is differentiable and find s;(¢).

(a) Proof. We take it for granted that det is multilinear, as this is one possible definition of
the determinant, and otherwise can easily be concluded from Laplace expansion along

various columns. Then det is differentiable by [Exercise 2-14| part (b), and moreover
the result from that problem shows that

n |
D(det)(al,...,an)(xl,...,mn):Zdet ar ... T ... an O
i=1 | | |

(b) Proof. Note that f’(t) is just a number, so we ignore the distinction between D f(t)
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and f’(t). By the chain rule, and using the result from part (a),

aii Ain
Df(t)=D | deto ] (t)
an(t) an®]\ (Tau®]  [@ha®
= D(det) : e, : : et :
an1 (t) ann(t) alnl (t)_ a;m(t)
n | \ \
= det |ay(t) al(t) an(t) O

(c) For any fixed ¢, we essentially have the condition that

au(t) N aln(t) Sl(t) bl(t)

an1(t) ... apn(t)| [sn(t) by (t)
or more concisely, we can write

_>
AT () = b ()
Since we are given that det A(t) # 0, we know that A(t) is invertible. Then by
Cramer’s Rule,

_ det(Ay(1)
5it) = Jet(am)
where
au(t) N b1 (t) ce. Q1n (t)
Ai(t) =] : :
an1(t) ... bu(t) ... ain(t)

Then s;(t) is differentiable as the quotient of differentiable functions. To calculate

si(t), we have

)y _ det(A() D(det o) (1) — det(As(1)) Di(det oA) (1)
s(t) = et (AQ))?
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Define the following matrices for convenience:

| | |
Al(t) = lau(t) ... dj(t) ... an(t)

Alt)y={ k ||

(2

Then the results from part (b), and the quotient rule,

 det(A(t) X, det Al (1) — det(A,(t)) >, det A7 (1)
K [det(A(2))]?

i(t)

Exercise 2-16 Suppose f : R — R" is differentiable and has a differentiable inverse
f~!:R™ — R™. Show that

Proof. By definition,
fof™ =1

Since both f and f~! are differentiable, we can apply the chain rule in matrix form:
L= f'(f~(@)- (f 1) (a)

Since both f/(f~!(a)) and (f~!)(a) are n x n matrices, being single sided inverses is equiv-
alent to being inverses, so we conclude that

(= (@) = [F' ()™ O
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Exercise 2-17 Find the partial derivatives of the following functions:

(a) f(z,y,2) =Y

(b) flz,y,2) =2

(c) f(z,y) = sin(zsiny)

(d) f(z,y,2) = sin(zsin(ysin z))
(e) fla,y,2) =¥

(t) f(z,y,2) = 2¥**

(8) f(z,y,2) =(z +y)*

(h) f(z,y) = sin(zy)

(i) f(z,y) = [sin(zy)]c=?

(a)

le(a:,y,z) = yxy—l
Dyf(z,y,2) =Y Inz

Dgf(x,y,z) =0
le(l',y,Z) =0
DQf(xayaZ) =0

Dsf(z,y,2) =1

D f(x,y) = siny cos(xsiny)
Dy f(x,y) = xcosy cos(xsiny)

D1 f(z,y,z) = sin(y sin z) cos(z sin(y sin z))
Dy f(z,y,2) = xsin z cos(y sin z) cos(x sin(y sin z))

Dsf(z,y,2z) = xy cos z cos(y sin z) cos(z sin(y sin z))

le(xa y,Z) = yzxyz—l
Dyf(z,y,2) = zy* 'a¥ Inw
Dsf(z,y,2) = y*z¥ Inzlny
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Dy f(z,y,2) = (y + 2)2"*7}
Dof(x,y,2) = 2*2YIna? Inz

DSf(xvya Z) = xy—i-z Inz

(8)
Dif(z,y,2) = z(x +y)* "
sz(:lf,y, Z) = Z(l‘ + y)zfl
Dsf(z,y,2) = (z +y)"In(z +y)
(h)

Dy f(z,y) = ycos(zy)
Daf(x,y) =y cos(zy)

D f(x,y) = y cos Bfsin(ay)]****~" cos(zy)

cos3—1

Dy f(z,y) = x cos 3[sin(zy)] cos(zy)

Exercise 2-18 If g : R — R is continuous, find the partial derivatives of each of the
following functions:

(@) flz,y)=[""g
(b) flz,y)=[7g
(©) flay)= [y
(@) fay) =[Sy

(a) By the fundamental theorem of calculus,

Dy f(x,y) = g(z +y)
Dy f(z,y) = g(x +y)

T T Yy
Lo=f o=/
Yy a a

Dy f(z,y) = —g(y)

(b) Let a € R. Then

SO
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Dy f(z,y) = yg(zy)
Dy f(x,y) = vg(xy)

le($7y) =0

Daf(z,y) =g (/by g> 9(y)

Exercise 2-19 If

f(z,y) =2 4+ (Inz)(arctan(arctan(arctan(sin(cos zy) — In(z + y)))))

Find Dy f(1,y).

Since we are calculating Do, we treat = as constant, and in particular, we can substitute in
x = 1. So we have

92(y) = f(Ly) = &f/qL@(arctan(arctan(arctan(sin(cos y) —In(l+9)))))
=1 0

So g2(y) =1 for all y, and thus g5(y) = Da2f(1,y) = 0.

Exercise 2-20 Find the partial derivatives of f in terms of g, h, ¢/, h'.
(a) f(z,y) = g(x)h(y)
(b) f(z,y) = g(a)"®)
(c) f(z,y) =g(z)
(d) flz,y) =g(y)
() f(z,y) =gz +y)
(a)
D1 f(z,y) = h(y)g (=
Dy f(z,y) = g(z)h'(y
(b)



le(l',y) = g/(.T)
D2f(¢7y) =0

le(amy) =0
Dy f(x,y) = ¢'(y)

Dif(z,y) =4 (z+y)
Dyf(z,y) = g'(z +y)

Exercise 2-21 Let g1, g2 : R2 — R be continuous. Define f : R? — R by

f(z,y) = /Ow g1(t,0)dt + /Oy g2(z, t)dt

(a) Show that Daf(z,y) = g2(z,y).
(b) How should f be defined such that D, f(z,y) = g1(x,y)?

(c) Find a function f: R? — R such that D; f(x,y) = x and Daf(x,y) = y. Find
one such that Dy f(x,y) =y and Dsf(x,y) = .

(a) Proof. Define
ha(y) = f(z,y)
Then

=g L
— - £.0)dt + — t)dt
Dy f(x,y) = hy(y) ay /s g1(t,0) +dy ; ga(w,t)

Since the first integral is constant with respect to y,

x

d
— t,0)dt =0
dy 0 91(7)

By the fundamental theorem of calculus,

d Y
— t)dt =
i | et = gn(an)

Thus
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(b) Define N
flz,y) = /0 g1 (t,y)dt + /Oy g2(0,t)dt
Then by a similar argument as above, D1 f(z,y) = g1(x,y).
(¢) The function f(x,y) = %2 + y; satisfies
Dyf(x,y) =z, Do f(2,y) =y
The function f(x,y) = xy satisfies

le(x,y) = yaDQf(xay) =

Exercise 2-22 If f : R? — R and D5 f = 0, show that f is independent of the second
variable. If Dy f = Dsf = 0, show that f is constant.

Proof. Fix some z € R, and define h,(y) = f(z,y). Since Dof = 0, h(y) = 0 everywhere,
S0 h; is constant. Thus for any y1,y2 € R,

f(@,y1) = he(y1) = ha(y2) = f(2,y2)

and thus f is independent of the second variable.

When D;f = 0, f is independent of the first variable as well. Moreover, we showed in
that functions which are independent of both variables are constant, so f is
constant. O

Exercise 2-23 Let A = {(z,y) € R? : 2 <0, or z > 0 and y # 0}.
(a) If f: A— R and D, f = Dyf =0, show that f is constant.

(b) Find a function f: A — R such that Daf =0 but f is not independent of the
second variable.

Note: The set A as defined here is the plane excluding the nonnegative z-axis.

(a) Proof. Let (z1,y1), (z2,y2) € R? be arbitrary. Suppose y; # 0 and yo # 0. Define
92(y) = f(z,y) and hy(z) = f(z,y). Pick some a < 0. Then

f(xi,m1) — f(w2,92) = f(@,y1) — fla,y1) + fla,y1) — fla,y2) + fla,y2) — (22, 92)
= hy, (21) — hy, (@) + ga (Y1) — Ga(y2) + hy, (@) — hy, (22)

Since y1 # 0, hy, is defined on all of R and h;n is identically, h,, is constant. Similarly,
hy, is constant, and g, is also constant since a < 0. Thus

f(x1,y1) = f(22,92) = hy, (21) — hy, (@) + 9o (Y1) — Ga(y2) + by, (a) — by, (z2) =0
=0 =0 =0
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The case where y; = 0 or yo = 0 is proved similarly. (Geometrically, we have connected
the points (x1,y1) and (22, y2) using three segments, but this can be adjusted to use
only two or one if either y-coordinate is 0.) Thus f(x1,y1) = f(x2,y2) for all points,
and thus f is constant. O

Define f: A — R by
1, z=0,y>0
f(x,y)={

0, otherwise

Pick some point (z,y). Then there exists an interval (y — e,y + &) C A. Moreover, f
is constant on this interval. Thus Dy f(z,y) = 0 everywhere, but f is not constant.

Exercise 2-24 Define f : R? — R by

2 2

Y
f(%y) = {gy12+y27 (xay> 7é 0

; (z,y) =0
(a) Show that Dsf(z,0) = x for all x and D1 f(0,y) = —y for all y.
(b) Show that D172f(070) 75 D271f(0,0).

(a)

Proof. Define ¢,(y) = g(z,y) and hy(z) = f(z,y). Then

Dy f(x,0) = g.,(0)

d 1‘2 _y2
= — Ty ——m3m—
dy \"ar 1y

y=0
x? —y? =222y — 2y3 — 222y + 293
- (xﬂ T (2% +y?)? ) y=0
22
=1
And
D1 f(0,y) = hy(0)
d 22— o2
T ( Yz +92) 2=0
2 —y? 223 + 2zy? — 223 + 229
= (yIQ T2 +zy (22 1 42)? ) -
Yy
-y O
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(b) Taking the derivative of the functions we computed in part (a),

Dy2(0.0) = dinlﬂo,y) - d%(—y) S

d d
D51 £(0,0) = @DQf(fC,O) =% 1

SO
Dl)gf(0,0) =-1 7é 1= D271f(0a0)

Exercise 2-25 Define f: R — R by

Show that f is C, and f*(0) = 0 for all i.

Proof. For points x # 0, we have

and 6 4
-6 _ -2 g2
f//(.fL') = Fe —+ Ee

Claim: In general, for any i > 0 and = # 0, f)(z) is composed of terms of the form

a -2
o a € Z,beZ>g

Ze ,
b

We prove this by induction. As shown, we already know this is true for ¢ = 1,2. Now
suppose it is true for 4 = k. Then for k + 1, it is sufficient to show that each term of the
above form differentiates into further terms of that form. Differentiating,

iie_xfz _ —ab e_x—z n 2a €_$72

de 20 N b +3
and the two terms are also of the form requested. Thus the claim is proved. This shows
that f()(z) exists for all i when z # 0.

For x = 0, we use L’Hopital’s rule:

—2
efh

f(0) = lim

1
lim -2~
h—0 eh™?

1
o — 5
(LH) = T — =5 s

P 2eh?
=0
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Similarly, for higher derivatives, we can apply the claim proved above to write

n

@) =" ;e Zb; € L

xi

Jj=1

for some finite n. Then

h—0 ;—32@}72

n —(bj+1)
(LH) = <aj lim h”)

Thus ) (z) exists for all i, z, so f is C*, and £ (0) = 0 for all 4.

46



Exercise 2-26 Let

=@ D= 5 e (—1,1)
0, z ¢ (-1,1)

(a) Show that f : R — R is a C* function which is positive on (—1,1) and 0
elsewhere.

(b) Show that there is a C*° function s : R — [0, 1] such that s(z) = 0 for x < 0
and s(x) =1 for z > .

(c) If a = (aq,...,a,) € R?, define g, : R* — R by

xr1 — aq

b il

€ €

ga(x) = ga(xla s Zn) = f(
Show that g, is a C°° function which is positive on

(a1 —e,a1+¢€) X ... X (an —€,a, +€)

(d) If A CR" is open and C C A is compact, show that there is a nonnegative C*°
function h : A — R such that f(z) > 0 for z € C and f = 0 outside of some
closed set contained in A.

(e) Show that we can choose such an h so that h : A — [0,1] and h(z) = 1 for
zeC.

(a) Proof. By definition, f is 0 outside of (—1,1), and it must be positive on (—1,1) since
each of the exponential factors are positive.

To show that f is C*°, define f1, fo: (—1,1) = R by
fila)=e D™
fa(z) = e~ (@™
We proved in [Exercise 2-25] that both f1, f2 are C™, so
f'(@) = fil@) f5(x) + fi(z) fa(z)

and higher order derivatives will in general be sums of products of fl(l)(a:) and f2(j ) (x),
which all exist and are continuous. Thus f is C*°. O

(b) Proof. Fix € > 0. Then define

1, x> 2
fa-=
5(1’): W7 —e<x <2
0, r< —¢
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By definition, s(z) =0 for < —¢ and s(z) =1 for z > 2e.

On the interval (—¢,0], 1 — £ > 1, s0 f(1 — £) = 0 and thus s = 0. So s = 0 for any
xr <0.

Similarly, for the interval [e,2¢), £ > 1, s0 f(Z) =0 and

So s =1 for any = > ¢.
To prove that s is C'°°, we can obvioulsy ignore the constant regions.

On (0,¢), at least one of f(£), f(1— £) will be positive, so the quotient rule says that
s'(z) exists. In general, we can continue to apply the quotient rule, since the quotient
will never be zero, and f is smooth. Thus s((z) exists and is continuous for all i and
x € (0,¢), and we conclude that s is C*°. O

Proof. The fact that g, is positive follows from the fact that for each 4,

—
LR P!

3

so f(¥=%) > 0. Thus their product g, is positive.

To show that g, is C°°, we need to prove that the mixed partials of all orders exist.
Here, we can actually prove a more general result:

If f1,...,fn : R—= R are C*°, then f: R™ — R defined by

flay, .o xy) = fi(zr) - .o fo(zn)
is C*°.

Proof. To prove that derivatives of all orders exist and are continuous, pick any index
i. Then define

gi(ai) = filas) [ [T £i())
i
Then g;(x;) is just a constant multiple of f;(x;), so g}(z;) exists. Moreover, f/ is also
C*°, so the function

satisfies the hypotheses of this lemma and we can differentiate it again using the above
method. So derivatives of all orders exist and are continuous. Thus f is C*°. O

We can then apply the above lemma to conclude that g, is C*°. O
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(d) Proof. For each x = (x1,...,x,) € C, there exists €, such that the rectangle
R, = (21 —€z,x1+6x) X oo X (Ty — €g,Tpn +6,) CTA

In fact, we may choose €, small enough such that the closed rectangle is contained in
A as well. Let O be the collection of R, for x € C. Since C is compact, we pick a
finite subcover O" = {R,,}.,. Then define h: A — R by

hxy, ... zn) = ng(xl,...,xn)
i=1

h is C since it is the product of C* functions (by the lemma in part (d)). For any
y € C, O covers C, so y € R, for some x;. Then g,, > 0, and each other g, is at
least nonnegative, so h(y) > 0.

Now let Rm be the closed rectangle about x;.

B=|JR,,

s

=1

We showed that we can pick ¢ small enough that Ezi C A. Thus B is a closed set
contained in A. Moreover, if y ¢ B, then y ¢ R, for any ¢, and hence h(y) = 0. So h
is 0 on outside of a closed set contained in A. O

(e) Proof. Since h is C*°, it is continuous, and hence achieves a minimum value on C.
Since h is positive on C, this minimum value € = min,cc h(z) is positive. Let s. :
R — [0,1] be as defined in part (b). Then the function

seoh:R™ —[0,1]

is still C*° (since the composition of C*° functions is C° using repeated applications of
the chain rule, similarly to the lemma in part (c)). Letting B be as defined previously,
if y ¢ B then h(y) = 0, so s.(h(y)) = s-(0) = 0. Thus s. oh is still of the form in part

(d).

Moreover, whenever = € C, h(z) > € so s.(h(z)) = 1. O

Exercise 2-27 Define g,h: {z € R? : [z| <1} — R3 by

g(x,y)z(x,y, 1_1.2_y2)
h(xvy) = (x,y,— V Il =g _y2)

Let f:{z € R®:|z| = 1} : R. Show that the maximum of f is either the maximum
of f o g or the maximum of foh on {z € R?: |z| < 1}.

Proof. Let Dy = {z € R? : |z| < 1} and C3 = {x € R? : |z| = 1}. Then supposing that
f has a maximum m = max,ep, f(x), then there exists at least one point x = (21,22, z3)
such that f(x) =m. Then we have the cases 5 > 0 and z3 < 0.
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Case 1: Since |z| =1, 22 + 23 + 23 = 1, and hence

2 2

T3 =14/1—2x] — x5

Thus we have g(x1,x2) = x, so (f o g)(z1,22) = m. (f og) certainly cannot achieve a
higher value, or else it would contradict m being the maximum of f, so m is also the
maximum of g.

Case 2: Similar to Case 1, but we use h(z1,22) instead, and we find that (f o h) achieves the
maximum m.

Thus we see that m is the maximum of at least one of fog or foh on D,. O

Exercise 2-28 Find expressions for the partial derivatives of the following functions:
y) = f(g(@)k(y), 9(z) + h(y))

z,y,2) = flg(z +y), h(y + 2))

z,y,2) = f(a¥,y%, 27)
y) = [z, 9(x), h(z,y))

(a
(b
(c

F
F
F

d) F

) F(,
) F(
) F(
) F(a,

(a) Let f(x) = f(g(z)k(y), g(x) + h(y)). Using the chain rule for partial derivatives,

D1 F(x,y) = D1f(*)Dy[g(2)k(y)] + D2 f (x) Dz [g(z) + h(y)]

= k(y)g' (x)D1f(*) + ¢’ (y) D2.f (*)

DyF(z,y) = D1f(x)Dylg(2)k(y)] + D2 f () Dylg(z) + h(y)]
= g(2)k' (y)D1f(x) + B’ (y) D2 f (%)

(b) Let f(x) = f(g9(z +y),h(y + z)). Then

DiF(x,y,2) = D1f(*)Dag(z +y) + Do f(¥) Dsh(y + 2)
=g'(z+y)D1f(x)

DyF(z,y,2) = D1f(*)Dyg(z +y) + Daf(x)Dyh(y + 2)
=g'(z+ y)le( )+ h'(y + 2) D2 f (%)

D3F(z,y,2) = D1 f(*x)D.g(x + y) + Daf (+) D2h(y + z)
=N'(y + 2)Daf (x)

(¢) Let f(x) = f(x¥,y?, 2%). Omitting zero terms,

DlF(xvya Z) = yl'yille(*) + Zw In ZDSf(*)
DyF(2,y,2) = ¥ InxD1 f(x) + 2y ' Daf(x)
D3F(z,y,2) = y* InyDaf(x) + 22" ' D3 f (%)

50



(c) Let £(x) = f(z, g(x), h(z,y)). Then

Dy F(z,y) = D1f(%) + ¢'(x) D2 f (%) + Dih(z,y) D3 f (*)
DyF(x,y) = Dyh(z,y)Dsf(*)

Exercise 2-29 Let f : R™ — R. For Z € R™, if the limit

o F@+12) — (@)

t—0 t

exists, it is called the directional derivative of f at a in the direction ?, denoted
D—(a).

(a) Show that D, f(a) = D; f(a).
(b) Show that D,z f(a) = tD= f(a).
)

(c) If f is differentiable at a, show that D= f(a) = Df(a)(7) and therefore
D315 f(a) = Dz f(a) + Dy f(a).

(a) Proof. Immediate from the definitions. O
(b) Proof. Fix t € R. Then
fla+s(t7)) - f(a)

lii% s =t ggo st
oy S (60T~ f(a)
st—0 (st)
=tD—=(a) O

(¢) Proof. Since the derivative exists, we know that

h f@+t7) = fla) - Df(@)(tT) _
t7 —0 t|?| B

We can multiply both sides by |7| to clear the denominator, and apply linearity of
Df(a) to see that

- Ha+t7) — f(@) ~ tDF)()
t—0 t

f(aH?)—f(a)

=0

= lim

lim = Df(a)(@)
and thus Df(a)(Z) = D= f(a). Since Df(a) is linear,

Dz.5f(a)=Df(a)(¥ +7)
—Df( (@) + Df(a)(Y)
=Dz f(a) + Dy f(a) O
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Exercise 2-30 Let f be defined as in Show that D= f(0,0) exists for
all z, but if g # 0, then D5 f(0,0) = D% f(0,0) + D f(0,0) is not true for all
x,y.

Proof. The result of part (a) says that for z € R?, defining h,(t) = f(tz) means
that h, is differentiable at (0,0). This means that D= f(0,0) exists for all 2. Similarly, as
the result in part (b) shows, D., f(0) = D,, f(0) = 0. However, if g is nonzero, then we can
take a directional derivative in some direction which is a linear combination of e; and es,
so the linearity condition fails. O

Exercise 2-31 Let f : R? — R be defined as in Show that D, f(0,0)

exists for all x, even though f is not continuous at (0, 0).

Proof. As we showed in the proof of [Exercise 1-26| part (b), f is 0 in an interval about (0, 0)

in each direction, and is thus differentiable. O]

Exercise 2-32

(a) Let f: R — R be defined by

z?sint, z#0
x) = "
= {2

Show that f is differentiable at 0 but f’ is not continuous at 0.

(b) Let f:R? — R be defined by

x? 2) sin , (=, 0
f(x’y):{( +9°) e (z,y) #
0, (z,y) =

Show that f is differentiable at (0,0) but D;f is not continuous at (0, 0).

(a) Proof. Let ¢ > 0. Then whenver |x — 0| < § = &, we have

’f(x) — f(0) f(z)

T

xrsin—| <e

T

|-

Thus f is differentiable at 0 with f/(0) = 0.

If we differentiate f elsewhere, we find that

2rsint —cost, z#0
") = z z)
e {07 e
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But
. o1 1 . 1
lim 2z sin — — cos — = — lim cos —
r—0 x x x—0 x

which doesn’t exist. Thus f” is not continuous at 0 (it has an oscillating discontinuity).
O

(b) Proof. Let € > 0. Then whenever |(z,y)| = /2% 4+ y? < § = ¢, we have

f(x,y)—f(0,0)’:‘ ‘\/msm S\/m<€

|(z,y)]

VP

;v2 Va2 2
Thus 0.0)—0
lim ‘f(xay)_f( ) )_ (1'7y)|:0
(2,5)—(0,0) |(2,9)|
so Df(0,0) exists and is the zero transformation. But in the directions ej,eq, f is

simply the single variable case considered in part (a), so we know D f is not continuous
at (0,0). O

Exercise 2-33 Show that the continuity of D;f’ at a may be eliminated from the
hypothesis of Theorem 2-8.

Proof. In the proof of Theorem 2-8, we attempted to prove that

£ (@ +(B) = £ (@ + (RP) = Dif(@)hy

=0
h —0 ’7‘

for all j. We did this by using the continuity of D, f at a to extend its differentiability nearby.
However, in the case of the first partial derivative D f, the continuous differentiability
condition already shows us that

|f(@ + hier) — f(@) — D1f ()|

lim =0
ﬁ—)O ’ﬁ
so we can omit continuity. (Obviously, any other direction would also work.) O

Exercise 2-34 A function f : R™ — R is homogeneous of degree m if f(tz) =
t™ f(x) for all z. If f is also differentiable, show that

Z ' Dif(z) = mf(z)
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Proof. Define g(t) = f(txz). Then D, f(x) = ¢’(1). Moreover, we showed in [Exercise 2-30

that D, is linear, so
n

x) =Y x;D;f(x)
i=1
At the same time, we know that g(t) = f(tz) = t"™ f(x). Differentiating with respect to t,
g'(z) = mt" " f(x)

SO

S wiDif (@) = Dof(x) = g/(1) = mf(2)
=1

Exercise 2-35 If f : R” — R is diferentiable and f(0) = 0, prove that there exist
g; : R™ — R such that
= Z zi9i(x)
i=1

Proof. Since f is differentiable, the directional derivative D, f(tz) exists for all ¢, 2. Define
hy(t) = f(tx). Then hl (t) = D, f(tx). Thus h, is differentiable. Then by the fundamental
theorem of calculus,

f(x) = f(1z) = / L (1)t = / D, f(t)dt

Since D, is linear with respect to direction, we then have

:/ szle (tz)dt = Z:cz/ Dy f(tx)d

Then defining g;(x) = fol D, f(tz)dt, we have found g; satisfying

= Z z;9i(x) 0
i=1

Exercise 2-36 Let A C R™ be an open set and f : A — R™ a continuously differ-
entiable one-to-one function such that det f’(z) # 0 for all . Show that f(A) is an
open set and f~!: f(A) — A is differentiable. Show also that f(B) is open for any
open set B C A.

Proof. Let y € f(A). Then since f is one-to-one, there exists a unique 2 € A such that
f(x) =y. Since f is continuously differentiable at z and det f’(x) # 0, the Inverse Function
Theorem tells us there exist open sets V' C A containing x and W C R™ such that f : V — W
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has an inverse. Thus W C f(A) and y € W, so f(A) is open. Moreover, the Inverse Function
Theorem also says f~! is differentiable at y. But this is true for every y € f(4), so f~!
is differentiable. Lastly, let B C A be open. Then the restriction f : B — R" is also
continuously differentiable and one-to-one, so f(B) is open. O

Exercise 2-37

(a) Let f:R? — R be a continuously differentiable function. Show that f is not
one-to-one.

(b) Generalize this result to the case of a continuously differentiable function f :
R™ — R™ with m < n.

(a) Proof. If Dy f(z,y) =0 for all (x,y) € R?, then f is independent of the first variable
and is not one-to-one. So suppose there exists some (z1,y;) € R? with Dy f(x1,41) # 0.
Since f is continuously differentiable, there exists an open set A containing (x1,y1)
such that Dy f(z,y) # 0 for any (x,y) € A. Then define g : A — R? by g(x,y) =
(f(z,y),y). Then the derivative is given by

o ay) = [P DIV et () = D) £ 0

In particular, det ¢’(z1,41) # 0. Then by the Inverse Function Theorem, there exists
an open set V containing (z1,y1) and an open set W containing (f(x1,y1),y1) such
that ¢ : V — W has a continuous, differentiable inverse g~! : W — V. Then pick
some yo # y1 such that (f(z1,y1),y2) € W. Then we have

9(9_1(f(371ayl)7y2)) = (f($1791)7y2)
but by definition,

9(g " (f(x1,91),12)) = (Flg7 (F(@1,01),92)), 95 (f(1, 1), 2))
So
flau) = Flo7 (F@,m),v2)

While the = coordinate of g=1(f(z1,y1),y2) is unknown, the y coordinate is certainly
y2. Thus we have

f(@1,91) = f(x,2)
But we mandated that y; # ya, so (z1,41) # (%,y2). So f is not one-to-one. O

(b) Proof. O

Exercise 2-38

(a) If f: R — R satisfies f'(a) # 0 for all a € R, show that f is one-to-one (on all
of R).

(b) Define f : R? — R? by f(x,y) = (e® cosy, e®siny). Show that det f’(z,y) # 0
for all (z,y) but f is not one-to-one.
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(a)

Proof. Suppose without loss of generality that f’(a) > 0 for some a € R. One can
prove in single variable analysis that if g = f’ for some function f, then g satisfies the
intermediate value property. If f'(b) < 0 for some b € R, then there exists ¢ between
a and b such that f/(c) = 0, contradicting the assumption. So we must have f/(z) >0

for all z. Thus f is strictly increasing (or decreasing), so it is one-to-one.
(b) Proof. The Jacobian matrix is given by

e*cosy e¥siny
—e*siny  e*cosy

fa,y) =

0
det f'(z,y) = e*(sin® y + cos? y) = e® # 0
But for any (x,y), we have
flz.y) = f(z,y+2m)

so f is not one-to-one.

Exercise 2-39 Use the function f : R — R defined by

Z4x2sinl, z#£0
— 2 "
- {k 7t

of the Inverse Function Theorem.

To show that continuity of the derivative cannot be eliminated from the hypothesis

First, we verify that f is differentiable at 0. We have

o f)—-f0 .1 1 1 .1 1
i S = fim g hsing = o 4 limAsin g =9

and by the formula f is clearly differentiable everywhere else. So f is differentiable in an
open set around 0. However, I claim that for any open set V around 0, f is not injective

onto f(V).
To see this, let V' be an open set aroud 0. Then pick n large enough that
1
= 2mn
Now, we have
f(a) = 1—|—2asin1 —cos1 = 1—1 _ 1 <0
2 a a 2 2
Thus there exists b < a with f(b) > f(a) and b > 0. Now, pick m large enough that
1
=—x<b
¢ 2mm
Then we have ¢ a
floy=5<5=1@)



So f(e) < f(a) < f(b), and b € [c,a]. Pick some y with f(a) < y < f(b). By the
Intermediate Value Theorem, there exists z1 € (¢,b) with f(z1) = y, and z3 € (b, a) with
f(x2) =y, so f is not one-to-one onto f(V). Thus the Inverse Function Theorem is false
for f.

Exercise 2-40 Use the implicit function theorem to redo Problem 2-15 (c). For
reference, this problem is reprinted here:

If a;; : R — R are differentiable, let A(t) be the matrix such that A(t);; = a;;(t). If
det(A(t)) # O for all t and by, ..., b, : R — R are differentiable, let s1,...,5, : R - R
be the functions such that s;(t),..., s, (t) are the solutions of the equations

Show that s; is differentiable and find sj(t).

Proof. Define F': R x R® — R" such that the component functions are given by
Fi(t,l’) = —bi(t) + Zaji(t)xj
j=1
Then F' can alternately be written as
F'= —bjo(n?,...,7") + Z(aﬁ om!)md

Jj=1

which makes it clear that it can be written as sums, products, and compositions of differen-
tiable functions. If we assume that the a;; and b; are additionally continuously differentiable,
then F' is also continuously differentiable.

Now, fix t1. Let M(t,z) be the matrix with ijth entry given by D1 F(t,z). To calculate
the matrix of partial derivatives, for k > 2 we have

DkFi(tl,x) = Dk Zaji(tl)a:j
7j=1

n
= Z a;;(t1)e;0ik
j=1
= agi(t1)er

Thus M(t1,z) is simply the matrix [A(t1)]7, where A(t;) has ij-th entry given by a;;(t1).
By assumption, det[A(t1)]7 = det A(t;) # 0, so det M (t1,x) # 0 and the Implicit Function
Theorem applies. Then there exists an open set A C R containing ¢ and a function g : A —
R™ such that

Flt,g(t) =0
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But this happens precisely when each component function is zero, so for each component
we have

—b;(t) + Z a;i(t) g’ (t) =0 = Z aji(t)g’ (t) = bi(t)

Thus we may let s; = ¢7. Since det A(t) # 0 for all ¢ we are able to ”patch” the local
definitions of g7 into a global function without issue. Moreover, the Implicit Function
Theorem tells us that g is differentiable at ¢;, so each s; is everywhere.

To calculate s}, we know that F(t, s (t)) = 0. Taking partial derivatives on both sides, we
have

DL F(t, 5 (t))
DyF'(t, 75 ())s) (t)
D3F'(t, 73 (t))sh(t)

0
0
0

Doy (t, 5 (1)s,,(t) = 0

n

which we can combine as

Dy Fi(t, 5 (t)) + Zn: D1 Fi(t, ?(t))s;(t) =0

Jj=1

Consider the system of equations this forms. We can rewrite it in matrix-vector multiplica-
tion using our definition of M (¢, z) from above as

M(t, 73 (1)s'(t) = —(D1F'(t, 73 (1))

Moreover, the ith coordinate of the vector (DyFi(t, 5 (t))) is given by

—0i(t) + D aji()s; (¢)
j=1
Since M (t, s (t)) is invertible by assumption, we find that

0 (8) = 25y ()85 (1)

() — 7l (t)55(2)
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Exercise 2-41 Let f : RxR — R be differentiable. For each z € R define g, : R — R
by g:(y) = f(z,y). Suppose that for each x there is a unique y with g, (y). Then let
¢(x) be this y.

(a) If Dy f(z,y) # 0 for all (x,y), show that ¢ is differentiable and

Dy f(x,c(x))

@) = =D, 7@, c(@)

(b) Show that if ¢/(z) = 0, then for some y we have

Dy f(x,y) =0
D2f(xvy) =0

(¢) Let f(z,y) =2z(ylny —y) —ylnz. Find

max min f(z,y)
1<e<2 \ 1<y<1

Note: Spivak does not include this, but we must assume that f is twice continuously
differentiable.

(a) Proof. Note that by our definition, Dy f(x,y) = ¢.(y). So y = c(z) precisely when
Dsf(xz,y) = 0. Note that Dyf is a function R x R — R, and the matrix M =
(Dj41(Daf)i(z,y)) is simply the matrix with sole entry Da o f(z,y). By assumption,
Dy o f(x,y) # 0, so det M # 0 and the Implicit Function Theorem applies to Do f, and
we conclude that c is differentiable.

Now, the function = — Daf(z,c(x)) is a function R — R and is 0 everywhere, so we
can differentiate it:

Da1 f(x,c(x)) + D22 f (2, c(x))c () =0
which we can rearrange as

Dy f(x,c(x))

@) = =D, 2 f @ c())

O

(b) Proof. Pick y = ¢(z). Then by definition, g/ (c(z)) = 0, and Daf(z,c(x)) = g (c(x)),
so Daf(z,c(x)) = 0. Moreover, from part (a),

Do f(x,c(z)) = = (x)Daaf(z,c(x)) =0

so this choice of y works. O
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(¢) For any fixed z,
min f(z,y) = min g,(y)
3<y<1 T<y<1
We already know that ¢/, (c(z)) = 0, so it is a critical point. If we calculate g7 (y) =
Dy o f(x,y) for any y, we get

Dyf(z,y) =a2z(lny+1—1)—lnz=2lny —Inz

T
D2,2f(=’U7y) = ;

which is strictly positive (as both z, y must be positive for this function to be defined).
Thus g, is concave upward, and the critical point at ¢(x) is in fact a global minimumﬂ
So if ¢(x) € [4,1], then the minimum is at ¢(x). If ¢(z) < 1, then the minimum is at
%, and if ¢(z) > 1, then the minimum is at 1.

If we explicitly calculate ¢(z), we use the fact that Dsf(x,c(z)) = 0 to find

Inz na
Ine(z) = — = clz)=e* =z
x
and the derivative of this is positive, so ¢ is strictly increasing. Thus there exists a
unique a with ¢(a) = %, and © < o = c(z) < . Similarly, z > 1 = ¢(z) > 1.
So we can explicitly find the minimum of g,:

flz,5), z<a
min g, (y) = § f(z,c(@)), a<z<1
3<y<1
f(z, 1), z>1
1
1:(11133 —%)71‘%, <«
= qz(Yz22 — ¢z)— Yalnz, a<z<1
—z —Inx, z>1
—xlnS;w—lnw’ < o
=4 —z¥x, a<z<l1
—z —Inx, z>1
Call the above function h(z). Then
—n3=1_ L 5 cg
W(x)=qL(—2c(z), a<z<l
o i, z>1
—n3=1_ L 5 cg
= —c(z)—zd(x), a<z<l
-1-1 x>1

1Credit for work past this part to the solution presented here
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Now, since Dy o f(z,y) # 0 for all z,y, part a) applies and

1 Inz—1
o) = ~Reafwe@) | e -y BER e
D3 f(x,c(x)) (@) c(x) v
Thus
sl L r<a
W) = —cla)=Hsls o <a<l
—1-1 z>1

T
Note that z > Inz, so £H=I2E > 0 and c(z) > 0, so #'(z) is negative everywhere
(except possibly the boundary points «, 1, but it is continuous there). Thus the
minimum of h on [%, 2] is given when x = % To check whether % < «, simply note

that ¢(1) =+ < 1, s0 7 < o. Thus

1 ~In3—-1-2Ini m3-1
max (min f(ac,y)) :h<2>: - G s R n46

1<y<2

1.3 Chapter 3 Exercises

Exercise 3-1 Let f : [0,1] x [0,1] — R be defined by

flz,y) = {O’ rel

=}
—_ N

)
]

1, z€]

)

N[

Show that f is integrable and [iy 1y, o1 f = i

.

Proof. Let ¢ > 0. Choose a partition P with subrectangles given by

SR
A= 053 % [0, 1]
1 1 ¢
B = |:2—272+2:| X[O,].]
C= é+§,1_ % [0,1]
Then
ma(f) =Ma(f)=0
mp(f) =0,Mp(f) =1
me(f) = Mc(f) =
and

v(B)=¢

61



So

U(f,P) = L(f,P) = v(B)(Mp(f) — mp(f))
=v(B)=¢

So f is integrable by the alternate criterion for integrability. Moreover,

1 ¢
U(f,P) = v(A)Ma(f) +v(B)Mp(f) + v(C)Mc(f) =v(BUC) = 5 + 5
and similarly
L(f.P) =55
22
SoL>1and U < 1, but we know that U =L so [, f = 1. O

Exercise 3-2 Let f : A — R be integrable and let ¢ = f except at finitely many
points. Show that g is integrable and [, f = [, g.

Proof. Refer to Its proof does not depend on this problem, and we will use
the fact that [, f+g= [, f+ [, 9 when f,g are integrable.

Let € > 0 be arbitrary. We aim to show that g — f is integrable with [, g — f = 0. Since
g # [ at only finitely many points, it is bounded. Let y = max{|f — g|}. Let p1,...,pr be
those points where g — f # 0. Let Si,..., Sk be the subrectangles they are in for a given
partition (pick them small enough that they are distinct). Then choose P such that

Z ’U(SZ) <e€

Then

Ulg—f,P)—Llg—1,P) =Y [Ms(g — f) —ms(g — [)]o(S)

SeP

k
= > [Ms,(g— f)—ms,(g— f)]v(S)

%

v(Si)

So g — f is integrable and a similar argument shows [, g—f=0.So [,9= [,9—f+[f=
Jag—f+ [ f=[Af O
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Exercise 3-3 Let f,g: A — R be integrable.

(a) For any partition P of A and subrectangle S € P, show that

ms(f) +ms(g) <ms(f+9g)

and
Ms(f +9) < Ms(f) + Ms(g)
so that
L(f,P)+ L(g,P) < L(f + 9, P)
and

U(f+9,P) <U(f,P)+Ul(g,P)

(b) Show that f + g is integrable and [, f+g= [, f+ [, 9-

(¢) For any constant ¢, show that [, cf =c¢ [, f.

(a) Proof. Let S € P. Then for any point = € S, we have

(f +9)(=) = f(z) + g(z) = ms(f) +ms(g)
Thus
ms(f) +ms(g) < ms(f+g)

Similarly,
Ms(f+9) < Ms(f) + Ms(g)

Thus we have

L(f,P) + L(g,P) = 3 o(S)ms () + ms(g)]

SeP

<3 w(S)ms(f +9)
SeP
= L(f+g773)

Similarly,
U(f+9,P) <U(f,P)+ Ulg,P)

(b) Proof. Let € > 0 be arbitrary. Pick Py, Py such that

U(f1,P1) — L(f1,P1) <

[NCTRON RO

U(f2;P2) — L(f2,P2) <
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Let O be the common refinement of P1, Py. Then

U(fi+ f2,Q) = L(fi + f2,Q) = D v(S)[Ms(f1 + f2) = ms(f1 + f2)]

SeQ

< D o(S)Ms(f1) + Ms(f2) = ms(fr) = ms(f2)]

SeQ
=U(f1,Q) +U(f2, Q) — L(f1,Q) — L(f2, Q)
< U(f1,P1) — L(f1,P1) + U(f2, Pa) — L(f2,P2)
<e
So f1 + f2 is integrable and a similar argument shows [, fi + fo= [, fi+ [, fo. O

(¢) Proof. Let P be a partition and let S € P. Since S is a closed rectangle, it is
compact, so there exists © € S with f(z) = Ms(f). Then (cf)(x) = ecMg(f) so
Mgs(cf) > eMg(f). But for any y € S, we also have (cf)(y) = cf(y) < eMg(f) so
Ms(cf) = cMg(f). Similarly, mg(cf) = ems(f).

Now, let € > 0. Then there exists a partition P with
€
U(f,P) - L(f?P) < E
Then we have

Ulcf,P) = L(cf, P) = > _ v(S)[Ms(cf) — ms(cf)]

SeP

= cw(9)[Ms(f) — ms(f)]
SepP

= c[U(f,P) — L(f,P)]

<e€

So that cf is integrable. Now, let € > 0 be arbitrary. Then there exists a partition P
such that

virp < [ 145

Then we have

Ulef,P) SC/ +e

A

SofAcf:cfAf. O

Exercise 3-4 Let f : A — R and let P be a partition of A. Show that f is integrable
if and only if, for each subrectangle S € P the restriction f|g of f to S is integrable,

and in this case [, f => g [q fls-
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Proof. (=) Suppose that f is integrable on A, and let P be given. Let € > 0. Then there
exists a partition P’ of A with

U(fvpl) 7L(f77),) <eg

Now let Q be the common refinement of P and P’. Then each subrectangle of Q is entirely
contained within a subrectangle of P. In other words, for any S € P, we may enumerate
S1,...,5; € Qsuch that S;U...US, = S, which means that S = {S1, ..., Sk} is a partition
of S. Thus

U(fls,S) = L(fls,8) = D> v(8)[Ms:(fls) — ms:(fls)]
S'es
v(S9)[Ms(f) —ms(f)]
< Y (9 [Msi (f) —mgn(f)]

SUeP
<e€
So f|s is integrable on S.

(<) Let P be given, and suppose each f|g is integrable on the resepctive S. Let ¢ > 0.
Then let N be the number of subrectangles in the partition P. For each S, pick a partition
P such that

€
U(fls,P%) = L(fls,P%) < =
Now, suppose that P° = (P, ..., PS). Then
Q= J PP
SeP
is a partition of [a1,b1]. Let Q = (Qy,..., Q). Then Q is a refinement of P, and moreover,

for any S € P, Q° (which is the collection of subrectangles in Q which are contained in S)
is a refinement of P°. Thus

U(£,Q = L(£,Q = > v(8")Ms (f) = ms(f)]
5'€Q
=2 2 S )Mer(f) = ms ()]

SeP S"eQs

< S ulS Mo (f) — mse(£)

SeP sreps

= > [U(fls,P%) = L(f]s,P?)]

SeP

SepP
=€

So f is integrable on A. A similar argument shows that [, f =3 ¢ [q fls- O
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Exercise 3-5 Let f,g : A — R be integrable and suppose f < g. Show that
Jaf < Jas

Proof. Let P be a partition of A. Then for any S € P, Ms(f) < Ms(g). Thus

U(f.P) =Y v(S)Ms(f) < > v(S)Ms(g) = U(g, P)

SeP SeP

Since we know f and g are integrable, we conclude that

/f:infU(f,P)SinfU(g,”P):/g O
A A

Exercise 3-6 If f : A — R is integrable, show that |f| is integrable and | [, f| <
Jalf1-

Proof. Let € > 0. Let P be a partition such that
U(f,P) 7L(fylp) <e

Let S € P. If Ms(f) > ms(f) > 0, then Mg(|f]) = Ms(f) and mg(|f]) = ms(f). If
ms(f) < Ms(f) <0, then Ms(|f|) = —ms(f) and ms(|f]) = —=Ms(f). If Ms(f) > 0 and
mg(f) <0, then I claim that Mg(|f]) < max{|Ms(f)|, |ms(f)|}.

To see this, note that for any « € S, if f(z) < 0 then |f(z)| = —f(z) < —ms(f) = |ms(f)|.

If f(z) > 0, then | f(z)| = f(x) < Ms(f) = [Ms(f)]. So Ms(|f]) < max{|Ms(f)], ms(f)[}-
Using the fact that mg(|f]) > 0, we have

Ms(|f]) —ms(|f]) < Ms(|f])
< max{[Ms(f)], |ms(f)[}

_ {Msm, |Ms(f)| > [ms(f)]
—ms(f), |ms(f)| > |Ms(f)|

< Ms(f) —ms(f)

As a result, we have the following;:

Ms(f) —ms(f), Ms(f) =2 ms(f) =0
Ms([f) =ms(|f]) < § —ms(f) = (=Ms(f)), ms(f) < Ms(f) <0
Ms(f) —ms(f), Ms(f) > 0,ms(f) <0

= Ms(f) —ms(f)
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Thus, we have

U(If,P) = LUfLP) = D v(S)[Ms(If]) —ms(|£])]

SeP

<> u(S)[Ms(f) —ms(f)]
SeP

::U(ﬂ7n'_L(ﬁ1”

<e

So |f] is integrable.

For any partition P, and any S € P, we showed that Mg(|f|) < max{|M(f)|,|ms(f)|}-
However, we can make a stronger statement, that Mg(|f|) = max{|Ms(f)|,|ms(f)|}. In-
deed, since S is compact there exists z,y € S with f(x) = Mg(f) and f(y) = ms(f). Then
[f1(x) = [Ms(f)] and [f|(y) = [ms(f)| so [f] attains the value of max{|Ms(f)], |ms(f)[}-
Thus [Ms(f)] < Ms(|f]). So

‘/f'<Uf, =] u(s

SeP
So for any partition P, U(|f|,P) > | [, fl so [, |fI =1 [, fl O

< w(S)|Ms(H) <D v(S)Ms(f]) = U(f],P)

SeP SeP

Exercise 3-7 Let f : [0,1] x [0,1] — R be defined by

~J0, z¢Qory¢Q
f(x,y)‘f {1 T E<@,y:= g E(Q

q’

where we assume that y = % is given in lowest terms. Show that f is integrable and

f[o,1]x[0,1] f=0

Proof. First, note that for any partition P the density of Q implies that L(f,P) =0. So it
suffices to show that U = 0.

Let € > 0. Pick a partition P as follows: Choose N large enough that
1 5

N 2

Then there are finitely many y = p/q € Q such that ¢ < N. Denote them by y1,. .., y.
Then pick intervals Iy, ..., I, about each such that the total length of the intervals is less
than €/2 (and such that the I; are disjoint). Let Py be the partition of [0, 1] given by these
intervals, with the gaps filled in appropriately.

Let P; be the single partition {0,1}. Then P = (P1, P2) consists of subrectangles of the
form [0, 1] x I, where I is either one of the I; we defined previously, or it is not (in this case,
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it is a gap between them). Let £ denote the set of all subrectangles of the form [0, 1] x I;,
and let R denote the set of all other subrectangles. Then

U(f,P) =Y v(S)Ms(f) =>_ v(S)Ms(f) + > v(S)Ms(f)
SeP SeLl SER

Now, if S € L, then f attains a value of at most 1 on S, so Mg(f) < 1. But if Ms(f) € R,
then by construction there is no point (z,y) € S with y = p/q and ¢ < N. Thus

1 1 €
f(337y)—6<ﬁ<§
so Ms(f) < §. Thus
€ e €
O(S)Ms(f) + D o(S)Ms(f) < Y v(S)+ 5 D w(S) < S+ =¢
sec SeR sec SeR
Thus U = 0. So f is integrable and f[o 1x[0.1] f=0. 0
Exercise 3-8 Prove that A = [a1,b1] X ... X [ap,b,] does not have content zero if

a; < b; for each 1.

Proof. Let O be a finite cover of A by closed rectangles. Without loss of generality we may
assume that each rectangle is contained within A. Then let T; = {t{,... ,t}'ci} be the set of
endpoints of the rectangles in the ith direction (that is, if O = {[c1,d1] X ... X [cn,dn]} € O,
then ¢1,dy € Ty and ¢;,d; € T; for any ¢). Without loss of generality we may order them so
that a; = tj < ... <t} =b;. Then each v(0;) for O; € O is the sum of v(A4;) for A; of the

form [t} ), 5] x ... x [t} _;,t% ]. Moreover, each of those rectangles is contained within
some O;. So
n k1 X -kn n
> w0 = Y w(A) =[]0 —ay)
i=1 j=1 j=1
So A does not have content zero. O

Exercise 3-9
(a) Show that an unbounded set cannot have content zero.

(b) Give an example of a closed set of measure zero which does not have content
zero.

(a) Proof. Let A be an unboudned set and O a finite cover of A by closed rectangles.
Then there exists a closed rectangle M such that

Jocwm
00O

But since A is unbounded it contains points outside M. So O cannot be a cover of
A, contradiction. Thus A is in fact not covered by any finite set of closed (or open)
rectangles, so it cannot have content zero. O
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(b) Proof. Qis closed and has measure zero (this follows from the fact that it is countable).
However, it is unbounded, and thus does not have content zero by part a). O

Exercise 3-10
(a) If C is a set of content zero, show that the boundary of C' has content zero.

(b) Give an example of a bounded set C' of measure zero such that the boundary
of C does not have measure zero.

(a) Proof. Let O be a finite cover of C by closed rectangles. I claim that O contains 9C.
To see this, suppose that there exists a point 2 € 9C such that = ¢ O for each O € O.
Then

k

i=1
But since each O; is closed, R™ \ O; is open, and this is a finite intersection of open
sets, which is open. Then since x € 9C, there exists a point y € C' with

k
ye[R"\O;
i=1
But this contradicts the assumption that O is a cover of C. Thus O covers 0C. So
any closed cover of C' is a cover of C. Then let € > 0. We may produce a finite cover
of C by closed rectangles with total volume less than €. This cover works for 0C as
well. Thus OC' has content zero. O

(b) Pick QN [0,1]. This is a bounded set of measure zero. But 9(QN |0, 1]) = [0, 1], which

does not have measure zero.

Exercise 3-11 Let A be the union of open intervals (a;, b;) such that each rational

number in (0, 1) is contained in some (a;,b;), as in [Exercise 1-18] If

o0

Zbifai<1

i=1

show that A does not have measure zero.

Proof. Suppose that A has measure zero. Pick a cover O of A by open intervals such that

ZU(O)<1—ibi—ai

0eo

which we rewrite as

1> Z+ibl—al

Oe0 i=1
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From [Exercise 1-18] we know that A = [0,1] \ A. So the collection of intervals in O
combined with the open intervals which make up A form a cover of [0, 1] by open intervals.
Call this cover (. Then we know

But we also have

IRCISSENES 3t

0€o o€’
So
1> (0 +Zb—alzz
0€o o€’
and we conclude that 1 > 1, contradiction. So A does not have measure zero. O

Exercise 3-12 Let f : [a,b] — R be an increasing function. Show that {z :
f is discontinuous at z} has measure zero.

Proof. 1 claim that for any n, there are at most n(f(b) — f(a)) points with o(f,z) > +.

To prove this, suppose there are more than n(f(b) — f(a)) such points, x1,...,x,. Then
we may pick yo,...,yr With a = yg < 1 < y1 < ... < x < yr = b. Then because f is
increasing, for each x; we have

o(fyzi) < f(yi) — f(yi-1)

Then by a telescoping argument,

k
S oldwi) < £y~ Flw) = F0) ~ f(a)
But we also have
Sotfayz 3t ko O S@) gy g
=1 =1 n

contradiction. Thus there are at most n(f(b) — f(a)) such points. Recall that f is discon-
tinuous at z precisely when o(f,z) > 0. But

{z:0(f,z) >0} = U{x:o(f,x) > %}
n=1

So {x : f is discontinuous at z} is the countable union of finite sets and thus has measure
Zero. O
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Exercise 3-13

(a) Show that the collection of all rectangles [a1,b1] X ... X [an, b,] with all a; and
b; rational can be arranged in a sequence.

(b) If A C R™ is any set and O is an open cover of A, show that there is a sequence
01,0, ... of members of O which also cover A.

(a) Proof. This collection may be placed in bijection with Q" which is a finite Cartesian
product of countable sets, so it is countable. O

(b) Proof. For each point zz € A, x € O for some O € O, and O is open, so there exists an
open rectangle R, C O containing x. Moreover, we demand that each endpoint of R,
is rational. Then the set of R = {R, : x € A} is a subset of the set of all rectangles
with rational endpoints, which we showed is countable. Thus R is countable, so we
may order its elements as Ri, Ra, .. ..

We then pick a countable subcover @' of O by picking O} such that Ry C Of, and
so on. We may skip terms if R; is already contained in a previously chosen open set.

This gives a countable subcover of R, and R covers A, so this is a countable subcover
of A. 0

Exercise 3-14 Show that if f,g: A — R are integrable, then fg is as well.

Proof. Since f and g are both integrable, they are discontinuous on sets C1,Cy C A of
measure zero. For any x such that z ¢ Cy and = ¢ Cs, f, g are both continuous at x so fg
is continuous at x. Thus Cs, the set of points where fg is continuous, is a subset of C; U Cy
and has measure zero. So fg is integrable. O

Exercise 3-15 Show that if C' has content zero, then C' C A for some closed rectangle
A and C is Jordan measurable with [, x¢ =0

Proof. We showed in part a) that any unbounded set does not have content
zero. So C' C A for a closed rectangle A. We showed in [Exercise 3-10| part a) that 9C has

content zero whenever C has content zero. So C is Jordan-measurable.

Now pick a partition P of A. For every subrectangle S of P, we cannot have S C C, since
otherwise C' would not have content zero. So mgs(xc) = 0 for each S and thus L(f,P) = 0.
This is true for all partitions P, so

A

Exercise 3-16 Give an example of a bounded set C' of measure zero such that f a4 XC
does not exist.
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Set C' =QnNJ0,1]. Then x¢ is the Dirichlet function, which is discontinuous on [0, 1] (since
both irrationals and rationals are dense in [0,1]). So x¢ is not discontinuous on a set of
measure zero, so [, x¢ does not exist.

Exercise 3-17 If C' is a bounded set of measure zero and [ 4 Xc exists, show that
Jixe=0.

Proof. See the second paragraph of the argument from O

Exercise 3-18 If f : A — R is nonnegative and fA f =0, show that {z: f(z) # 0}
has measure zero.

Proof. Consider the set B, = {z : f(z) > 1} for any n. I claim that B,, has content zero.
Suppose it does not. Then there exists ¢ > 0 such that any cover of B, has total volume
no less than €. Then let P be any partition. If S is the collection of subrectangles which
intersect B,,, then Mg(f) > % for any S € S. So

U(LP) = 3 o(S)Ms(f) > 3 o(S)Ms(f) >+ 5 u(s) >

SeP Ses Ses

9
n

So U > £ > 0, but this contradicts the assumption that fA f =0. So B, has content zero.
Thus

{w: f(@)#0} = | B,

n=1

has measure zero. O

Exercise 3-19 Let U be the union of open intervals (a;, b;) such that each rational
number in (0, 1) is contained in some (a;, b;), and

o0

Zbi—ai<1

p=l

as in Show that if f = yy except on a set of measure zero, then f is
not integrable on [0, 1].

Proof. In |[Exercise 3-11| we showed that OU = [0,1] \ U does not have measure zero. xy is

discontinuous on AU, so it is discontinuous on a set that is not of measure zero, and thus
not integrable. Then we need to show that f is also discontinuous on a set not of measure
Zero.

Let x € U, and suppose that f(z) = xy(x). Suppose for contradiction, suppose that f is
continuous at x. Since z € OU and U = [0,1]\ U, = ¢ U. Thus f(z) = xu(z) = 0. If
f is continuous at x, then for any € > 0 there exists a neighborhood around x such that
|f(y)] < e for y in the neighborhood. We will show that this is not the case.
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Let € = % Let V be any neighborhood around z contained in [0,1]. Then there exists
a rational ¢ € V. ¢ € U which is open, so there exists an open rectangle R containing ¢
contained in U NV. So xy = 1 on an open rectangle within V. So if |f(y)| < e for any
y € V, we must have f # yy on R. But R is not a set of measure zero, so this contradicts

the assumption that f = xy on a set of measure zero. So f is not continuous at .

We have shown that for any x € U such that f(z) = xu(z), f is discontinuous at z. Then
we must show that the set of z € OU with f(x) = xy(z) does not have measure zero.

Suppose that it does. Let € > 0. Then there exists a cover U of {x € U : f(x) = xu(z)} by
open intervals with total length less than £/2. We also know that {x € [0,1] : f(x) # xv(z)}
has measure zero by assumption, so {x € U : f(x) # xv(z)} also has measure zero and we
may cover it by an open cover O with total length less than /2.

Now for any « € 9U, we must have f(z) = xu(z) or f(z) # xv(z), so U UO covers OU.
Now we have

Z d; —¢; < Z d; —¢; + Z di —c; <e

(¢i,d; ) EUVO (es,ds)EU (¢;,d;)EO

So QU has measure zero. But in [Exercise 3-11] we showed that this is not the case. So the
assumption that {z € U : f(x) = xv(x)} has measure zero is incorrect. But we showed
that f is discontinuous on this set, and it does not have measure zero, so f is not integrable
on [0,1]. O

Exercise 3-20 Show that an increasing function f : [a,b] — R is integrable on [a, b].

Proof. In we showed that f is discontinuous on a set of measure zero. So it is
integrable on [a, b]. O

Exercise 3-21 If A is a closed rectangle, show that C' C A is Jordan-measurable if
and only if for every € > 0 there is a partition P of A such that

S wS) = > w(S)<e
SES: SES,

where S; consists of all subrectangles intersecting C' and Ss all subrectangles con-
tained in C.

We first prove the following fact:

If ACR" and x € int A, y € ext A, then there exists z =tz + (1 —¢)y with0 <t <1
such that z € JA. (Intuitively, this z lies along the line segment between x and y).
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Proof. To see this, first note for sufficiently small ¢ > 0, tz + (1 — t)y € A since x € int A.
Thus the set {0 <t <1:tx+ (1—t)y € A} is nonempty. Moreover, it is clearly bounded.
Then let

t'=sup{0<t<1l:tx+(1—-t)ye A}

Now, first note that ¢’ < 1. This is because y € ext A, so there exists a ball around y entirely
contained in R™ \ A.

I claim that z = t'z 4+ (1 — t/)y € OA. To see this, let B,.(z) be any open ball around z.
B,.(z) contains a point in A, as we can simply pick tz+ (1 —t)y for t <t such that t' —t < r.
Then we need to show that B,.(z) contains a point in R™ \ A.

Let 2/ = (t' +e)z+ (1 =t — )y, where ¢ < r and t' + ¢ < 1 (possible because ¢’ < 1). Then
|z —2|=e<r,s02 € B.(z). Bt t/ +e >t/ ,sot' +e ¢ {0<t<1:tx+ (1 —-t)y € A}.
Since we provided that ¢’ 4+ ¢ < 1, we conclude that 2’ ¢ A. So z € JA. O

Now, continuing to the main proof:

Proof. ( = ) Suppose that C C A is Jordan-measurable. JC has measure zero, and is
compact, so we may pick a finite collection of closed rectangles O whose interiors cover 9C
with total volume is less than €. Then apply Lemma 77 to pick a partition P such that
every subrectangle S € P is either contained in some O € O or does not intersect 9C. If
S € P and S intersects C but is not contained in C, I claim that there exists z € S with
z € 0C.

Indeed, we can pick z,y € S such that x € C and y ¢ C. Then if either of these points is
in 9C, then we are done. Otherwise, z € int C' and y € ext C. By the Lemma, there exists
z=tx+ (1 —t)y with 0 < ¢ <1 such that z € 9C. Since S is convex, z € S. So the claim
is proved. Then S intersects 9C, so we must have S C O for some O € O. Thus

duS) =D ) <> v0)<e

SeS SeS2 0oe0O

( <= ) Suppose that C C A satisfies the condition that for every € > 0 there is a partition

P such that

dowS) = > w(S)<e

SeS SeSs
I claim that 81\ Sa covers OC. To see this, let « € 9C. Then x € S for some S € P. Then
SeS orS¢S:. But if S ¢ Sy, then there exists an open rectangle (S) around x entirely
contained in ext C, contradicting x € 9C. So S € S§;. But similarly, if S € S then that
contradicts € 9C. So S € 81\ Sa.

Thus 8; \ Sz covers C, and by assumption it can be made as small as required. So 9C has
measure zero and C' is Jordan-measurable. O]

Exercise 3-22 If A is Jordan-measurable and € > 0, show that there exists a compact
Jordan-measurable set C C A such that fA\C l1<e.
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Proof. Let A be Jordan-measurable and let € > 0. Then by we may pick a

partition P such that
Z v(S) — Z v(S) <e
SeS SES>

where &y is the collection of subrectangles intersecting A and Ss is the collection of subrect-
angles contained in A. Then C = [J S, is a union of finite closed rectangles and thus closed.
Moreover, C' C A. Since A is bounded, C is also bounded and thus compact. So we need
to show that it is Jordan-measurable.

I claim that 0C C [Jgeg, 9S5. Let x € 9C. Then consider the sequence of open balls (B,,),
where B,, = By/,(7). Then for each B, there exists some point y, € C. Each y, € S for
some S € Sy, but there are only finitely many such S, so there is some S’ such that y,, € S’
for infinitely many n. Moreover, each B,, contains a point not contained in C', which is thus
also not contained in S’. So z € 8S’. Thus the claim is proved.

We take without proof the fact that a rectangle is Jordan-measurable. Then 0.S has measure
zero for each S € Sy, so the finite union (Jg. s, 05 also has measure zero, and thus 9C has
measure zero and C' is Jordan measurable

Now, because C' C A, we have fA\C 1= [,1— [, 1. Moreover, S; covers A. So

[<f
A USI

/,4\01:/,41_/01§/U511_/01:ZU(S)—ZU(S)<E O

Ses, SeSe

and thus

Exercise 3-23 Let A C R™ and B C R™. Let C C A x B be a set of n + m-
dimensional content zero. Let A’ C A be the set of all x € A such that {y €
B : (z,y) € C} is not of m-dimensional content zero. Show that A’ is a set of
n-dimensional measure zero.

Proof. First, because C has content zero, 9C has content zero so x¢ is integrable on A x B
and [, pxc =0. Let U(x) = U [, xc(z,y)dy. Then by Fubini’s Theorem,

/ XC:/Z/IZO
AxB A

Now, fix some x € A, and let P be a partition of B.

If © € A, then there exists some €, > 0 such that any finite cover of {y € B : (z,y) € C} by
closed rectangles has total length at least ,. Let S; be the collection of subrectangles S in
P that intersect {y € B : (z,y) € C}. Because & is a finite cover of {y € B : (z,y) € C},

U(xe,P) = Y Ms(xc)v(S) = Y v(S) > e,

SES SES
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Then U(z) = U [, xc > e,

Now, U is clearly nonnegative, and we know that [, & = 0. So by [Exercise 3-18, {x : U(x) #
0} has measure zero. But we just showed that A’ C {z : U(z) # 0}, so A" has measure
Zero. O

Exercise 3-24 Let C' C [0,1] x [0, 1] be the union of all {p/q} x [0,1/q], where p/q
is a rational in [0,1] in lowest terms. Show that it is not true that the set A’ in

[Exercise 3-23 has content zero.

Proof. First we show that C' has content zero. Let € > 0. Then let
R =[0.1] x [0, ]

Then there a finite number of rationals p/q such that {p/q} x [0,1/¢] is not contained in
Ry. Call these r1,...,7x =p1/q1,---,Pk/qk. Then for 1 <i <k, let

| Ppi 4i€ Di qi€ 1
e s R

Letting R = {Ry, R1, ..., R}, R is a finite cover of C by closed rectangles with

+ Z giil =
i=1

k

k
D v(R) = o(Ro)+ 3 o(R) = 5+ 3o <
i=1

RER i=1

+

=&

| ™
DO ™
| ™

So C has content zero.

But for each rational p/q € [0,1], the set {y € [0,1] : (p/q,y) € C} is simply the set [0,1/q],
which does not have content zero. So A’ = QN [0, 1], which does not have content zero. [

Exercise 3-25 Use induction on n to show that [a1,b1] X ... X [an,b,] is not a set
of measure zero (or content zero) if a; < b;.

Proof. In the base case, n = 1, let U be a cover of [a, b1] by open intervals. Since [a1, b1] is
compact, we can assume I is finite. From here the base case proceeds as in

Now suppose the theorem is true for n, and we will prove it for n + 1. Then [aj,b] X
o fant1, bng1] = ([a1,b1] X ... X [@n, bn)) X [ant1,bnt1]- Let A =[ag,b1] X ... X [an, by] and
B = [an+1,bn+1]- By Fubini’s Theore

Joot = LU= (o) (/)

2Credit for work past this point to https://hidenori-shinohara.github.io/2019/12/23/measure-zero-ex-3-
25.html

76


https://hidenori-shinohara.github.io/2019/12/23/measure-zero-ex-3-25.html
https://hidenori-shinohara.github.io/2019/12/23/measure-zero-ex-3-25.html

Now, the constant function 1 is a nonnegative function, and shows that if
fA 1dx = 0, then 1 is nonzero on a set of measure zero. But 1 is nonzero on A, which is not
a set of measure zero by the inductive hypothesis. So

/1dx>0
A

/1dy>0
B

/ 1>0
AXB

Now A x B is bounded. If it has measure zero, then |[Exercise 3-18|says that foB XAxB =

foB 1 = 0. But this is not the case, so A x B does not have measure zero. O]

and similarly

SO

Exercise 3-26 Let f : [a,b] — R be integrable and nonnegative and let Ay =
{(z,y) :a <z <b,0<y< f(x)}. Show that As is Jordan-measurable and has area

5.

Proof. Since f : [a,b] — R is integrable and nonnegative, there exists M > 0 such that
M > f(x) for any x.

Claim 1.1

Let

B = (la,0] x {0})
C={(z,f(z)): = € la,b]}
D = {a} x [0, M]
E = {b} x [0, M]
F={

x : f is discontinuous at x} x [0, M]

Then
0Ay CBUCUDUEUF

To prove this, note that any (z,y) satisfies exactly one of the following conditionsﬂ

1. (z,y) ¢ [a,].
2. x=a.
3. x=0.

3Strictly speaking, conditions 5 and 8 are both filled by (x,0) for x : f(x) = 0, but this does not detract
from the overall argument.
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T, a,b),y <O0.
x, a,b),y=0.
z, a,b),0 <y < f(x), f is continuous at x.
0 <y < f(x), f is not continuous at x.

el oo ~ (=2} ot N

—~ o~ o~ o~ o~~~
&

< S < < < < <

N N

m m M m m m m

10.

11. (z,y) € (a,b),y > M, f is not continuous at x.

For cases 2, 3, 5, 7, 8, 10, (z,y) € BUCUDUEUPF. Thus we must show that (z,y) ¢ 0Ay
whenever conditions 1, 4, 6, 9, or 11 are met.

Case 1: We can pick an open rectangle R containing (z,y) such that (z1,y1) € R =
x1 ¢ [a,b]. So (x,y) € ext Ay.

Case 4: We can pick an open rectangle R containing (x,y) such that (z1,y1) € R =
y1 < 0. So (z,y) € ext Ay.

Case 6: Since f is continuous at x, there exists an interval (z — §, 2 +9) such that f(x1) >
y + € whenever x; € (x — 0,z + §), for € > 0 sufficiently small (where § is chosen small
enough that this makes sense). Then the rectangle R = (x —d,2 + d) x (0, +€) is an open
rectangle containing (z,y) which is contained in Ay. So (z,y) € int Ay.

Case 9: Similarly to Case 4, since f is continuous at z, there exists an interval (z — 9,z +9)
such that f(x1) < y — e whenever 1 € (x — §,x + J) for € > 0 sufliciently small. Then the
rectangle R = (x — 6,2 4+ 0) X (y — €, M) shows that (x,y) € ext A.

Case 11: Similarly to Case 2, we may pick an open rectangle R containing (z,y) such that
(z1,y1) €ER = y1 > M = (x1,y1) ¢ As. So (z,y) € ext Ay.

Thus Claim 1 is proved.

The sets B, C, D, E, F each have measure zero.

The line interval [a,b] x {0} has measure zero, as for any € > 0 we cover it by

£ 5
(b—a) 2(b—a)

R. =[a,b] x {—2
which has v(R.) = €. So B has measure zero. A similar proof holds for the line segments
D and E.

The set {x : f is discontinuous at x} has measure zero since f is integrable. Let ¢ > 0.
Then we may pick a cover Z of {x : f is discontinuous at x} by open intervals such that

€
Z d—c< —
(¢,d)eT AM
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Then the collection U of rectangles of the form (c,d) x (—&, 32L) for (c,d) € T forms a

cover of {x : f is discontinuous at z} x [0, M], Moreover, consider the remaining set

S=lab]\ [ JI

IeZ

Since each I is open, S is closed. It is also bounded, so it is compact. Moreover, f is
continuous at each z € S. Since f is continuous on S compact, it is uniformly continuous.
Thus we may pick § > 0 such that

9
4(b—a)

Moreover, pick d such that md = b — a for some m € N. Now let §; = [a + (¢ — 1)d, a + id].
Then the collection {d;}/; partitions the interval [a, b]. Now for each 4, define the rectangle
P; as follows: if SN§; = @, then let P, = §; x {0}. Otherwise, pick z; € SN ;. Then let

z,y €S, |r—y|<d = [f(z) - fly)l <

3 3

Fi= 0ok 1) = g gy S0 + gy

Let P ={Pi,...,P,}, and let Y = {U : U € U}. I claim that PUUUU is a cover of CUF.
Indeed, we already showed that U covers F', so U does as well.

Now, for any z € [a,b], either z € Sorx ¢ S. If 2 ¢ S, then x € I for some I € Z and thus
(z, f(x)) € U for some U € U. On the other hand, if x € S, then x € §; for some ¢ (this
does not require = € S, just « € [a,b]). Then |z — z;| < d;, so

[f(z) = fzi)] <

5
4(b—a)

so (x, f(x)) € P;. Thus P UU is a cover of C' U F by closed rectangles. Lastly, we have
M 3M €
;_ o) = > o((e,d) x (-5 ) =2M Y d-c< 5
Ucld veu (¢, d)eT (c,d)eT

and
m

i € € €
;U(B) :25' 2(b—a) - 2(b—a)m6: 2

=1

so the total volume of P U is less than e. Thus C' U F has measure zero, and C' and F
each do.

Thus Claim 2 is proved.

Now, by Claim 2, each of B, C, D, E, F' has measure zero. So BUCUDU FEU F has measure
zero, and by Claim 1 04y C BUCUDUEUF, so 0A; has measure zero. It is also bounded,
so Ay is Jordan-measurable.

The last part of the proof is to show that v(Ay) = f; f. Since Ay is Jordan-measurable,
X4, is integrable on [a, b] x [0, M]. So by Fubini’s Theorem,

b M
v(Ay) :/ XAy :/ (L/ xa,; (z,y) dy> dz
[a,b] x[0,M] a 0
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For each fixed = € [a,b], g» = x4,(,-) is integrable as it is only discontinuous at f(x).
Thus

M M
L/ xa,; () dy:/ XA, (2, y)dy
0 0
Moreover,

M f
/ v, (2,y) dy = / ()1dy = f(2)
0 0

v(Af>—/ab </{)M><Af<z,y>dy>dx/abﬂx)dx—/abf w

Exercise 3-27 If f : [a,b] X [a,b] — R is continuous, show that

/:/ayf(x,y)dzdy—/ab/:f«c,y)dydz

Proof. Define C = {(z,y) € [a,b] : y > x}. Then C has boundary 9C = ({a} X [a,b]) U
([a,b] x {b}) U{(z,x) : © € [a,b]} which are all line segments, and thus have measure zero.
So C' is Jordan-measurable and x¢ f is integrable on [a,b] X [a,b]. By Fubini’s Theorem,
since f is continuous,

/[a,b]x[a,b] xcf = /ab /ab xe (@ y)f(z,y)dyde = /ab /:f(fv,y) dy dz

But applying it in the opposite order,

/[a,b]x[a,b} ch:/:/abxc(%y)f(%y) dzdy = /ab/ay f(z,y)dedy O

Exercise 3-28 Use Fubini’s theorem to prove that D; »f = D3 f if both are con-
tinuous.

So we have

Proof. Suppose that D; o f and Dy ; both exist and are continuous. Then D; o f — Dy f is
continuous. Suppose there exists a such that D; o f(a) — Dz 1f(a) > 0 (for the case < 0 the
proof is analogous). Then there exists a rectangle A = [a,b] X [c,d] containing a such that

Diaf(x) = Doy f(x) > €

for any € A and € > 0 smaller than Dy 2 f(a)— D21 f(a). Since Dy o f —Da 1 f is continuous,
it is integrable on A. So

/ADLinDZ’le/Agzs/Al:m(A)>O
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But by Fubini’s Theorem,

/ADl’Qf: /ab /cd Diaof(z,y)dyda
:£<[a§mﬂnm®>m

b
= / D, f(xz,d) — D1 f(z,c)dx

a

:f(bvd)*f(bvc)*f(avd)‘i’f(aﬂc)

Similarly,
d b
[ Dast= [ [ Dossien
-/ " Daf(b.0) — Dafay) dy
— f(b.d) — fla.d) — f(b,) + Fla,0)
So

/ADsz—nglf:f(b,d)—f(b,c)—f(a,d)+f(a,c)—f(b,d)+f(a,d)+f(b,c)—f(a,c)
=0

contradiction. Thus Dy of — Da1f =0and Dyof = Do f. O]

Exercise 3-29 Use Fubini’s theorem to derive an expression for the volume of a
set of R? obtained by revolving a Jordan-measurable set in the yz-plane about the
z-axis.

Exercise 3-30 Let C' C [0,1] x [0, 1] contain at most one point on each horizontal

and each vertical line, with 9C = [0, 1] x [0, 1], as in [Exercise 1-17] Show that

/ (/ Xc(ﬂ:,y)dx>dy—/ (/ XC(fv,y)dy)dﬂc
[0,1] [0,1] [0,1] [0,1]

/ Xc

[0,1]x[0,1]

Proof. Fix some y € [0,1]. Then A intersects [0,1] x {y} at at most one point, so hy(z) =
xc(x,y) is zero everywhere except possibly one point. Thus it is nonzero at a finite number

but

does not exist.
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of points, so

/ xc(z,y)dz =0
[0,1]

/ (/ xC(x,y)dw> dy=0
[0,1] [0,1]

Similarly, for any « € [0, 1], A intersects {z} x [0, 1] at at most one point, so g.(y) = xc(z,y)
is nonzero at a finite number of points, so

SO

/ xc(z,y)dy =0
[0,1]

/ </ XC(xvy)dy> dw:/ </ XC(w,y)dx> dy=0
[0,1] [0,1] [0,1] [0,1]

On the other hand, 94 = [0,1] x [0,1] by assumption, which does not have measure zero
and thus x¢ is not integrable on [0, 1] x [0, 1]. O

and

Exercise 3-31 If A = [a1,b1] X ... X [an,b,] and f : A — R is continuous, define

F:A—Rby
Fo) = | f
la1,z1] X .. X [an,2y]

What is D;F(x) for « € int A?

Define G; : R — R by

Gl(y):F(y,xg,...,mn):/ f
la1,y]X...x[an,zn]

and g1 : R — R by
gl(y) :f(y7ff27-~~,$n)

Since f is continuous, we may apply Fubini’s theorem to write

Yy
aw=[ [/ Fpat, .. a") do | dy
a laz,za] X... X [@n,Tn]

(where 2% represents a variable being integrated against, as opposed to x; which is the ith
component of z). So by the Fundamental Theorem of Calculus,

G&(y):(/[ ] [ ]f(y,mQ,...,x")dm>:/ / fly,z?, ... 2™ da™ ... dz?
a2,T2|X...X|0n,Tn az an

We can make a similar argument for g; for any ¢, so that

T Ty T ) )
DiF(x):gg(y):/ // flt o at y a  a) da . day . da?
ai a; an
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where the strikethroughs indicate that the ith variables is not integrated against (that is,
we integrate against all other variables but hold x; constant).

Exercise 3-32 Let f : [a,b] X [¢,d] = R be continuous and suppose D5 f is continu-
ous. Define F(y) = fab f(z,y) da. Prove Leibnitz’s rule:

F'(y) =/ Dy f(x,y) dzx

Proof. Define g.(y) : [¢,d] = R by

gm(y) = f(xvy)

Then by definition,
9:(y) = Daf(2,y)

Since Ds f is continuous, by the Fundamental Theorem of Calculus,

fo0) = 0:) = 02(0) + [ Uty de = fe o)+ / " Daf(a.tydt

F(y)—/ab (f(x,c)Jr/cyDgf(x,t)dt) dx—/abf(x,c)der/ab/cyDgf(:c,t)dtdx

Now, by Fubini’s Theorem we have

/:/cyD2f(37,t)dtd$=/Cy/angf(:c,t)dxdt

b ry y b b
F/(y):diy/ / Dgf(x,t)dtdm:diy/ / Dgf(amt)dxdt:/ Dsof(z,y)dz O

So

SO

Exercise 3-33 If f : [a,b] X [¢,d] — R is continuous and D5 f is continuous, define

F(z,y) =/ fty)dt
(a) Find D1 F and DyF.

(b) It G(z) = [77) f(t,2)dt, find G ().

(a) Define hy(z) = f(z,y). Let Fy(z) = F(z,y), so that D1 F'(x,y) = Fy(z). Then
Fy(z) = F(z,y) = /w ft,y)det = /w hy(t) dt
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so
d

DiF(e) = Fy(@) = a- [yt = by o) = )

Now, define H,(y) = F(z,y) = [ f(t,y) dt, so that DoF(z,y) = H,(y). By Leibnitz’s
rule from [Exercise 3-32

DaF(a,y) = How) = [ Daft.y)t
(b) Here we have G(z) = F(g(x),x). By the Chain Rule,

G'(x) = D1F(g(x), 2)g'(x) + D2 F(g(x), ) = f(g(z), 2)g'(x) + /z Do f(t, x)dt

Exercise 3-34 Let g1,¢92 : R2 — R be continuously differentiable and suppose

D1gs = D2g1. As in[Exercise 2-21] let
xZ Yy
fiey) = / g1(t,0) dt + / ga(m,8) dt
0 0

Show that Dy f(x,y) = g1(z,y).

Proof. Differentiating term by term, the Fundamental Theorem of Calculus gives us

d x
— t,0)dt =
& | owod=n@o

Now, since gy is continuously differentiable, it is also continuous, so by Leibnitz’s Rule
(considering D; rather than Ds),

= [ i [ D
— [ g2(x,t dt:/ Digy(x,t)dt
dx J, 0

By assumption, D1gs = Dagi, S0

y y
/ Dyga(w,t)dt = / Dagy (z,t) dt
0 0

Then by the Fundamental Theorem of Calculus,

d

d z Yy Yy
Difen) = 3 [ a0 atg [Tt = @0+ [ D) dt =iy O
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Exercise 3-35

(a) Let g : R™ — R™ be a linear transformation of one of the following types:

{g(ei) =e, 1#]

g(e;) = aej,
g(e;) = ey, i
g(ej) = e; + ex,
gler) =ex, k#i,k#j
glei) = e;
glej) = e;

If U is a rectangle, show that v(g(U)) = |det g|v(U).

(b) Prove that v(g(U)) = |det g|v(U) for any linear transformation g : R — R™.

.

(a) Proof. First note that the scaling factor of g is scale invariant, for any of the above
cases. For instance, let U = [a1,b1] X ... X [an,bs]. Let x = (a1,...,a,). Then let
y € U. Since g is linear,

9(y) =9y —x+x) =gy — x) + g(x)

So g(U) = g(U — x) + g(x), and thus ¢g(U) is a translated version of g(U — x), which
has the same volume. Thus we may assume that U = [0,b1] X ... X [0, by].

Let 71» = b;e;, so that 71, .. .77n are the edges of U. Then g(U) is the rectangle
with edges given by 9(71), . 7g(?,l).

Case 1: We have

9(V i) = big(e:) = {bi% Z f]
abie;, i=7
so g(U) =[0,b1] x ... x [0,ab;] x ... x [0,b,]. Then
v(g(U)) =brba...ab;j...b, =a(by...b,) = av(U)

Now, the matrix of g is

1 0 0
0

9] = a
: .. . .0
0o ... ... 0 1]

$0
det g =det[g] = a
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Case 2: Since g is linear, it is continuous. Assume without loss of generality that
j=1land k=2. Then g(U) =V x [0,bs] x ... x [0,b,], where

V§R2:{(x,y):nggbl,x§y§x+b2}

is a thombus. Then by Fubini’s Theorem, (letting M be any rectangle bounding g(U))

v(g(U)) = /M o)

b] l+b2 b3 bn
:/ / (/ / dxn...dx3>dydx
0 Jzx 0 0
b] x+b2
:bg...bn/ / dy dx
0 T
b

=by...0p [ Do

0
=by...by
=v(U)

(1 0 0]
0 1

l9] = a
S e )
0o ... ... 0 1]

(where the off-diagonal 1 is an arbitrary off-diagonal location), which has determinant
1.

Case 3: We have

g(U)=10,b1] x ... x [0,b;] x...x [0,b;] x...x][0,by]
—— ——
ith position jth position

which has v(g(U)) = by ...b, = v(U). The matrix of g is simply the identity matrix
with two columns switched, so det g = —1 and |det g| = 1. O

(b) Proof. If detg = 0, then ¢g(U) has volume zero for any U. If detg # 0, then
RREF([g]) = I,. Moreover, note that the elementary row operations correspond
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to the following matrices:

o -

a , scaling of a row
L 1_
L -

0 1

, TOW swap

1 0
L 1_
1

1 a

, addition of rows
1

The first two ERO matrices directly correspond to Cases 1 and 3, respectively.

For the third matrix, suppose the ERO in question sends R; to R; 4+ aR;. Then this
ERO matrix may be written as [g1][g2][g3], where g3 scales R; by a (Case 1), g2 is a
Case 2 transformation which sends e; to e; + e;, and g1 scales R; by 1/a (Case 1).

Thus any invertible transformation has a matrix which may be written as

9] = [g1] .- [9x] RREF([g]) = [1] - - - [9k]

where each of the g is of one of the three types considered above. By the property of
the determinant,

det[g] = det([g1] - .- [gx]) = det([ga]) . . . det([gx])
By applying part a), we have

v(g(U)) = v(g1(- - (9x(V))))
= ldet galo(gal. .- (g6 (U))))
= |det g1]. .. |det gx|v(U)
= |det gy ...det g |v(U)
= |det g|lv(U) O
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Exercise 3-36 (Cavalieri’s Principle) Let A and B be Jordan-measurable subsets of
R3. Let A. = {(z,v) : (z,y,¢) € A} and define B, similarly. Suppose each A. and
B, are Jordan-measurable and have the same area. Show that A and B have the
same volume.

Proof. Let M = [a1,b1] X a2, ba] X [ag, b3] be a closed rectangle which bounds both A and B.
Since A is Jordan-measurable, x 4 is integrable on M, and so is xg. By Fubini’s Theorem,

b3
/ XA:/ </ XA(x7y)dx>dy
M as [a1,b1]x [az,b2]

where our use of the integral sign is justified since A. is Jordan measurable. Then we may

write
/ xa(r,y)dr = / XA,
la1,b1] % [az,b2] la1,b1] %X [az,b2]

This is precisely the area of A,, which by assumption is the area of B,. So

b3
/ XA:/ (/ XA(x,y)dx)dy
M as [a1,b1]x [az,b2]
b3
()
as [a1,b1]x[az,b2]

b3

v(4y)

3
b3

(By)

b3
/ dy
[a1,b1] X[az,bz]

b3
P )
[a1,b1] ><[a2,b2]

XB

Il
\\\g\
<

I
g\

so v(A) = v(B). O
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Exercise 3-37

(a)

Suppose that f :(0,1) — R is a nonnegative continuous function. Show that

ext f
(0,1)
exists if and only if
l1—e
i
sir(r)l‘*' = f
exists.
Define
1 1
e [1%1%1}

Suppose that f : R — R satisfies

(=D"

J1="%

and f = 0 outside of | J;2, A;. Suppose also that f does not change sign on the
interiors of any of the A,,. Show that

ext f
(0,1)

does not exist, but

lim ext/ f=—-In2
e—0F (e,1—¢)

Note: The hypothesis that f does not change sign is not included in Spivak’s
original exercise. Spivak’s exercise is incorrect as written, but this is not the
only possible hypothesis to rectify the issue.

(a) Proof. (=) Suppose that

exists. Let ® be some partition of unity subordinate to an admissible open cover O of
(0,1). Now, let € > 0. Then let ®. be the finite collection of ¢ € ® which are nonzero

ext f
(0,1)

on [g,1 —¢g]. Then we have

/:_Ef:/:_gf TEDS /:_Ecpf

ped, e,
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Now, since f is nonnegative, we have
1—¢
S [ s [ereX [ or-eaf g
e Cy, ped C, (0,1)

ped, pED,
1—¢ . . . .
So fs f is bounded above. Moreover, let ¢’ < . Since f is nonnegative, we have

/:Efé/;slf

SO

l—e
lim
e—=0t /. !
exists.
( <= Suppose that
l1—e
lim
e—=0t J f

exists. For any n € N| let

1 1 1 1
A, = |:2n+172n:| @] |:1_2n’1_2n+1:|

By there exists a C*° function ¢, such that ¢, > 0 on A, but ¢, =0
outside of some closed set contained in

1 1 1 1 1 1
2n+2’ on—1 U - 271—17 - on+2

which can be smoothly extended to have domain (—1,2). Now, (0,1) = ;= 4;, so
for any « € (0,1) at least one ¢, is nonzero at x. Moreover, it is clear that only
finitely many are nonzero at x. So

and we may define the C* function ¢, : (—1,2) — R by
on(T)
V() = ==
" > im1 pilT)

Then ¥ = {4)1,1)9,...} is a partition of unity subordinate to the open cover

0= 1 1 P >
- 2n+2’ 27171 U - 2n71’ - 2n+2 I

Now, let Sy be the partial sum
k k
Sk::Z/ @n|f‘:Z/ @n|f|
n=1 C*Pn n=1 C‘Pn
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For each ¢; we have

SO
1
ps 1=e

2
f< lim f

e—=0t /.

k 1——L1 1——L_ k
k2 2kF2
Sk:Z/l (,01']0:/1 ZsDifS/
n=1"Y 3k+2 i=1

1—
1
PYE=] kT2 kT2

where the last inequality follows since f is nonnegative. Moreover, since f is nonneg-

ative we have
/ wif 20
c

Pi
so we have an increasing, bounded above series which thus converges. So f is extended
integrable on (0, 1). O

Proof. To show that

ext f
(0,1)

does not exist, we will exhibit a partition of unity ® subordinate to an admissible open

cover O of (0,1) such that
ext / f= / elfl
® Jo Z Cy

ped

does not converge. Define

1 1 1 1
On = <2n+2’ Qn—l) U <1 - 2n—1’1 - 2n+2>

for each n, and let O = {O,,}nen be our open cover. By [Exercise 2-26| pick 1, so

that v,, > 0 on A,, but v¥,, = 0 outside of some closed set contained in O,,. Then only
finitely many (but at least one) 1; are nonzero at any given point = € (0,1), so write

- U ()
#n(®) = 5 S

® = {p1, 2, ...} is our desired partition of unity subordinate to O.
Since [J;2, Ai = [1/2,1) and f = 0 outside of |J;—, 4;, we have

1 1
supp(nl 1) € (1= g1~ s

/@n|f|=/supwnfl<pnf|=/A 1<pn|f|+/A @n|f+/An+lsOn|f|

en n— n

so that

J.
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(for n = 1 the first term is omitted). Letting

k
Sk:Z/ @il f
i=17Ce;

we have

Z/ @il f| = Sk
i=17Ce;
k

)3 (/ et [ e [ m)
k— k+1

— /A,%H|f|+z/ %lfl—kZ/ i 1| f|
S +Z/Ai il +Z/A cialf

R‘“

i=1

/ |f1(p2 + 1) +Z</ |F1(pit1 + @i + pi- 1)>+/ | £l + er-1)

; Ay
> [ 1flteat e +Z(/_|f )

Note that by construction, ¢; and @9 are the only nonzero ¢ on Ay, and @;_1, @;, Yit1
are the only nonzero ¢ on A; for i > 2. Thus this simplifies to

so (Sk) is the sequence of partial sums of the harmonic series, which diverges. Thus
exte f(o 1y f does not exist.

But in contrast, we have

ext/ f= / f+/
(e,1—¢) Z A; 1-1/2M 1— a)

where M is the largest integer such that 1 —1/2M < 1 —e¢. If M is even then we have

M-—1 M
f<ext / ;< / f
; /;17 (e,1—¢) ; A;

and if M is odd then

M-l M
;/Aif>eXt/(571_5)f>;/Aif
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SO

limext/ f= / f= —— =—1In2 O
=0 (e,1—¢) ; Aq ; ¢

Exercise 3-38 Let A, be a closed set contained in (n,n+1). Suppose that f : R — R

satisfies (1)
1)

‘/ f=—

A; ¢

and f = 0 outside of |J;=, A;. Find two partitions of unity @, ¥ for R such that

Z/waf

and

S| wf

»ew 7 Cv

both converge absolutely, but to different values.

Proof. First, pick C* functions g1, ga,... : R — [0,1] such that g; = 1 on A; and ¢; = 0
outside of a closed set contained in (i,i+1). Now, let ©,, = gan—1+ g2n. Then the collection
® = {1, ¥2,...}, together with appropriately chosen functions, forms a partition of unity
for R. We have

1 1

-1
N R R e
/Cwn Coar s Cra Agn 1 Aa, 2n—1 2n 4n? — 2n

Thus

o0 o0 1

If we instead pick ¥ = g1 and v, = gon + gon+1, then ¥ = {41, 12, ...} (with appropriately
chosen functions) forms a partition of unity and we similarly have

- > 1 1
t = + + =—1+) ————=———-In2
v /Rf Alf ; (/Af /A+ f ) ;4n2+2n 6

Both of the series indicated converge absolutely since they converge, and do not change
sign. O

Exercise 3-39 Prove Theorem ?? without the assumption det v’ (x) # 0 using Sard’s
Theorem.

Proof. Suppose u : A — R"™ is injective and continuously differentiable, with A open. Let
C be the set of points © € A such that detu'(z) = 0. detw(z) is composed of products
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and sums of the partial derivatives, which are continuous, so x — det u/(z) is continuous.
So C' is a closed set in A, which means that A\ C is open in A and thus in R”. Then the
restriction of u to A\ C is an injective, continuously differentiable function defined on an
open set with detu’(z) # 0 for z € A\ C. By Theorem ??, we have

ext/ f:ext/ (f ou)|detu|
u(A\C) A\C
Since u is injective, u(A\ C) = u(A) \ u(C). By Sard’s Theorem, u(C) has measure zero so

ext f= ext/ f+ext f= ext/ f
u(A) u(A)N\u(C) u(C) u(A)N\u(C)

Now, since (f o u)|detv’| = 0 on C, and

ext/ |det /| :ext/|detu’|
A\C A

By Sard’s Theorem, u(C) has measure zero. So we have

ext/ 1= ext/ 1= ext/ 1= ext/ |det | = ext/ |det u/|
u(A) u(A)\u(C) u(A\C) A\C A

Exercise 3-40

(a) If g : R™ — R" is continuously differentiable and det ¢’(a) # 0, prove that in
some open set containing a we can write g =T og, o...0 g1, where g; is of the
form

gl(x) = (l‘l, ©oog fl(x)v 000 77"71)
for some f; : R™ — R, and where T is a linear transformation.

Note: Spivak failed to require that g be C.

(b) Show that if f; does not depend on x;,i # j, then we can take T' = I if and
only if ¢’(a) is diagonal.

Note: Spivak’s original question does not include the stipulation that f; does
not depend on the other variables, but it is incorrect as stated.

. .

(a) Proof. First note that it suffices to prove the case g’(a) = I. In the general case, we
would consider (Dg(a))~!og, and then g may be written as Dg(a) composed with the
representation produced in the identity case.

Recursively define the following:

gl(x) = (gl(x),xg,...,zn)
g2(w) = (x1,9%(97 ' (2)), @3, .., 20)

gn(@) = (21, 1,997 (- (95 11(2)))))
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The fact that each g, 1 exists is by the Inverse Function Theorem, since each has
gi(a) = I and thus there is an open set around a where all g; are invertible. It follows
that

g=gno...00

(=) Suppose T' = I. Then if j # i, we have

Djgi(a) = Dj(g' o (97" o...0g;)(a))
=D;g'(g; " o...0g ) (a) Dj(g1o...0gi-1)(a)
=0

=0

so ¢'(a) is diagonal.

( <) Suppose
a1

g'(a) =

where each a; is nonzero. Then g o [Dg(a)]~! satisfies

(90 [Dg(@)]™) (a) = ¢'(Dg(a)™ (a))lg' ([Dg(a)] " (a))] 7" =1

So we have g = g, 0...0g1 0 Dg(a). Since Dg(a) is of the form

Dg(a’>:flo~-~ofn

we can write
g=gno...0g10fro...0f,
Since f; only depends on and changes the ith coordinate, and the same is true for g;,

we can freely interchange them so long as the relative order of g;, f; is preserved for
each i. So this becomes

g={(gnofn)o...o(g10 f1)
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Define f: {r:r > 0} x (0,27) — R? by f(r,0) = (rcosf,rsin6).

(a) Show that f is injective, compute f’(r,0), and show that det f'(r,8) # 0 for all
(r,0). Show that f({r:r > 0}x(0,27))is theset A= {x <0 or z > 0,y # 0},
as in [Exercise 2-23i

(b) If P = f~1, show that P(x,y) = (r(z,y),0(x,y)), where

r(e,y) = Va+ 1P

arctan £, x>0,y >0
m4arctan £,z <0
O(z,y) =  2r +arctan 4, >0,y <0
I z=0,y >0
37”, z=0,y <0

Find P’'(x,y). P is called the polar coordinate system on A.

(¢) Let C C A be the region between the circles of radius r; and 7o and the half-
lines through 0 which make angles of #; and 6, with the z-axis. If h: C — R
is integrable and h(z,y) = g(r(z,y),0(x,y)), show that

ry 02
/ h = / / rg(r,0)dodr
C T1 91

If B, = {(z,y) : * + y* < r?}, show that

T 27
/ h= / / rg(r,0) do dr
B o Jo

(c¢) If C, = [—r,7r] X [=r,7], show that

/ e~ @) dz dy = (1l — e_Tz)
B,

r 2
/ e—(w2+y2) dzdy = </ e_gg2 dx)
C. —r

and

(e) Prove that

lim e~ @+ 4y dy = lim e~ @+ 4y dy
r—00 Br r—00 Cr

[

— 00

and conclude that
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(a)

Proof. Suppose r1 cosfy = rocosf and 71 sinfy; = rosinfy. Then
72 = r2(cos® 0 + sin” 0;) = 13 (cos? Oy + sin? 0y) = r2

S0 11 = T9. So sinfy = sinfy and cosf; = cosfs, and we conclude that 6; = 0. We

have
cosf —rsinf

sinf  rcosf

detf’(r,@):det[ ]:r00529+rsin29:r>0

f(r,0) € R?\ A only if y = 0 and = > 0, which implies sinf = 0 and cosf > 0 and

thus § = 0, or sinf = cos@ = 0 which is impossible. So f({r : r > 0} x (0,27)) C A.
Let A = (z,y). Then take

r =22+ y>?

arctan £, x>0,y >0
74 arctan 4, <0
0 =q2r+arctan 2, x>0,y <0
T rz=0,y >0
s =0,y <0
So AC f({r:r >0} x(0,27m)) and we have equality. O

Proof. Tt suffices to check that »(f(r,0)) = r and 6(f(r,0)) = 0. The first equality is
easy:

r(f(r,0)) = V12 cos? 0 + r2sin® 0 = r
For the second:

0<f<§ = cosf >0,sinf >0

7<0< ” = cosf <0

2 <9<2ﬂ' = cosf > 0,sinf < 0

=% = cosfl =0,sinf >0

0:37” = cosf =0,sinf <0

Since r > 0, all of the following remain true when cos is replaced by f; and sin@ by
f2. So we have

0<0<% = 0(f(r,0)) = arctantan = ¢
7<9< 3 — 0(f(r,0)) = 7+ arctantant = ¢
3 <9<27T = 0(f(r,0)) =27 + arctantanf = 6
0=35 = 0(/(r ))23—9

0="5 = 0(f(r,0) =
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We have

x
v a? + y?
Y
\x2 + 42

1 ] ]
2 _ _ P L A
D) = Dibe) = (-13) =~

Dlpl(xay) = Dlr(way) =

Dy P (z,y) = Dar(z,y) =

=8

1
2

Dy P?(z,y) = Daf(z,y) = (1;% ’
’ T =

x
= i z#0

SO

z Y
wa=[ﬁﬁf W?f
T Ty

O

(c) Proof. Let C' = P(C) = (r1,72) % (0, 27), so that C = P~C. Note also that h = goP.
P~ is continuously differentiable by the Inverse Function Theorem, so by the Change
of Variables theorem,

1 1
—_ P—l P—l / :/ P—l :/
/Ch //(ho )|det( )| Cl(ho )|detP/| c/g|detP,|

We can calculate,

z? 492 _ 1 1

NN R

Lo oo™
’ (r1,r2)x(0,27)

By Fubini’s Theorem, this becomes

To 27
/h:/ / rg(r,0)dodr
C T1 0

Similarly, let Bl. = P(B,) = (0,7) x (0,27). By similar logic,

1 r 27
h:/ hoP~1 :/ gr:/ gr:/ / rg(r,0)dfdr O
/B,,, ,c( )|detP’\ ’ (0,r)% (0,2) o Jo (r.6)

(d) Proof. Using the result from part c),

T 2m T
/ e~ @ +v?) 40 dy = / / re~" d0dr = / orre™ dr = —me " 6= 71'(1—6_7"2)
B, 0o Jo 0
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By Fubini’s Theorem,

/Cre_(”’z”z)dxd /(/ e eV dy)d
[ ([ o )
-(L.

e ” dx) O

(e) Proof. The quantity e~ @ +v%) ig positive everywhere. So for any r, there exists ' > r
such that C, C B,-, giving

/ e_(m2+y2)dxdy S/ e_(£2+y2)dxdy
Cr

ol

But we can also pick 7" so that B, C C,~ so that the other direction is true. This
shows that
lim e~ @) 4 dy = lim e~ @) 4y dy

r—00 Br r—00 C'r

Then we have

o0 9 ‘s 2
/ e % dr = lim e " dx

s r—oo [_.

= lim \// e~y dr dy
T—>00
= \/hm/ e~y dr dy
T—00

hm/ e+ dx dy

r—00

r2
=)

=7 ]
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Definitions

angle preserving, [7]
Cavalieri’s Principle,
directional derivative,
inner product preserving, [f]

Leibnitz’s rule, [83]
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norm preserving, [0]
orthogonal, [T1]

polar coordinate system,
Pythagorean Identity,

Taylor polynomial, [24]
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