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Introduction

This document contains notes taken as personal self-study in Summer 2024 of the book
Calculus on Manifolds, by Michael Spivak. The notes closely follow the structure of Spivak’s
text.
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Chapter 1

Euclidean Space

1.1 Vector Properties of Euclidean Space

In this course, we study functions over Euclidean space. We will assume knowledge of
most of the basic properties of the real numbers, and will only briefly introduce the basic
properties of Euclidean space.

Definition 1.1

Euclidean n-space, denoted Rn, is the set of n-tuples

(x1, x2, . . . , xn)

such that xi ∈ R for each i.

Euclidean space is intended to align with the “standard” notions of space. That is, R1

is often referred to as the line, R2 as the plane, and R3 as space. Moreover, from linear
algebra we can see that Rn can be considered as an n-dimensional vector space over R, with
addition and scalar multiplication defined coordinate-wise, so elements of Rn will alternately
be called points or vectors. In fact, it is the canonical representative of n dimensional vector
spaces over R, further justifying its study. We denote by 0 or 0 the vector (0, 0, . . . , 0).

Moreover, Rn is an example of a normed vector space. Specifically, we have

Definition 1.2

Given a vector x = (x1, . . . , xn) ∈ Rn, define the norm of x, denoted |x|, by

|x| :=
√
x21 + . . .+ x2n

Note that for n = 1, the norm aligns with the standard absolute value of real numbers.
Briefly, we can verify that the norm as defined here indeed satisfies the definition of a norm
on a vector space:
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Proposition 1.1

Let x, y ∈ Rn, and a ∈ R be arbitrary. Then we have:

• |x| ≥ 0, with |x| = 0 if and only if x = 0.

• |
∑n
i=1 xiyi| ≤ |x||y|, with equality if and only if x, y are linearly dependent.

• |x+ y| ≤ |x|+ |y|.

• |ax| = |a||x|

Beyond being a normed vector space, Euclidean space is also an inner product space.
We can define the inner product as follows:

Definition 1.3

Given two vectors x, y ∈ Rn, define the inner product of x and y, denoted ⟨x, y⟩,
as

⟨x, y⟩ :=
n∑
i=1

xiyi

Similarly, we can verify that this inner product satisfies the definitions of an inner prod-
uct:

Proposition 1.2

Let x, x1, x2, y, y1, y2 ∈ Rn and a ∈ R be arbitrary. Then we have:

• ⟨x, y⟩ = ⟨y, x⟩ (Symmetric)

• a ⟨x, y⟩ = ⟨ax, y⟩ = ⟨x, ay⟩ (Bilinear)
⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩
⟨x, y1 + y2⟩ = ⟨x, y1⟩+ ⟨x, y2⟩

• ⟨x, x⟩ ≥ 0, with ⟨x, x⟩ = 0 if and only if x = 0. (Positive definite)

Moreover, given our definitions of the norm and inner product, we can also identify
further properties:

Proposition 1.3

Let x, y ∈ Rn be arbitrary. Then we have:

• ⟨x, y⟩ ≤ |x||y| (Cauchy-Schwarz Inequality)

• |x| =
√
⟨x, x⟩

• ⟨x, y⟩ = |x+y|2−|x−y|2
4 (Polarization Identity)
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Definition 1.4

The standard basis of Rn is given by {e1, . . . , en}, where (ei)j = δij , so that ei has
a 1 in the ith coordinate and 0 everywhere else.

Definition 1.5

Let T : Rm → Rn be a linear transformation. Then denote by [T ] the n×m matrix
such that T (x) = [T ]x for each x ∈ Rn. In particular, the ith column of [T ] is given
by T (ei).

If x = (x1, . . . , xm)Rm and y = (y1, . . . , yn) ∈ Rn, then let us adopt the convention that
(x, y) is the concatenation (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.

1.2 Topology of Euclidean Space

In many results in single variable analysis, we make use of open and closed intervals, denoted
[a, b] and (a, b). The analog of these intervals in Rn is the notion of a rectangle or k-cell.

Definition 1.6

Let A ⊆ Rm, B ⊆ Rn. Then define the Cartesian product of A and B as A ×
B = {(a, b) ∈ Rm+n|a ∈ A, b ∈ B}. Since this operation is associative, denote by
A1 ×A2 × . . .×Ai the product of any number of sets.

Definition 1.7

A closed rectangle, closed box, or closed k-cell is a set of the form [a1, b1]× . . .×
[an, bn] ⊆ Rk. An open rectangle, open box, or open k-cell is a set of the form
(a1, b1)× . . .× (an, bn) ⊆ Rk.

Then similarly to how we use open intervals to define a topology on R, we can use open
boxes to define a topology on Rn:

Definition 1.8

A set U ⊆ Rn is open if, for every point x ∈ U , there is some open box B(x) ⊆ U
such that x ∈ B(x). A set C ⊆ Rn is closed if Rn \ C is open.
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Remark

Note that because every open box has an open ball inside, and because every open
ball has an open box inside, the topology defined by open boxes on Rn is the same
topology defined by open balls on Rn. Thus, for x ∈ Rn and r ∈ R, denote by Br(x)
the open n-ball with center x and radius r. That is, Br(x) := {y ∈ Rn : |x−y| < r}.
When the dimension is ambiguous, denote this nBr(x). Then we can alternately use
open balls and open boxes as the definition of an open set, depending on which is
more convenient.

Definition 1.9

If A ⊆ Rn, then the interior of A is the set of points contained in an open rectangle
entirely in A.

intA := {x ∈ Rn : there exists an open rectangle B s.t. x ∈ B ⊆ A}

Define the exterior of A to be the set of points contained in an open rectangle
entirely in Rn \A.

extA := {x ∈ Rn : there exists an open rectangle B s.t. x ∈ B ⊆ Rn \A

Define the boundary of A to be the set of points where all open rectangles contain
points of both A and Rn \A.

∂A := {x ∈ Rn : ∀ open rectangles B, x ∈ B =⇒ B ∩A ̸= ∅, B ∩ Rn \A ̸= ∅}

Proposition 1.4

Every set of finitely many points in Rn is closed.

Proof. Let C ⊆ Rn be a finite set. Let x ∈ Rn \C be arbitrary. Then for each point y ∈ C,
x ̸= y, so d(x, y) > 0. Then since there are only finitely many points in C, the quantity
d′ = min{d(x, y)|y ∈ C} is defined and greater than 0. So we can define an open ball with
radius d′/2, which does not contain any points in C. Thus we have an open ball containing
x that is a subset of Rn \ C. So Rn \ C is open and thus C is closed.

Definition 1.10

An open cover of a set A is a collection O of open sets such that for any x ∈ A,
x ∈ U for some U ∈ O. A subcover of O is a subcollection of O which is also a
cover for A.

Definition 1.11

A set K is compact if for any open cover O of K, there exists a finite subcover U
of O.
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In particular, we can derive certain theorems to identify compact sets.

Theorem 1.5: Heine-Borel Theorem

The closed interval [a, b] is compact.

Proof. Let U be some open cover of [a, b]. Then consider the set

A = {x ∈ [a, b] : [a, x] is covered by a finite number of sets in U}

The goal is to prove that b ∈ A. First, consider α = supA (since this set is bounded above
and nonempty). We have α ≤ b, so α ∈ [a, b] and thus α ∈ U1 for some U1 ∈ U . Since U1

is open and α is the supremum of A, there is some a ≤ x < α with x ∈ U1. Then we have
x ∈ A, so some finite number of open sets in U cover [a, x], and U1 covers [x, α], so a finite
number of sets cover [a, α] and thus α ∈ A.

Now suppose α < b. Then there is some y ∈ U1 such that α < y < b. But if [a, α] is covered
by a finite number of open sets, then so is [a, y], so y ∈ A, contradicting α = supA. So we
must have α = b, completing the proof.

Note that if B ∈ Rm is compact and x ∈ Rn, then the set {x} × B is clearly compact.
gMoreover, given any cover of {x} ×B, the finite subcovers have a “minimum width”:

Theorem 1.6

If B ⊆ Rm is compact and x ∈ Rn, then given any open cover U of {x} × B, there
is some open set U ∈ Rn such that U ×B is covered by a finite number of sets in U .

Proof. Take some finite subcover U ′ of U . Then we just need to find a set U such that U×B
is covered by U ′.

For each y ∈ B, (x, y) is in some open set O ∈ U ′, so there is an open box Ux × Vy such
that (x, y) ∈ Ux × Vy ⊆ O. Then consider the collection (Vy)y∈B . This set covers B,
which is compact, so we can pick a finite number V1, . . . , Vk. Let U =

⋂
Ui. Then for any

(x1, y1) ∈ U ×B, we have y1 ∈ Vi for some 1 ≤ i ≤ n, and x1 ∈ Ui, so x1 ∈ Ui× Vi ⊆ O′ for
some O′ ∈ U ′. Thus U ′ covers U ×B.

Corollary

If A ⊆ Rn and B ⊆ Rm are compact, then A×B ⊆ Rn+m is compact.

Proof. Let O be some open cover of A×B. Then for each x ∈ A, O covers {x}×B, so there
is some Ux such that a finite subcover O1x, . . . , Okx covers Ux × B and x ∈ Ux. Then the
collection (Ux)x∈A covers A, so there is a finite subcover Ux1

, . . . , Uxj that covers A. Then
the sets O1x1

, . . . , Okx1
, . . . , O1xj , . . . , Ok′xj form a finite subcover of O that covers A× B.

So A×B is compact.
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Corollary

A product A1 × . . .×Ak is compact if each Ai is. A closed rectangle is compact.

Proof. Induct on k using the previous corollary.

This gives an important result which allows us to work with compactness much more
easily in Rn (though it is not necessarily true for other topological vector spaces).

Theorem 1.7

A set K ⊆ Rn is compact if and only if it is closed and bounded.

Proof. ( =⇒ ) Suppose K ⊆ Rn is compact. The collection of open rectangles (i − 1, i +
1)× (j− 1, j+1) . . .× (k− 1, k+1) for i, j, . . . , k ∈ Z covers R, so it covers K. Then a finite
number of these boxes covers K, so it is bounded.

( ⇐= ) Suppose K ⊆ Rn is closed and bounded. Then there exists a closed rectangle B
with K ⊆ B. From the previous corollary, we know that B is compact. Then take some
cover of K, O = {O1, . . .}. Now let U consist of all the sets in O, as well as the set Rn \K
(which is open since K is closed). U covers Rn, so it covers B. Then we can take a finite
subcollection U ′ of U . Then U ′ covers B as well as K, and in order to create a subcollection
of O, we simply remove Rn \K if it is in U ′ to get O′. So K is compact.

1.3 Functions and Continuity

In this section, we study vector valued functions, which are functions f : Rn → Rm, or
more generally, f : A → B for some A ⊆ Rn and B ⊆ Rm. We briefly list a few definitions
related to these functions that should be familiar to the reader.

Definition 1.12

If f : A → B, then the image of C ⊆ A is f(C) = {f(x) : x ∈ C}. The preimage
of D ⊆ B is f−1(D) = {y ∈ A : f(y) ∈ D}.

Definition 1.13

If f : A → Rm and g : B → Rn with B ⊆ Rm, then the composition is defined as
(g ◦ f)(x) = g(f(x)), with domain A ∩ f−1(B).

Definition 1.14

If f : Rn → Rm is one-to-one, then the inverse of f is the function f−1 : f(Rn) → Rn
which takes x ∈ f(Rn) to the unique y ∈ Rm such that f(y) = x.

In addition to studying a vector valued function f , we can also study the component
functions which encode its behavior on each axis individually.
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Definition 1.15

If f : A → Rm, then f defines m component functions f1, f2, . . . , fm such
that f(x) = (f1(x), . . . , fm(x)). Similarly, for any functions g1, . . . , gm : A → R,
we denote by (g1, . . . , gm) the function f : A → Rm which satisfies f(x) =
(g1(x), . . . , gm(x)).

Note that the above definition implies that we can write f = (f1, . . . , fm).

Definition 1.16

Let π : Rn → Rn be the identity function. Then π = (π1, . . . , πn). Then πi is called
the i-th projection function, such that πi(x) gives the ith coordinate of x.

With the above out of the way, we now turn our attention to limits of functions, which
will prove important as we continue our study of multivariate calculus.

Definition 1.17

We write limx→a f(x) = b (the functional limit) if, for any ε > 0 there exists
δ = δ(ε) > 0 such that whenever 0 < |x− a| < δ, we have |f(x)− b| < ε.

Just as the above definition is reproduced from single-variable analysis (with the ex-
ception of generalizing the notion of distance in Rn), we have an analogous definition of
continuity:

Definition 1.18

A function f : A→ Rm is continuous at a point a ∈ A if limx→a f(x) = f(a). If f
is continuous at each a ∈ A, we simply say that f is continuous.

Alternatively, we can utilize the topological nature of Rn, which we discussed in the last
section, to characterize continuity using the topological definition instead.

Proposition 1.8

A function f : A → Rm for A ⊆ Rn is continuous if and only if for every open set
U ⊆ Rm, there is an open set V ⊆ Rn such that f−1(U) = V ∩A.

Proof. ( =⇒ ) Suppose f is continuous. Then let U ⊆ Rm. For each point x ∈ f−1(U),
f(x) ∈ U which is open. Thus, there is an open ball Bεx(f(x)) ⊆ U , there is an open ball
Bεx(f(x)) ⊆ U , and a corresponding open ball Bδx(x) ⊆ f−1(Bεx(f(x))). Then the set
V =

⋃
x∈f−1(U)Bδx(x) is an open set.

Moreover, by construction, for any point y ∈ V ∩ A, y ∈ Bδx(x) for some x, implying that
f(y) ∈ Bεx(f(x)) ⊆ U (which is defined since y ∈ A). So V ∩ A ⊆ f−1(U). For any point
x ∈ f−1(U), x ∈ Bδx(x), so x ∈ V . Moreover, any point in f−1(U) is in the domain of f ,
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so x ∈ V ∩A, and thus f−1(U) = V ∩A.

( ⇐= ) Suppose every open set U ⊆ Rm has an associated open set V ⊆ Rn such that
f−1(U) = V ∩ A. Then pick a point a ∈ A, and let ε > 0 be arbitrary. Then the open ball
Bε(f(a)) has an associated open set V . Moreover, a ∈ Bε(f(a)) =⇒ a ∈ V ∩A =⇒ a ∈ V ,
so there exists an open ball Bδ(a) ⊆ V . Then for any x ∈ A with |x−a| < δ, x ∈ Bδ(a) ⊆ V ,
so x ∈ f−1(Bε(f(a))), and thus f(x) ∈ Bε(f(a)). So limx→a f(x) = f(a).

When A = Rn, this condition can be phrased as saying “the preimage of every open set
is open.” Analogously, a function f : Rn → Rm is continuous if and only if the preimage of
every closed set is closed. Note that it is not necessarily true that the image of every open
set is open. For instance, the function f(x) = x2 maps the open set R to the set [0,∞),
which is not open. However, this condition does imply that for any open set which is not
also closed (the only examples are ∅ and Rn), the image is not closed. Thus, continuity
allows us to infer openness backward through the function.

In contrast, compactness is passed forward through continuous functions, which is another
reason that it is useful for our study.

Theorem 1.9

If f : A→ Rm is continuous and A ⊆ Rn is compact, then f(A) is compact.

Proof. Pick an open cover O of f(A). Then by the proposition, for each open set O ∈ O
there exists an open set U ∈ Rn such that U ∩ A = f−1(O). Then the collection U of all
such U covers A, so we pick a finite number U1, . . . , Un. Then the finite cover O1, . . . , On
cover f(A). So f(A) is compact.

One disadvantage of these definitions of continuity is that they are binary in nature: a
function is either continuous or discontinuous at a certain point. The following definition
allows us to measure how discontinuous a function is at a certain point.

Definition 1.19

Let f : A→ Rm with A ⊆ Rn bounded, and let a ∈ A. Define

M(f, a, δ) = sup{f(x) : x ∈ A, |x−a| < δ},m(f, a, δ) = inf{f(y) : y ∈ A, |y−a| < δ}

Then the oscillation of f at a, denoted o(f, a), is defined as

o(f, a) = lim
δ→0

[M(f, a, δ)−m(f, a, δ)]

which always converges since it decreases as δ → 0 and is bounded below by 0.

In agreement with the intuition for o(f, a) as measuring the discontinuity of f at a, we
have the following theorem:
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Theorem 1.10

A function f : A → Rm with A ⊆ Rn bounded is continuous at a ∈ A if and only if
o(f, a) = 0.

Proof. ( =⇒ ) Suppose f is continuous at a. Let ε > 0 be arbitrary. Then there exists δ > 0
such that for any x ∈ A with |x− a| < δ, we have

|f(x)− f(a)| < ε/2 =⇒ f(a)− ε

2
< f(x) < f(a) +

ε

2

ThenM(f, a, δ)−m(f, a, δ) < ε. So o(f, a) < ε for every positive ε, and of course o(f, a) ≥ 0,
so o(f, a) = 0.

( ⇐= ) Suppose o(f, a) = 0. Then let ε > 0 be arbitrary. Since limδ→0[M(f, a, δ) −
m(f, a, δ)] = 0, we can pick δ such that M(f, a, δ) − m(f, a, δ) < ε. Then for any x ∈ A
with |x− a| < δ,

f(x) ≤M(f, a, δ) < ε+m(f, a, δ) < ε+ f(a)

Similarly, f(x) ≥ f(a)− ε. So |f(x)− f(a)| < ε. Thus f is continuous at a.

Proposition 1.11

Let A ⊆ Rn be closed, and let f : A → Rm be bounded. For ε > 0, the set
Oε = {x ∈ A : o(f, x) ≥ ε} is closed.

Proof. We wish to show that Rn \ Oε is open. Pick a point y ∈ Rn \ Oε. If y /∈ A, then
y ∈ Rn \A open so there exists an open rectangle B ⊆ Rn \A ⊆ Rn \Oε such that y ∈ B.

If y ∈ A, then o(f, y) < ε. Then there exists Bδ(y) with M(f, y, δ) − m(f, y, δ) < ε. I
claim that any point z ∈ Bδ(y) has o(f, z) < ε. Pick δ′ small enough that Bδ′(z) ⊆ Bδ(y).
Then M(f, z, δ′) ≤ M(f, y, δ) and m(f, z, δ′) ≥ m(f, z, δ), so M(f, z, δ′) − m(f, z, δ)′ ≤
M(f, y, δ) −m(f, y, δ) < ε. So o(f, z) < ε, and thus Bδ(y) ⊆ Rn \ Oε, so Rn \ Oε is closed
and Oε is open.
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Chapter 2

Differentiation

2.1 Basic Definitions

We now turn our attention to the first major topic of this book; namely, the generalization
of differentiation to functions of the form f : Rn → Rm. To do so, first recall that f : R → R
is differentiable at a ∈ R if there exists a number f ′(a) such that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

We cannot directly use this formula to define vector valued differentiation. First, the quo-
tient would not even make sense when dividing vectors, and even if absolute value bars are
taken, it would often be the case that this limit does not exist. However, we can rearrange
this equation as

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0

In other words, our new condition is that there is a linear transformation λ(h) = f ′(a)(h)
such that

lim
h→0

f(a+ h)− f(a)− λ(h)

h
= 0

Conceptually, this is the statement that f is approximated well near a by f(a) + λ. This
interpretation extends nicely to higher dimensions:

Definition 2.1

A function f : Rn → Rm is differentiable at a ∈ Rn if there exists a linear trans-
formation λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

In this case, λ is denoted Df(a) and is called the derivative of f at a.

To justify uniqueness, we prove the following.
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Proposition 2.1

If f : Rn → Rm is differentiable at a ∈ Rn then there exists a unique linear transfor-
mation λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

Proof. Existence follows from the definition of differentiability. Suppose that λ, µ are two
linear transformations which satisfy the above. Then we have

lim
h→0

|λ(h)− µ(h)|
|h|

= lim
h→0

|λ(h) + f(a)− f(a+ h)− µ(h)− f(a) + f(a+ h)|
|h|

≤ lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

+ lim
h→0

|f(a+ h)− f(a)− µ(h)|
|h|

= 0

Picking any x ̸= 0 ∈ Rn, and any t ̸= 0,

|λ(x)− µ(x)|
|x|

=
t

t

|λ(x)− µ(x)|
|x|

=
|λ(tx)− µ(tx)|

|tx|

But we just showed that

lim
t→0

|λ(tx)− µ(tx)|
|tx|

= 0

and |λ(x)−µ(x)|
|x| is constant so it must be 0. Thus

|λ(x)− µ(x)|
|x|

= 0 =⇒ λ = µ

We also are often interested in the matrix form of Df(a), so we give it a special notation.

Definition 2.2

If f : Rn → Rm is differentiable, then the Jacobian matrix of f is the m×n matrix

f ′(a) := [Df(a)]

Lastly, we note that although many of the theorems presented in this chapter will assume
that f is defined on all of Rn, it is often only necessary that f is defined on an open set
containing a, so we lose little generality.

2.2 Basic Theorems

As in single variable analysis, the ε − δ definition of continuity is often quite cumbersome
to work with in practice. Thus, we present a number of theorems in this section which will
allow us to easily prove differentiability and calculate derivatives.
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Theorem 2.2: Chain Rule

Suppose f : Rn → Rm is differentfiable at a, and suppose g : Rm → Rp is differ-
entiable at f(a). Then g ◦ f : Rn → Rp is differentiable at a with derivative given
by

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a)

which can also be written

(g ◦ f)′(a) = g′(f(a)) · f ′(a)

Remark

When n = m = p = 1, this reduces to the single variable form of the chain rule.

Proof. Here, it will be more convenient to work with the errors of these functions relative
to their derivatives:

φ(x) := f(x)− f(a)−Df(a)(x− a)

ψ(x) := g(x)− g(f(a))−Dg(f(a))(x− a)

ρ(x) := g(f(x))− g(f(a))−Dg(f(a))(Df(a)(x− a))

By the definition of the derivatives, we know that

lim
x→a

|φ(x)|
|x− a|

= 0

and

lim
x→f(a)

|ψ(x)|
|x− f(a)|

= 0

We want to show that

lim
x→a

|ρ(x)|
|x− a|

= 0

Expanding and using linearity, we have

ρ(x) = g(f(x))− g(f(a))−Dg(f(a))(Df(a)(x− a))

= g(f(x))− g(f(a))−Dg(f(a))(f(x)− f(a)− φ(x))

= g(f(x))− g(f(a))−Dg(f(a))(f(x)− f(a)) +Dg(f(a))(φ(x))

= ψ(f(x)) +Dg(f(a))(φ(x))

Let ε > 0 be arbitrary. Then there exists δ > 0 such that whenever |f(x)− f(a)| < ε,

|ψ(f(x))| < ε|f(x)− f(a)|

Since f is continuous, there exists δ′ > 0 such that whenever |x− a| < δ′, |f(x)− f(a)| < δ.
Then whenever |x− a| < δ′,

|ψ(f(x))| < ε|f(x)− f(a)|
= ε|φ(x) +Df(a)(x− a)|
≤ ε|φ(x)|+ ε|Df(a)(x− a)|
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By Exercise 1-10, there exists M1 such that

|Df(a)(x− a)| ≤M1|x− a|

so we have
|ψ(f(x))| ≤ ε(|φ(x)|+M1|x− a|)

Thus

0 ≤ |ψ(f(x))|
|x− a|

≤ ε
|φ(x)|
|x− a|

+ εM1

so

0 ≤ lim
x→a

|ψ(f(x))|
|x− a|

≤ ε lim
x→a

|φ(x)|
|x− a|

+ εM1 = εM1

for all ε > 0, and thus we have

lim
x→a

|ψ(f(x))|
|x− a|

= 0

For the second term,

lim
x→a

|Dg(f(a))(φ(x))|
|x− a|

= lim
x→a

|Dg(f(a))(φ(x))|
|φ(x)|

|φ(x)|
|x− a|

Since Dg(f(a)) is linear, Exercise 1-10 tells us that there exists M > 0 such that for any h

|Dg(f(a))h|
|h|

< M

so the first factor is bounded, and the second goes to zero, so we have

lim
x→a

|Dg(f(a))(φ(x))|
|x− a|

= 0

and thus

lim
x→a

|ρ(x)|
|x− a|

= 0

which implies that
D(g ◦ f)(a) = Dg(f(a)) ◦Df(a)
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Theorem 2.3

1. If f : Rn → Rm is a constant function, then

Df(a) = 0

2. If f : Rn → Rm is a linear transformation, then

Df(a) = f

3. If f : Rn → Rm, then f is differentiable at a ∈ Rn if and only if each component
function f i is, and in this case

Df(a) = (Df1(a), . . . , Dfm(a))

In matrix form, f ′(a) is an m× n matrix with (f i)′(a) as its ith row.

4. Let s : R2 → R be the sum function, defined by s(x, y) = x+ y. Then

Ds(a, b) = s

5. Let p : R2 → R be the product function, defined by p(x, y) = xy. Then

Dp(a, b)(x, y) = bx+ ay

1. Proof. Suppose f is constant. Let a ∈ Rn be arbitrary. Then

lim
x→a

|f(x)− f(a)− 0|
|x− a|

= lim
x→a

0 = 0

so Df(a) = 0.

2. Proof. Suppose f is linear. Let a ∈ Rn be arbitrary. Then

lim
x→a

|f(x)− f(a)− f(x− a)|
|x− a|

= lim
x→a

|f(x− a)− f(x− a)|
|x− a|

= 0

so Df(a) = f .

3. Proof. ( =⇒ ) Suppose f : Rn → Rm is differentiable at a ∈ Rm. Then any component
function f i : Rn → R is simply the composition πi ◦ f , where πi is the ith projection
function. πi is linear, so by part 2 of this theorem it is also differentiable, and the
chain rule tells us that f i = π ◦ f is also differentiable.

( ⇐= ) Now suppose each component function is differentiable at a ∈ Rn, and define

λ = (Df1(a), . . . , Dfm(a))

Then the function f(a+ h)− f(a)− λ(h) has components

(f1(a+ h)− f1(a)−Df1(a)(h), . . . , fm(a+ h)− fm(a)−Dfm(a)(h))
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so that

|f(a+ h)− f(a)− λ(h)| ≤
m∑
i=1

|f i(a+ h)− f i(a)−Df i(a)(h)|

and thus

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

≤
m∑
i=1

lim
h→0

|f i(a+ h)− f i(a)−Df i(a)(h)|
|h|

= 0

so that
Df(a) = (Df1(a), . . . , Dfm(a))

4. Proof. s is linear, so this follows from part 2.

5. Proof. Let λ(x, y) = bx+ ay. Then

lim
(h,k)→0

|p(a+ h, b+ k)− p(a, b)− λ(h, k)|
|(h, k)|

= lim
(h,k)→0

|hk|
|(h, k)|

≤ lim
(h,k)→0

h2 + k2√
h2 + k2

= lim
(h,k)→0

√
h2 + k2

= 0

Using the sum and product functions, we can now prove the multivariate equivalent of the
sum and product rules from single variable analysis.

Theorem 2.4

If f, g : Rn → R are differentiable at a ∈ Rn, then

D(f + g)(a) = Df(a) +Dg(a)

and
D(fg)(a) = g(a)Df(a) + f(a)Dg(a)

If g(a) ̸= 0, then

D(f/g)(a) =
g(a)Df(a)− f(a)Dg(a)

[g(a)]2

Proof. Note that we can express sums and products of (R-valued functions) as compositions
of the functions with the functions s, p : R2 → R from the previous theorem.

Specifically, f + g = s ◦ (f, g). Then

D(f + g)(a) = D(s ◦ (f, g))(a)
= Ds(f(a), g(a)) ◦D(f, g)(a)

= s ◦ (Df(a), Dg(a))
= Df(a) +Dg(a)
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Similarly, fg = p ◦ (f, g), Then

D(fg)(a) = D(p ◦ (f, g))(a)
= Dp(f(a), g(a)) ◦D(f, g)(a)

= Dp(f(a), g(a)) ◦ (Df(a), Dg(a))
= g(a)Df(a) + f(a)Dg(a)

Finally, let h : R \ {0} → R be defined by x 7→ 1/x. Since we know g(a) ̸= 0, then we have
f/g = f ∗ (h ◦ g). We also know from single variable calculus that Dh(x) = − 1

x2 . Using the
product rule we just derived, we have

D(f/g)(a) = D(f ∗ (h ◦ g))(a)
= (h ◦ g)(a)Df(a) + f(a)D(h ◦ g)(a)

=
Df(a)

g(a)
+ f(a)Dh(g(a))Dg(a)

=
g(a)Df(a)

[g(a)]2
− f(a)Dg(a)

[g(a)]2

=
g(a)Df(a)− f(a)Dg(a)

[g(a)]2

The above theorems allow us, at least in theory, to differentiate vector-valued functions
which have components given by sums, products, and quotients of the input components, as
well as of single-variable differentiable functions and compositions thereof. However, using
the rules above is not always the most convenient in practice.

Example 2.1

Let f : R2 → R be defined by

f(x, y) = sin(xy2) = sin ◦(π1 · [π2]2)

Then we have

f ′(a, b) = sin′(ab2)(π1 · [π2]2)′(a, b)

= cos(ab2)[b2(π1)′(a, b) + a([π2]2)′(a, b)]

= cos(ab2)[b2π1 + a(2π2(a, b))(π2)′(a, b)]

= cos(ab2)[b2π1 + 2abπ2]

= cos(ab2) · (b2, 2ab)
= (b2 cos(ab2), 2ab cos(ab2))
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2.3 Partial Derivatives

Although the results of the previous section are helpful in assuring us of differentiability of
functions, the application of those theorems is often not very efficient, as can be seen in the
example at the end of the previous section. Thus, we instead develop the theory of partial
derivatives, which will allows us to differentiate these functions much more quickly.

Definition 2.3

If f : Rn → R and −→a ∈ Rn, then the i-th partial derivative of f at −→a , if it exists,
is the limit

Dif(
−→a ) = lim

h→0

f(−→a + hei)− f(−→a )
h

In other words, the ith partial derivative is the single variable derivative of the function
gi(x) = f(a1, . . . , x, . . . , an) which is produced by treating all the variables except the ith
as constant.

Example 2.2

Let f(x, y) = sin(xy2). Then by treating y as constant,

D1f(x, y) = y2 sin(xy2)

and treating x as constant,

D2f(x, y) = 2xy sin(xy2)

Example 2.3

Let f(x, y) = xy. Then treating y as constant,

D1f(x, y) = yxy−1

Treating x as constant,
D2f(x, y) = xy lnx

Assuming that Dif exists at all points in Rn, we obtain another function Rn → R, and
thus we can attempt to take another partial derivative of this function. The notation for
repeated partial differentiation is ”inside out,” that is,

Dj(Dif)(x) = Di,jf(x)

However, the order of mixed partial derivatives is irrelevant for many common functions:
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Theorem 2.5

If Di,jf and Dj,if are continuous in an open set containing −→a , then

Di,jf(
−→a ) = Dj,if(

−→a )

Proof. This proof is Exercise 3-28.

By repeatedly taking mixed partial derivatives of higher orders, we can continue to apply
this theorem. In particular, if each partial derivative of f of each order is continuous, then
f is said to be C∞. In this case, the order of partial differentiation is always irrelevant.

Theorem 2.6

Let A ⊆ Rn. If f : A → R attains a maximum (or minimum) at a point −→a ∈ intA
and Dif(

−→a ) exists, then Dif(
−→a ) = 0.

Proof. Let gi : R → R be defined by

gi(x) = (a1, . . . , x, . . . , an)

Then gi is defined in an open interval around ai, and attains a maximum there, so g′i(ai) = 0,
and thus Dif(

−→a ) = g′i(ai) = 0.

As in single variable calculus, the above theorem only gives candidate extremal points.
Moreover, we still have to check boundary points separately. However, when in single
variable calculus this was only a problem of evaluating a function at 2 points, in multivariable
calculus, the boundary may not be discrete at all.

2.4 Derivatives

By computing some partial derivatives of functions and comparing them to their derivatives,
the reader may observe a correspondence between the two. Of course, this correspondence,
which allows for the easy computation of derivatives, was our original motivation for studying
partial derivatives. Thus we are retroactively justified in this study, and this correspondence
can be summarized in the following theorem:

Theorem 2.7

If f : Rn → Rm is differentiable at −→a ∈ Rn, then Djf
i(−→a ) exists for 1 ≤ i ≤ m, 1 ≤

j ≤ n, and f ′(−→a ) is the m× n matrix where [f ′(−→a )]ij = Djf
i(−→a ).

Proof. We only need to prove this for the case m = 1, since we already know that the ith
row of f ′(−→a ) is given by (f i)′(ai).
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Fix j, and let h : R → Rn be defined by h(t) = −→a + tej . Then Djf(
−→a ) = D(f ◦ h)(0). By

the chain rule,

Djf(
−→a ) = (f ◦ h)′(0)

= f ′(h(0))h′(0)

= f ′(−→a )



0
...
1
...
1


The right side of this equation is the jth entry of f ′(−→a ), showing that Djf(a) exists. This
extends easily for all m.

While the converse of this theorem is false, we can add another condition to make it
true.

Definition 2.4

If f : Rn → Rm, then f is called continuously differentiable at a if all Djf
i(x)

exist in an open set containing a and if each function Djf
i is continuous at a.

Theorem 2.8

If f : Rn → Rm is continuously differentiable at a, then Df(a) exists.

Proof. Suppose f is continuously differentiable at −→a . Then each Djf
i(−→a ) exists. Define

λ : Rn → Rm by

λ(x1, . . . , xn) =

 n∑
j=1

Djf
1(−→a )xj , . . . ,

n∑
j=1

Djf
m(−→a )xj


Then we have

lim−→
h→0

∣∣∣f(−→a +
−→
h )− f(−→a )− λ(

−→
h )
∣∣∣∣∣∣−→h ∣∣∣ ≤

m∑
i=1

lim−→
h→0

∣∣∣f i(−→a +
−→
h )− f i(−→a )−

∑n
j=1Djf

i(−→a )hj
∣∣∣∣∣∣−→h ∣∣∣

Thus it is sufficient to consider the case m = 1. When
−→
h = (h1, . . . , hn), define [

−→
h ]k :=

(h1, . . . , hk, 0, . . . , 0) ∈ Rn. Then we can telescope:

f(−→a +
−→
h )− f(−→a ) =

n∑
k=1

f
(−→a + [

−→
h ]k
)
− f

(−→a + [
−→
h ]k−1

)
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So

f(−→a +
−→
h )− f(−→a )−

n∑
j=1

Djf(
−→a )hj =

n∑
j=1

[
f
(−→a + [

−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
]

Thus we need to prove that

lim−→
h→0

∣∣∣f (−→a + [
−→
h ]j
)
− f

(−→a + [
−→
h ]j−1

)
−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = 0

for all j. Fix some j. Then define gj : Rn → Rm by

gj(x) = f(a1 + h1, . . . , aj−1 + hj−1, aj + x, aj+1, . . . , an)

Since f is continuously differentiable, we can pick
−→
h small enough that Djf exists at

−→a + [
−→
h ]j−1. Then Djf(

−→a + [
−→
h ]j−1) = g′j(0), so we have

lim−→
h→0

∣∣∣f(−→a + [
−→
h ]j)− f(−→a + [

−→
h ]j−1)−Djf(

−→a )hj
∣∣∣∣∣∣−→h ∣∣∣ = lim−→

h→0

|gj(hj)− gj(0)−Djf(
−→a )hj |∣∣∣−→h ∣∣∣

= lim
hj→0

|gj(hj)− gj(0)− g′j(0)hj + g′j(0)hj −Djf(
−→a )hj |

|hj |

≤ lim
hj→0

|gj(hj)− gj(0)− g′j(0)hj |
|hj |

+ lim
hj→0

|g′j(0)hj −Djf(
−→a )hj |

|hj |
= lim
hj→0

|g′j(0)−Djf(
−→a )|

= lim
hj→0

|Djf(
−→a + [

−→
h ]j−1)−Djf(

−→a )|

= 0

where the fourth line follows since gj is differentiable at 0, and the last equality because
Djf is continuous at aj . Thus Df(a) = λ exists.

The above theorem, in combination with the Chain Rule, allows us to derive a specific
version of the Chain Rule that allows us to bypass checking for differentiability when the
partial derivatives are known.

Corollary 2.9

Let g1, . . . , gm : Rn → R be continuously differentiable at a, and let f : Rm → R be
differentiable at (g1(a), . . . , gm(a)). Let F : Rn → R be defined by

F (a) = f(g1(a), . . . , gm(a))

Then

DiF (a) =

m∑
j=1

Djf(g1(a), . . . , gm(a)) ·Digj(a)
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Proof. Define g : Rn → Rm by g = (g1, . . . , gm). Then F = f ◦ g. Since g1, . . . , gm are
continuously differentiable, g is continuously differentiable, so it is differentiable. Thus the
Chain Rule tells us that

F ′(a) = (f ◦ g)′(a) = f ′(g(a))g′(a)

Matrix multiplication tells us that

[F ′(a)]1i =

m∑
j=1

[f ′(g(a))]1j [g
′(a)]ji

Moreover, Theorem 2.7 tells us that

[F ′(a)]1i = DiF (a)

[f ′(g(a))]1j = Djf(g(a))

[g′(a)]ji = Dig
j(a) = Digj(a)

Thus we conclude that

DiF (a) =

m∑
j=1

Djf(g1(a), . . . , gm(a)) ·Digj(a)

Example 2.4

Let f(x, y, z) = xyz, and let g1(a, b) = a sin b, g2(a, b) = b cos a, g3(a, b) = a3b. Then

∂

∂a
(f ◦ g)

∣∣∣∣
(a,b)

= D1(f ◦ g)(a, b)

= D1f(g(a, b))D1g1(a, b) +D2f(g(a, b))D1g2(a, b) +D3f(g(a, b))D1g3(a, b)

= a3b2 cos a sin b− a4b2 sin b sin a+ 3a2b2 sin b cos a

In cases where one or more of the gi do not explicitly depend on all of the variables, the
derivatives with respect to those variables is zero.

Example 2.5

Let f(x, y, z) = xyz, and let g1(a, b) = ab, g2(a) = a, g3(b) = b. Replacing D1 with
Da for clarity, we consider

Dag3(b) = 0, Dbg2(a) = 0

Thus

Da(f ◦ g)(a, b) = D1f(g(a, b))Dag1(a, b) +D2f(g(a, b))Dag2(a)

= ab2 + ab2

= 2ab2
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(This can be formally established by writing ĝ2(a, b) = a, ĝ3(a, b) = b, but this is
generally unnecessary.)

2.5 Inverse Functions

In Exercise 2-16, we began our study of inverse functions, showing that in the case that
f : Rn → Rn is differentiable with a differentiable inverse f−1 : Rn → Rn,

(f−1)(a) = [f ′(f−1(a))]−1

However, the requirement that f has an inverse, and that both are differentiable is a rela-
tively stringent condition. Thus, it is of interest to us to identify when the above equality
may be obtained under weaker conditions. In particular, the requirement that f is invertible
is a strong global condition. However, it can be weakened by instead requiring that f is
invertible locally; that is, the restriction of f to a sufficiently small open set is invertible.
Thus, it falls to us to determine the conditions where this occurs.

Consider the case of f : R → R. We would like our conditions to be in terms of the differen-
tiability of f , since that is what we have studied so far. One observation that we can make
is that if f is strictly increasing or decreasing on a small interval, it is 1-1 on that interval.
In other words, if f ′(x) > 0 in an interval around a, then f is invertible in that interval,
and similarly if f ′(x) < 0. Moreover, if f is continuously differentiable, then f ′(a) > 0 is
sufficient to conclude that f(x) > 0 in an interval around a. This leads to our multivariate
generaliziation, but it will take some work to arrive there.

Lemma 2.10

Let A ⊆ Rn be a rectangle and let f : A → Rn be continuously differentiable. If
there is a number M > 0 such that |Djf

i(x)| ≤M for all x ∈ intA, then

|f(x)− f(y)| ≤ n2M |x− y|

for all x, y ∈ A.

Proof. First, we have

|f(x)− f(y)| ≤
n∑
i=1

|f i(x)− f i(y)|

Now, let z = y − x and define hiz(t) = f i(x+ tz), so that hiz(0) = f i(x) and hiz(1) = f i(y).
Since f i is differentiable (this follows from Theorem 2.8), we know that the directional

derivative Dzf
i(x) exists, and moreover that hi

′
(t) = Dzf

i(x + tz) (see Exercise 2-35).
Thus

|f i(y)− f i(x)| = |hi(0)− hi(1)| =
∣∣∣∣∫ 1

0

hi
′
(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

Dzf
i(x+ tz)dt

∣∣∣∣
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We also showed in Exercise 2-29 that D∗ is linear with respect to direction, so we can expand
this: ∣∣∣∣∫ 1

0

Dzf
i(x+ tz)dt

∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

0

n∑
j=1

zjDjf
i(x+ tz)dt

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∫ 1

0

zjDjf
i(x+ tz)dt

∣∣∣∣
≤

n∑
j=1

|zj |
∣∣∣∣∫ 1

0

Djf
i(x+ tz)dt

∣∣∣∣
≤

n∑
j=1

|zj |M

≤
n∑
j=1

|z|M

= nM |y − x|

Thus we have
|f i(y)− f i(x)| ≤ nM |y − x|

Combining this with our first inequality, we have

|f(x)− f(y)| ≤
n∑
i=1

|f i(x)− f i(y)| ≤
n∑
i=1

nM |y − x| = n2M |y − x|

Lemma 2.10 provides the necessary machinery to extend our result about locally invert-
ible functions to the multivariate case:

Theorem 2.11: Inverse Function Theorem

Suppose that f : Rn → Rn is continuously differentiable in an open set containing
a, and det f ′(a) ̸= 0. Then there is an open set V containing a and an open set W
containing f(a) such that f : V → W has a continuous inverse f−1 : W → V which
is differentiable and for all y ∈W satisfies

(f−1)′(y) = [f ′(f−1(y))]−1

Briefly speaking, this theorem says that so long as f ′(a) is nonsingular, then we can find
a restriction to a small open set where f is invertible and the derivative condition is met.

Proof. Let λ = Df(a). Since det f ′(a) ̸= 0, λ is invertible. Now suppose that the theorem
is true for λ−1 ◦ f . Then letting ϕ = (λ−1 ◦ f)−1, I claim that ϕ ◦ λ−1 = f−1. To see this,
we check that ϕ ◦ λ−1 is both a left and right identity:

(ϕ ◦ λ−1) ◦ f = (λ1− ◦ f)−1 ◦ (λ−1 ◦ f) = id

f ◦ (ϕ ◦ λ−1) = f ◦ f−1 ◦ λ ◦ λ−1 = id
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Moreover, this composition is continuous and differentiable, so if the theorem holds for
λ−1 ◦ f , it holds for f . Thus it suffices to prove the case where λ is the identity.

Now we know that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

= 0

so we can choose a small closed rectangle U containing a such that

|f(a+ h)− f(a)− λ(h)|
|h|

< 1

Now suppose for contradiction that there exists x ∈ U with f(x) = f(a). Then we would
have

|f(x)− f(a)− λ(x− a)|
|x− a|

=
|x− a|
|x− a|

= 1

which contradicts the inequality we just established for U . So f(x) ̸= f(a) for all x ̸= a ∈ U .

Now note that x 7→ det f ′(x) consists of sums and products of continuous functions (each
Djf

i exists and is continuous since f is continuously differentiable), so it is continuous.
Thus we can also choose U small enough such that det f ′(x) ̸= 0 for x ∈ U .

Lastly, since f is continuously differentiable, we can pick U small enough such that for any
i, j and x ∈ U we have

|Djf
i(x)−Djf

i(a)| < 1

2n2

Next, let g(x) = f(x)− x. Then since Df(a) = id, for any x ∈ intA we have

|Djg
i(x)| = |Djf

i(x)−Dj id
i(x)| = |Djf

i(x)−Djf
i(a)| < 1

2n2

so |Djg
i(x)| ≤ M = 1/2n2 for all i, j and x ∈ U . Thus we may apply Lemma 2.10 to

conclude that for any x, y ∈ U ,

|f(x)− x− (f(y)− y)| = |g(x)− g(y)| ≤ n2M |x− y| = |x− y|
2

Moreover, by the reverse triangle inequality,

|x− y| − |f(x)− f(y)| ≤ |f(x)− x− (f(y)− y)|

so we know that for any x, y ∈ U ,

|x− y| ≤ 2|f(x)− f(y)|

Since U is a closed rectangle, ∂U ⊆ U , so for any x ∈ ∂U we know f(x) ̸= f(a). Thus
f(a) /∈ f(∂U). Moreover, ∂U is compact, so f(∂U) is compact and there exists d > 0 such
that |f(a)− f(x)| ≥ d for any x ∈ ∂U . Then define

W =

{
y : |y − f(a)| < d

2

}
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If y ∈W and x ∈ ∂U , then
|y − f(a)| < |y − f(x)|

Then we show that for any y ∈W , there exists a unique preimage x ∈ intU with f(x) = y.
To prove this, note that defining g : U → R by

g(x) = |y − f(x)|2 =

n∑
i=1

(yi − f i(x))2

This function is continuous, so it achieves a minimum on U . But since |y−f(a)| < |y−f(x)|
for x ∈ ∂U , we know that g(a) < g(x). So the minimum cannot be in ∂U . Thus there exists
x ∈ intU such that g is minimized, which allows us to conclude that Djg(x) = 0 for all j.
Thus

n∑
i=1

2(yi − f i(x))Djf
i(x) = 0

Since this holds for every j, we can rewrite this system of equations as

f ′(x)

y1 − f1(x)
...

yn − fn(x)

 = 0

But det f ′(x) ̸= 0 so we conclude that yi − f i(x) = 0 for all i. Thus y = f(x). So we know
that a preimage x exists. If another preimage x2 exists, then we have

|x− x2| ≤ 2|f(x)− f(x2)| = 2|y − y| = 0

so x = x2. Thus x is unique as well. Thus, we have shown that f is locally invertible.
Letting V = intU ∩ f−1(W ), we may write that f : V → W has an inverse f−1 : W → V .
Moreover, for any y1, y2 ∈W with x1 = f−1(y1) and x2 = f−1(y2), we have

|f−1(y1)− f−1(y2)| = |x1 − x2| ≤ 2|f(x1)− f(x2)| = 2|y1 − y2|

So f−1 is Lipschitz and is thus continuous.

Now we must show that f−1 is differentiable. Let x ∈ V , and write µ = Df(x). Let
y = f(x) ∈ W . Then we show that f−1 is differentiable at y with Df−1(y) = µ−1. Let
φ(x1) = f(x1)− f(x)− µ(x1 − x), such that

f(x1) = f(x) + µ(x1 − x) + φ(x1 − x)

Moreover, since f is differentiable at x we have

lim
x1→x

|φ(x1 − x)|
|x1 − x|

= 0

So
µ−1(f(x1)− f(x)) = x1 − x+ µ−1(φ(x1 − x))

or
x1 = µ−1(f(x1)− f(x)) + x− µ−1(φ(x1 − x))
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But any y1 ∈W is of the form f(x1) for x1 ∈ V , so without loss of generality we may wriet

f−1(y1) = f−1(y) + µ−1(y1 − y)− µ−1(φ(f−1(y1)− f−1(y)))

and we only need to show that

lim
y1→y

|µ−1(φ(f−1(y1)− f−1(y)))|
|y1 − y|

= 0

By Exercise 1-10 the linear transformation µ−1 is irrelevant here and we only need to show
that

lim
y1→y

|φ(f−1(y1)− f−1(y))|
|y1 − y|

= 0

We can apply a trick here, splitting the fraction:

|φ(f−1(y1)− f−1(y)|)
|y1 − y|

=
|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

|f−1(y1)− f−1(y)|
|y1 − y|

Since f−1 is continuous, f−1(y1) → f−1(y) as y1 → y, so

lim
y1→y

|φ(f−1(y1)− f−1(y))|
|f−1(y1)− f−1(y)|

= lim
x1→x

|φ(x1 − x)|
|x1 − x|

= 0

and the second factor is bounded by 2, completing the proof.

2.6 Implicit Functions

Having now proved our major result concerning local invertibility of functions, we will apply
it to the study of converting implicit function relations into explicit functions.

Example 2.6

Let f : R2 → R be defined by f(x, y) = x2 + y2 − 1. Let C be the set of points (x, y)
with f(x, y) = 0 (this defines a level curve of f). Then this curve is simply a circle
of radius 1 centered at the origin.

To convert this curve into an explicit function, we attempt to answer the following
question: given a point (a, b) ∈ C, do there exist intervals A around a and B around
b such that for any x ∈ A there exists exactly one y ∈ B with (x, y) ∈ C. In the case
that there is, we can then define a function g : A → B which maps each x to that
unique y.

If we choose (x, y) such that x ̸= ±1, then we can indeed do so. When y > 0, the
graph of the function g(x) =

√
1− x2 traces out the upper semicircle. When y < 0,

we instead pick h(x) = −
√
1− x2, tracing out the lower circle. In both cases, our

choice of g or h is forced. However, when x = ±1, we cannot pick an interval around
x where such a function can be defined.

It is also worth remarking that both g and h are differentiable.
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To generalize the above discussion to multiple variables, we consider functions of the
form f : Rn × Rm → R. If x ∈ Rn and y ∈ Rm, then we would like to find neighborhoods
V around x and W around y such that any x ∈ V corresponds to exactly one y ∈ W with
f(x, y) = 0, which allows us to implicitly define a function g : V →W , which maps x to y.

Theorem 2.12: Implicit Function Theorem

Let f : Rn×Rm → Rm be continuously differentiable in an open set aroud (a, b), and
suppose f(a, b) = 0. Let M be an m×m matrix defined by Mij = Dn+jf

i(a, b). If
detM ̸= 0, then there is an open set A ⊆ Rn containing a and an open set B ⊆ Rm
containing b, such that for any x ∈ A there is a unique y ∈ B such that f(x, y) = 0.
Moreover, the function g defined by x 7→ y is differentiable.

Proof. Define F : Rn × R + summ → Rn × Rm by F (x, y) = (x, f(x, y)). Then F ′(a, b) is
given by a block matrix

F ′(a, b) =

[
I O
O M

]
so detF ′(a, b) = detM ̸= 0. Apply the Inverse Function Theorem to produce open sets
V ⊆ Rn × Rm containing (a, b) and W ⊆ Rn × Rm containing F (a, b) = (a, 0). We can
write V = A × B (Spivak asserts this but I’m not sure how), and thus the restriction
F : A × B → W has a differentiable inverse h : W → A × B. Moreover, since F preserves
the first n coordinates, h must also, so that h(x, y) = (x, k(x, y)) for some differentiable
function k. Then define the projection π : Rn × Rm → Rm by π(x, y) = y, such that
π ◦ F = f . Thus

f(x, k(x, y)) = f ◦ h(x, y) = (π ◦ F ) ◦ h(x, y) = π ◦ (F ◦ h)(x, y) = π(x, y) = y

Then f(x, k(x, 0)) = 0. So for any x ∈ A, we can pick y = k(x, 0) ∈ B, and we will have
f(x, y) = 0. Moreover, if there exists another y′ ∈ B with f(x, y′) = 0, then we would have

F (x, y′) = (x, f(x, y′)) = (x, 0) = (x, f(x, y)) = F (x, y)

But F is invertible so we cannot have y ̸= y′. Thus our choice of y is unique, and the
implicitly defined function k is differentiable.

Since we know that the implicitly defined g is differentiable, we can calculate its deriva-
tive. For any coordinate i, we have f i(x, g(x)) = 0, so

Djf
i(x, g(x)) +

m∑
α=1

Dn+αf
i(x, g(x))Djg

α(x) = 0

which we can then solve for the various Djg
α(x) by inverting M (which can be done since

detM ̸= 0).

We can generalize the Implicit Function Theorem as follows:
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Theorem 2.13

Let f : Rn → Rp be continuously differentiable in an open set containing a, where
p ≤ n. If f(a) = 0 and the p×n matrix P with Pij = Djf

i(a) has rank p, then there
is an open set A ⊆ Rn and a differentiable function h : A → Rn with differentiable
inverse such that h(A) contains a and

f ◦ h(x1, . . . , xn) = (xn−p+1, . . . , xn)

Note: Spivak states that A contains a. This is incorrect.

We can interpret the above theorem by saying that whenever the derivative of f has
rank p, then we can find h such that f ◦ h acts to embed the last p coordinates of −→x into
Rp.

Proof. Consider f as a function Rn−p × Rp → Rp. Then if P has rank p, it has p linearly
independent columns. Let g : Rn → Rn permute the coordinates such that those linearly
independent columns are the last p columns. Taking f ◦ g, the matrix M as defined in the
Implicit Function Theorem, which is a p × p matrix with Mij = Dn+j(f ◦ g)i(a), has rank
p, and thus has nonzero determinant.

Now, as in the proof of the Implicit Function Theorem, define F : Rn−p ×Rp → Rn−p ×Rp
by F (x, y) = (x, f ◦ g(x, y)). Again, detF ′(a, b) = detM ̸= 0, so we apply the Inverse
Function Theorem to produce h which is locally an inverse of F . As in the previous proof,
we have

(f ◦ g) ◦ h(x, y) = y

so taking g ◦ h produces the requested function.
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Chapter 3

Integration

3.1 Basic Definitions

The following treatment of the basic definitions of integrals over a closed rectangle A ⊆ Rn
is rapid, as this case is similar to the single variable case of integration over an interval.

Definition 3.1

A partition of a closed interval [a, b] is a finite sequence {t0, . . . , tk}, such that
a = t0 ≤ . . . ≤ tk = b, such that [a, b] is divided into k subintervals.

Definition 3.2

Let A = [a1, b1] × . . . × [an, bn] ⊆ Rn be a closed rectangle. A partition of A is a
collection of partitions P = (P1, . . . ,Pn), such that Pi is a partition of [ai, bi]. If Pi
divides [ai, bi] into Ni subintervals, then P divides A into N1 × . . . × Nn subrect-
angles of P. Using a slight abuse of notation, we will write S ∈ P to denote that S
is a subrectangle of P.

If A ⊆ Rn is a rectangle, f : A→ R is bounded, and P is a partition, then we can define
the maximum and minimum values for each subrectangle S ∈ P:

mS(f) = inf{f(x) : x ∈ S}
MS(f) = sup{f(x) : x ∈ S}

Let v(S) denote the volume of S, defined as the product of the side lengths (regardless of
whether S is open or closed). Then the lower and upper sums of f with respect to P are

L(f,P) =
∑
S∈P

mS(f)v(S)

U(f,P) =
∑
S∈P

MS(f)v(S)
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Since mS(f) ≤MS(f) for any s, we then have L(f,P) ≤ U(f,P).

Definition 3.3

A partition P ′ is called a refinement of a partition P if each subrectangle of P ′ is
contained in a subrectangle of P.

Lemma 3.1

Let P ′ be a refinement of P. Then

L(f,P) ≤ L(f,P ′)

and
U(f,P) ≥ U(f,P ′)

Proof. Let S be a subrectangle of P. Then it contains subrectangles S1, . . . , Sk ∈ P ′ which
are disjoint and cover S, so that

∑
1≤i≤k v(Si) = v(S). For each Si, mSi(f) ≥MS(f). Thus∑

1≤i≤k

mSi(f)v(Si) ≥ mS(f)v(S)

Since P ′ refines P, each subrectangle of P ′ is contained in a subrectangle of P. Thus we
have

L(f,P ′) =
∑
S′∈P′

mS′(f)v(S′) =
∑
S∈P

∑
1≤i≤k

mSi(f)v(Si) ≥
∑
S∈P

mS(f)v(S) = L(f,P)

The proof for the other case is similar.

In essence, as we refine a given partition, the upper and lower sums will grow closer to
one another, and under the appropriate conditions, they will also converge to one another.
This provides a candidate value for the integral of f over A; however, it is dependent on our
starting partition. Ideally, our integral may be defined independent of a particular choice of
partition; to do so we must prove the following:

Corollary 3.2

If P and P ′ are partitions, then L(f,P ′) ≤ U(f,P).

To prove this, we first introduce an auxiliary construction:

Definition 3.4

Let P and P ′ be partitions of an interval [a, b]. Then their common refinement Q
is the partition P ∪P ′. If P = (P1, . . . ,Pn) and P ′ = (P ′

1, . . . ,P ′
n) be partitions of a

rectangle A ⊆ Rn. Then the common refinement Q is given by (P1∪P ′
1, . . . ,Pn∪P ′

n).
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Proof. Let Q be the common refinement of P and P ′. Then by Lemma 3.1,

L(f,P ′) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f,P)

Now let U = inf U(f,P), where the infimum is taken over all partitions P of A, and let
L = supL(f,P). By Corollary 3.2, both U and L exist, and L ≤ U . As mentioned above, if
our continued refinements converge to a single value, then this provides a plausible definition
of the integral. As Corollary 3.2 shows, this convergence is only possible if U = L, and it
must converge to that common value. Moreover, the values of U and L are independent of
our choice of partition, which allows us to define the integral:

Definition 3.5

Let f : A → R be bounded, with A ⊆ Rn a rectangle. Then f is integrable if
U = L. In this case, we denote the integral of f on A by

∫
A
f = U = L, which may

alternatively be notated
∫
A
f(x1, . . . , xn) dx1 . . . dxn.

The following theorem gives us an equivalent criterion for integrability.

Theorem 3.3

A bounded function f : A → R is integrable if and only if, for every ε > 0 there
exists a partition P of A such that

U(f,P)− L(f,P) < ε

Proof. ( =⇒ ) If f is integrable then U exists, so there exists a partition P1 with U(f,P1) ≤
U + ε

2 . Similarly there exists P2 with L(f,P2) ≥ L− ε
2 . Let P be the common refinement

of P1,P2. Then

U(f,P)− L(f,P) ≤ U(f,P1)− L(f,P2) ≤ U +
ε

2
− (L− ε

2
) = ε

( ⇐= ) By Corollary 3.2, both U and L exist. Let ε > 0 be arbitrary, and let P be the
partition produced by the condition. Then

U − L ≤ U(f,P)− L(f,P) < ε

So U − L < ε for all ε > 0 and thus U = L. So f is integrable over A.

Example 3.1

Let f : A → R be constant with f(x) = c. Then if P is a partition and S ∈ P,
mS(f) =MS(f) = c, so

U(f,P) =
∑
S∈P

mS(f)v(S) = c
∑
S∈P

v(S) = cv(A)

L(f,P) = cv(A)
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so U = L = cv(A) and f is integrable with
∫
A
f = cv(A).

Example 3.2

Let f : [0, 1]× [0, 1] → R be defined by

f(x, y) =

{
0, x ∈ Q
1, x /∈ Q

If P is a partition and S ∈ P, by the density of Q in R we have mS(f) = 0, and by
the density of I ∈ R we have MS(f) = 1. So

U(f,P) =
∑
S∈P

MS(f)v(S) =
∑
S∈P

v(S) = v(A)

L(f,P) = 0

So f is not integrable over any rectangle A with v(A) > 0.

3.2 Measure Zero and Content Zero

In this section, we discuss the notions of measure and content zero. These quanity the
concept of a set which is small enough to be insignificant in certain contexts. Moreover, in
particular with the case of measure zero, this is a special case of a more general technique
which serves as the formalization of volume in higher dimensions.

Definition 3.6

A subset A ⊆ Rn has measure zero if for any ε > 0 there exists a cover O of A by
closed rectangles such that

∑
O∈O v(O) < ε > 0.

We may also use open rectangles rather than closed rectangles in the above.

Proposition 3.4

If a set A ⊆ Rn is countable, then it has measure zero.

Proof. Let ε > 0. Enumerate the points in A as a1, a2, . . .. Then for each ai, pick a closed
rectangle Oi containing ai such that v(Oi) <

ε
2i . Then O = {O1, O2, . . .} covers A, and

∑
O∈O

v(O) =

∞∑
i=1

v(Oi) ≤
∞∑
i=1

ε

2i
= ε

∞∑
i=1

1

2i
= ε

so A has measure zero.
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Importantly, Q is countable, and thus has measure zero.

Theorem 3.5

Let A =
⋃∞
i=1Ai be a countable union of measure zero sets Ai. Then A has measure

zero.

Proof. Let ε > 0. For each Ai, pick an open cover Oi such that∑
O∈Oi

v(O) <
ε

2i

Now let O =
⋃∞
i=1 Oi. Then O covers A, and

∑
O∈O

v(O) =

∞∑
i=1

∑
O∈Oi

v(Oi) ≤
∞∑
i=1

ε

2i
= ε

so A has measure zero.

While sets of measure zero are important (and indeed, this notion hints at more im-
portant themes in measure theory), there are times when we would prefer to work with a
finite cover rather than an open cover. This is analogous to our preference for compact sets.
Thus, we have a corresponding notion of measure zero for finite covers:

Definition 3.7

A subset A ⊆ Rn has content zero if for any ε > 0 there exists a finite cover O of
A by closed rectangles such that ∑

O∈O
v(O) < ε

By definition, a set having content zero is a special case of having measure zero.

Theorem 3.6

A nonsingleton interval [a, b] ⊆ R does not have content zero. For any finite cover
{O1, . . . , On} of [a, b], where each Oi is a closed interval,

n∑
i=1

v(Oi) ≥ b− a

Proof. Let O be a finite cover. We can pick a cover O′ = {O1 ∩ [a, b], . . . , On ∩ [a, b]},
which will be a cover if and only if O is, and which has smaller total length, so without
loss of generality we may consider O′. Let t0, . . . , tk be the endpoints of the O′

i, with
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a = O0 ≤ . . . ≤ Ok = b. Then each O′
i contains at least one interval [ti−1, ti], and each

interval is contained in at least one O′
i. Then

∑
O′∈O′

v(O′) ≥
k∑
j=1

(tj − tj−1) = b− a

The reader should note that the above proof also shows that [a, b] does not have measure
zero (as long as a < b).

Theorem 3.7

If A is compact and has measure zero, then it has content zero.

Proof. Let ε > 0. There exists an open cover O of A with∑
O∈O

v(O) < ε

Since A is compact, pick a finite subcover O′. Then∑
O′∈O′

v(O′) ≤
∑
O∈O

v(O) < ε

so A has content zero.

Example 3.3

Although we pointed out earlier that Q has measure zero, it does not have content
zero. Let O = {[ai, bi]} be a finite cover of Q ∩ [0, 1] by closed intervals. Then by
the density of Q, O must cover [0, 1]. But then

∑n
i=1 bi − ai ≥ 1, so Q ∩ [0, 1] does

not have content zero. It follows that Q does not either.

3.3 Integrable Functions

In this section, we will expand on the theory of which functions may be (Riemann) inte-
grated.

Recall that o(f, x) denotes the oscillation of f at x, defined as

lim
δ→0

M(x, f, δ)−m(x, f, δ)

where

M(x, f, δ) = sup{f(y) : |x− y| < δ}
m(x, f, δ) = inf{f(y) : |x− y| < δ}
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Lemma 3.8

Let A be a closed rectangle and let f : A → R be a bounded function such that
o(f, x) < ε for all x ∈ A. Then there is a partition P of A with

U(f,P)− L(f,P) < ε · v(A)

Proof. For each x, because o(f, x) < ε we may pick a closed rectangle Ux containing x such
that MUx(f) −mUx(f) < ε. Then the collection of Ux covers A compact, so we can pick
a finite subcover U1, . . . , Uk. Then pick a partition P such that each subrectangle of P is
entirely contained within one of the Ux. Then for any subrectangle S ∈ P we have

MS(f)−mS(f) ≤MUx(f)−mUx(f) < ε

Then
U(f,P)− L(f,P) =

∑
S∈P

v(S)[MS(f)−mS(f)] < ε
∑
S∈P

v(S) = εv(A)

Lemma 3.9

Let R be a finite collection of closed rectangles R1, . . . , Rk ⊆ Rn. Let A ⊆ Rn be a
closed rectangle. Then there exists a partition P of A such that for each S ∈ P and
each Ri, exactly one of the following is true: S ⊆ Ri or S ∩ intRi = ∅.

Proof. Let ai,j be the left endpoint of Ri in the jth direction and bi,j the right endpoint,
such that

Ri = [ai,1, bi,1]× . . .× [ai,n, bi,n]

Let Pj = {a1,j , b1,j , . . . , ak,j , bk,j} (not necessarily in order). Suppose that when ordered,
Pj = {tj,1, . . . , tj,2k} (note that the j has switched coordinates). Let P = (P1, . . . ,Pn).
Then for each S ∈ P,

S = [t1,i1−1, t1,i1 ]× . . .× [tn,in−1, tn,in ]

for appropriately chosen i1, . . . , in. Any Rj is of the form

Rj = [t1,i′1−1, t1,i′1 ]× . . .× [tn,i′n−1, tn,i′n ]

for some other i′1, . . . , i
′
n. Now consider the first coordinate direction. Suppose t1,i′1 ≤ t1,i1−1.

Then for any x ∈ S and y ∈ intRj , we have

y1 < t1,i′1 ≤ t1,i1−1 ≤ x1

so x ̸= y and thus S ∩ intRi = ∅. Similarly, if t1,i1 ≤ t1,i′1−1, then we have

x1 ≤ t1,i1 ≤ t1,i′1−1 < y1

so x ̸= y and S ∩ intRi = ∅. Thus we either immediately conclude that S ∩ intRi = ∅, or
we know that

t1,i′1 > t1,i1−1

t1,i1 > t1,i′1−1
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This is equivalent to

t1,i′1 ≥ t1,i1

t1,i1−1 ≥ t1,i′1−1

so we either have S ∩ intRi = ∅ or

t1,i′1−1 ≤ t1,i1−1 ≤ t1,i1 ≤ t1,i′1

We can apply this argument to each coordinate direction 1, . . . , n, so that it is either the
case that S ∩ intRi = ∅, or we have

t1,i′1−1 ≤ t1,i1−1 ≤ t1,i1 ≤ t1,i′1
...

tn,i′n−1 ≤ tn,in−1 ≤ tn,in ≤ tn,i′n

In this case, we have S ⊆ Ri.

In particular, the above statement shows that if O is a finite collection of rectangles such
that their interiors cover some set B ⊆ A ⊆ Rn, with A a closed rectangle, then there exists
a partition of A such that each subrectangle is either contained in some O ∈ O or does not
intersect B. Such a collection may be of interest, for instance, if B has content zero.

Theorem 3.10

Let A be a closed rectangle and let f : A→ R be a bounded function. Let B = {x :
f is not continuous at x}. Then f is integrable if and only if B is a set of measure
zero.

Proof. ( =⇒ ) Suppose that f is integrable. Define Bε : {x : o(f, x) ≥ ε}. I claim that B1/n

has measure zero for each n.

To see this, let P be a partition of A such that

U(f,P)− L(f,P) <
ε

n

Then let S be the collection of subrectangles S ∈ P such that S ∩B1/n ̸= ∅. Then S covers

B1/n. Now, for each S ∈ S we know that o(f, x) ≥ 1
n for some x ∈ S, soMS(f)−mS(f) ≥ 1

n .
So

1 ≤ n(MS(f)−mS(f))

Thus ∑
S∈S

v(S) ≤
∑
S∈S

v(S)n(MS(f)−mS(f)) ≤ n
∑
S∈P

v(S)[MS(f)−mS(f)] < ε

So B 1
n
has measure zero. Thus B =

⋃∞
n=1B1/n has measure zero.

( ⇐= ) Suppose that B has measure zero. Now let ε > 0. Suppose that |f(x)| < M for all
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x. Define ε′ = ε/2v(A). Define Bε := {x : o(f, x) ≥ ε′}. We have previously proved that
a set of this form is compact. Then Bε is compact and has measure zero, so it has content
zero. Then there exists a finite cover O of Bε by the interior of closed rectangles such that∑

O∈O
v(O) <

ε

4M

Apply Lemma 3.9 to produce a partition P ′ such that the subrectangles which do not
intersect Bε may be enumerated as R1, . . . , Rk, and o(f, x) < ε′ = ε/2v(A) for any x in any
of those closed rectangles. Then apply Lemma 3.8 to each Ri to produce a refinement P ′

such that for each Ri,∑
S∈P′:S⊆Ri

v(S)[MS(f)−mS(f)] < ε′v(Ri) =
ε

2v(A)
v(Ri)

Now, for each subrectangle S′ ∈ P ′, S′ ⊆ S for exactly one S ∈ P. We either have S ⊆ O
for some O ∈ O, or S = Ri for some i. Thus either S′ ⊆ O for some O ∈ O or S′ ⊆ Ri
for some i. Denote by L the collection of S′ such that S′ ⊆ O for O ∈ O and by R the
collection of S′ such that S′ ⊆ Ri for some i. Then

U(f,P ′)− L(f,P ′) =
∑
S∈P′

v(S)[MS(f)−mS(f)]

=
∑
S∈L

v(S)[MS(f)−mS(f)] +
∑
S∈R

v(S)[MS(f)−mS(f)]

We also have ∑
S∈L

v(S)[MS(f)−mS(f)] ≤
∑
O∈O

v(O)[MO(f)−mO(f)]

and ∑
S∈R

v(S)[MS(f)−mS(f)] =

k∑
i=1

∑
S′∈P′:S′⊆Ri

v(S′)[MS(f)−mS(f)]

so that

U(f,P ′)− L(f,P ′) ≤
∑
O∈O

v(O)[MO(f)−mO(f)] +
k∑
i=1

∑
S′∈P′:S′⊆Ri

v(S′)[MS(f)−mS(f)]

Since f is bounded by M , we must have MO(f)−mO(f) ≤ 2M for any O. Thus

∑
O∈O

v(O)[MO(f)−mO(f)] +

k∑
i=1

U(f,Pi)− L(f,Pi) < 2M
∑
O∈O

v(O) +
ε

2v(A)

k∑
i=1

v(Ri)

<
ε

2
+
ε

2

v(A)

v(A)

= ε

So f is integrable.
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We have thus presented an extremely useful criterion for determining when a function
may be successfully integrated, without requiring the use of partitions to do so.

We will now progress to expanding our theory of integration from integration on rectangles
to arbitrary bounded sets, which we define in terms of integrals on rectangles.

Definition 3.8

Let C ⊆ Rn. The characteristic function of C is

χC(x) =

{
1, x ∈ C

0, x /∈ C

Definition 3.9

Suppose that C ⊆ Rn is bounded by a closed rectangle A, and f : A→ R is bounded.
Then the integral of f on C is defined as∫

C

f =

∫
A

fχC

provided this quantity is defined.

As we can see from the definition,
∫
C
f is defined whenever fχC is integrable on A.

As we prove in Exercise 3-14, the product of integrable functions is integrable, so if χC
and f are both integrable, then

∫
C
f is well defined. Since we are mainly concerned with

integrating functions which integrable to begin with, the main task for us is to determined
when χC is integrable.

Theorem 3.11

If C ⊆ A ⊆ Rn, where A is a closed rectangle, then χC : A→ R, is integrable if and
only if ∂C has measure zero.

Proof. Note that whenever x ∈ ∂C, in any neighborhood of x there exists y ∈ C, such that
χC(y) = 1, and z /∈ C, such that χC(z) = 0. Thus χC is discontinuous on ∂C. On the other
hand, if x /∈ ∂C, then x ∈ intA or x ∈ extA. In either case, there exists a neighborhood
around x such that χC is constant, so χC is continuous on intA and extA. Thus χC is
discontinuous precisely on ∂C.

Since χC is integrable if and only if it is discontinuous on a set of measure zero, it is integrable
if and only if ∂C has measure zero.

We should note that since ∂C is closed and bounded, it also has content zero.

Definition 3.10

If C is bounded and ∂C has measure zero, then C is called Jordan-measurable.
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Thus, for any integrable function f ,
∫
C
f is defined if C is Jordan-measurable. It is

possible for
∫
C
f to be defined in other cases (for instance, if f is identically zero), but

this is of little interest to us. This also allows us to extend our definition of volume to
non-rectangle sets.

Definition 3.11

The volume (or content) of a Jordan-measurable set C is defined as

v(C) =

∫
C

1

Note that even if C is bounded and closed, it may not be Jordan-measurable, as we
showed in Exercise 3-11. Thus,

∫
C
f may not be defined even in the case of C open and f

continuous.

3.4 Fubini’s Theorem

As with our study of differentiation, we have so far been able to integrate on a case-by-case
basis, and now need to produce a general method that will simplify the computation of
integration in a broad class of cases. This section will develop Fubini’s Theorem, which
allows us to simplify computation of integrals into iterated integrals in single variables.

We will first proceed informally in order to develop intuition for the principle behind this
theorem. Consider the case of a ”sufficiently nice” function f : [a, b]× [c, d] → R. Then we
can partition [a, b] by t0, . . . , tk. For each ti, the area under the graph of f above {ti}× [c, d]
is ∫ d

c

f(ti, y) dy

If f is nice, then we can approximate the volume under the graph of f above [ti−1, ti]× [c, d]
by ∫

[ti−1,ti]×[c,d]

f ≈ (ti − ti−1)

∫ d

c

f(xi, y) dy

for any xi ∈ [ti−1, ti]. Thus we can approximate the overall integral by∫
[a,b]×[c,d]

f =

k∑
i=1

∫
[ti−1,ti]×[c,d]

f ≈
k∑
i=1

(ti − ti−1)

∫ d

c

f(xi, y) dy

But if we consider the single variable integral
∫ b
a
(
∫ d
c
f(x, y) dy) dx, then this would be ap-

proximated by partitions of [a, b] and sums of the form

k∑
i=1

(ti − ti−1)

∫ d

c

f(xi, y) dy
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So it seems that for ”sufficiently nice” functions, we should have∫
[a,b]×[c,d]

f =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

As it turns out, this indeed is the case, but the classification of which functions are ”suffi-

ciently nice” becomes a difficult problem. For instance, if
∫ d
c
f(xi, y) dy is not defined, then

the above equation doesn’t even make sense, although f may still be integrable.

Definition 3.12

Let f : A→ R be bounded with A ⊆ Rn a closed rectangle. Then the lower integral
of f on A is

L

∫
A

f = sup
P
U(f,P)

and the upper integral is defined similarly as

U

∫
A

f = inf
P
L(f,P)

regardless of whether f is integrable on A.

Theorem 3.12: Fubini’s Theorem

Let A ⊆ Rn and B ⊆ Rm be closed rectangles, and let f : A×B → R be integrable.
For any x ∈ A define gx : B → R by gx(y) = f(x, y). Let

L(x) = L

∫
B

gx = L

∫
B

f(x, y) dy

U(x) = U

∫
B

gx = U

∫
B

f(x, y) dy

Then L and U are integrable on A and∫
A×B

f =

∫
A

L =

∫
A

(
L

∫
B

f(x, y) dy

)
dx∫

A×B
f =

∫
A

U =

∫
A

(
U

∫
B

f(x, y) dy

)
dx

We refer to integrals of the form
∫
A

(
L
∫
B
f(x, y) dy

)
dx or

∫
A

(
U
∫
B
f(x, y) dy

)
dx as

iterated integrals.

Proof. Pick partitions PA of A and PB of B. Then P = (PA,PB) is a partition of A × B.
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Moreover, any subrectangle S ∈ P is of the form SA × SB for SA ∈ PA, SB ∈ PB . So

L(f,P) =
∑
S∈P

mS(f)v(S)

=
∑

SA∈PA,SB∈PB

mSA×SB (f)v(SA × SB)

=
∑

SA∈PA

v(SA)

( ∑
SB∈PB

mSA×SB (f)v(SB)

)

For any x ∈ SA we have mSA×SB (f) ≤ mSB (gx). So for fixed x ∈ SA,∑
SB∈PB

mSA×SB (f)v(SB) ≤
∑

SB∈PB

mSB (gx) ≤ L

∫
B

gx = L(x)

and thus

L(f,P) =
∑

SA∈PA

v(SA)

( ∑
SB∈PB

mSA×SB (f)v(SB)

)
≤

∑
SA∈PA

mSA(L)v(SA) = L(L,PA)

so that
L(f,P) ≤ L(L,PA) ≤ U(L,PA) ≤ U(U ,PA) ≤ U(f,P)

where the third inequality follows because L ≤ U and the fourth by a similar argument to
what we just proved. Now, f is integrable, which means that

supL(f,P) = inf U(f,P) =

∫
A×B

f

So that

supL(L,PA) = inf U(L,PA) =
∫
A×B

f

Thus L is integrable on A and ∫
A

L =

∫
A×B

f

and similarly U is integrable iwth ∫
A

U =

∫
A×B

f

Corollary

Under the same hypotheses,∫
A×B

f =

∫
B

(
L

∫
A

f(x, y) dx

)
dy =

∫
B

(
U

∫
A

f(x, y) dx

)
dy

Proof. Analogous.
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The fact that this proof may be repeated in the other order may seem clear based on
simply reading the proof However, the important implication is that, for these sufficiently
nice functions, not only may our integral be replaced with an iterated integral, but the order
of the iterated integral may be changed.

Remark

If each gx is integrable, then we may dispense with the functions L and U and simply
write ∫

A×B
f =

∫
A

(∫
B

f(x, y) dy

)
dx =

∫
B

(∫
A

f(x, y) dx

)
dy

In particular, this is the case if f is continuous.

Alternatively, if all but a finite number of gx are integrable, then we may still write
the same, and arbitrarily define the quantity

∫
B
f(x, y) dy if gx is not integrable (since

changing the value of L at a finite number of points will not change its integral).

Example 3.4

Define f : [0, 1]× [0, 1] → R by

f(x, y) =


1, x /∈ Q
1, x ∈ Q, y /∈ Q
1− 1

q , x = p
q , y ∈ Q

where x = p/q is assumed to be in lowest terms. Then f is integrable with∫
[0,1]×[0,1]

f = 1. But
∫ 1

0
f(x, y) dy = 1 when x ∈ Q and does not exist other-

wise. So we cannot arbitrarily set the value of
∫ 1

0
f(x, y) dy wherever the integral

doesn’t exist. For instance, defining this as zero gives Dirichlet’s function, which is
not integrable.

Remark

If A = [a1, b1] × . . . × [an, bn] and f : A → R is ”sufficiently nice,” then repeated
application of Fubini’s theorem gives∫

A

f =

∫ bn

an

(
. . .

(∫ b1

a1

f(x1, . . . , xn) dx1

)
. . .

)
dxn

An application of Fubini’s theorem is to integrate over subsets C ⊆ A×B by appropri-
ately setting bounds on the iterated integrals.
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Example 3.5

Let
C = ([−1, 1]× [−1, 1]) \ {(x, y) : |(x, y)| < 1}

Then ∫
C

f =

∫
[−1,1]×[−1,1]

χCf

Assuming that f is integrable, χCf is integrable since C is Jordan-measurable. So
we may write ∫

[−1,1]×[−1,1]

χCf =

∫ 1

−1

(∫ 1

−1

f(x, y)χC(x, y) dy

)
dx

We have

χC(x, y) =

{
1, |y| >

√
1− x2

0, |y| ≤
√
1− x2

so ∫ 1

−1

f(x, y)χC(x, y) dy =

∫ 1

√
1−x2

f(x, y) dy +

∫ −
√
1−x2

−1

f(x, y) dy

and thus∫
C

f =

∫ 1

−1

(∫ 1

√
1−x2

f(x, y) dy

)
dx+

∫ 1

−1

(∫ −
√
1−x2

−1

f(x, y) dy

)
dx

In general, the problem of determining bounds for arbitrary C ⊆ A × B is harder.
However, one important result of Fubini’s theorem is that these bounds may be set in either
the dy − dx order or the dx− dy order, whichever is easier.

3.5 Partitions of Unity

In this section, we will discussion partitions of unity. These are an important tool that will
help allow us to combine local results into global results, for instance when developing a
theory of integration on manifolds.
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Definition 3.13

Let A ⊆ Rn. Then a partition of unity for A is a collection Φ of C∞ functions φ
which are defined on an open set containing A, such that

1. For all x ∈ A and all φ ∈ Φ, 0 ≤ φ(x) ≤ 1.

2. For all x ∈ A there exists an open set V containing x such that all but finitely
many φ ∈ Φ are 0 on V .

3. For all x ∈ A it is the case that
∑
φ∈Φ φ(x) = 1, which is a finite sum by 2).

Definition 3.14

Let φ be a partition of unity for some A ⊆ Rn, and let O be an open cover of A.
Then Φ is subordinate to O if, for each φ ∈ Φ there exists an open set O ∈ O such
that φ = 0 outside of some compact set contained in O.

Note: Spivak only requires that φ = 0 outside of a closed contained in O, but later
he makes assumptions which require this set to be compact.

An important tool in proving the existence of partitions of unity will be the smooth
bump functions that we proved the existence of in Exercise 2-26. Exercise 2-26 states that
if O ⊆ Rn is open and C ⊆ O is compact, then there exists a closed set D ⊆ O and a C∞

function which is positive on C and 0 outside of D.

Theorem 3.13

Let A ⊆ Rn and let O be an open cover of A. Then there exists a partition of unity
Φ for A which is subordinate to O.

Proof. Case 1: A is compact.

Note that any partition of unity subordinate to a subcover of O is also subordinate to
O. Since A is compact, we will simply assume O = {U1, . . . , Uk} is finite. Now, we will
construct a corresponding set of compact sets Di ⊆ Ui such that {intD1, . . . , intDk} is also
an open cover for A.

To do so, we apply an inductive argument. Let D1, . . . , Dm be compact sets chosen so that
{intD1, . . . , intDm, Um+1, . . . , Uk} covers A. Then let

Ck+1 = A \

( m⋃
i=1

intDi

)
∪

 k⋃
j=m+2

Uj


Clearly Uk+1 covers Ck+1, and Ck+1 is the result of a closed set being finitely intersected
with the complement of open sets, and is thus closed. So Ck+1 is compact. Then by Exercise
1-22, there exists a compact set Dk+1 that satisfies

Ck+1 ⊆ intDk+1, Dk+1 ⊆ Uk+1
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By construction, the collection of Ci will cover A, so the collection of intDi do as well, and
Di ⊆ Ci ⊆ Ui, so this is our desired set.

Now, by Exercise 2-26, we can construct a C∞ ”bump” function ψi : which is nonnegative
everywhere, strictly positive on Di, and 0 outside of a closed set contained in Ui. Now, let

U =

k⋃
i=1

intDi

A ⊆ U since the intDi cover A. Moreover, for x ∈ U , x is in some Di, and the rest are
nonnegative, so

k∑
i=1

ψi > 0

on U . So we may define φi : U → R by

φi(x) =
ψi(x)∑k
j=1 ψj(x)

which is also smooth on U . Then the collection {φ1, . . . , φk} is a partition of unity. However,
it must be noted that this collection is not necessarily subordinate to O. Indeed, we know
that ψi = 0 outside of some closed set K contained in Ui. However, it may be the case that
K is not completely contained within U . In this case, φ1 is not even defined on K, let alone
outside of it.

Moreover, it is not necessarily that case that φ1 goes to zero at the boundary of its support.
For instance, suppose k = 1, so that we have only a single bump function ψ1. Then ψ1 goes
to zero, but φ1 is identically 1.

We can remedy this by applying Exercise 2-26 once more to construct a C∞ function f : U →
[0, 1] which is 1 on A and 0 outside of a closed setK ′ contained in U . Moreover, we can ensure
that K ′ is bounded since A is, so K ′ is compact. Then the collection Φ = {fφ1, . . . , fφk}
is still a partition of unity for A (since fφi = φi on A), but this time fφi is zero outside of
the compact set K ∩K ′ ⊆ Ui, so Φ is subordinate to O.

Case 2: A =
⋃∞
i=1Ai, where Ai is compact and Ai ⊆ intAi+1.

Define B1 = A1 and Bi = Ai \ intAi−1 for all i ≥ 2.

Claim

Suppose x ∈ Ai. Then x ∈ Bj for some j ≤ i.

Proof. We prove this by induction. In the base case, x ∈ A1 =⇒ x ∈ B1 since
A1 = B1.

For i ≥ 2, if x ∈ Ai then x ∈ Bi or x ∈ intAi−1. But intAi−1 ⊆ Ai−1, so x ∈ Ai−1.
By the inductive hypothesis x ∈ Bj for some j ≤ i− 1 < i.
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By the claim, we have A ⊆
⋃
Bi, and clearly

⋃
Bi ⊆ A, so

⋃
Bi = A.

Define the open cover Oi by

Oi =

{
{O ∩ intAi+1 : O ∈ O}, i = 1, 2

{O ∩ (intAi+1 \Ai−2) : O ∈ O}, i ≥ 3

We will construct a partition of unity for each Bi subordinate to Oi.

Note that each Bi is compact, and that Oi covers Bi. So by Case 1 there exists a partition
of unity Φi for Bi subordinate to Oi, where the functions are defined on some open set Ui
containing Bi. Now let x ∈ A. Then x ∈ Bi for some i. Thus x ∈ Ai. Moreover, for any
j ≥ i + 2, x ∈ Ai ⊆ Aj−2 so x /∈ O ∩ (intAj+1 \ Aj) for any O ∈ O, and thus x /∈ O′ for
any O′ ∈ Oj . Since Φj is subordinate to Oj , φ(x) = 0 for any φ ∈ Φj with j ≥ i+ 2. As a
result, the sum

σ(x) =

∞∑
j=1

∑
φ∈Φj

φ(x) =

i+2∑
j=1

∑
φ∈Φj

φ(x) ≥ 1

is a finite sum. Now for any φ ∈ Φj for any j, define φ
′ : Ui → R by

φ′(x) =
φ(x)

σ(x)

Moreover, the domain may be extended to
⋃
Ui by simply setting φ′ = 0 outside of Ui.

1

Then the collection Φ = {φ′ : φ ∈ Φj , j ∈ N} satisfies conditions 1 and 3 for being a
partition of unity. For condition 2, suppose x ∈ Ai. Then for each j ≤ i + 2, there exists
an open set Vj containing x such that all but finitely many φ ∈ Φj are zero on Vj . Let
V = V1∪ . . .∪Vi+2, which is open. By the argument above, φ(x) = 0 if φ ∈ Φj for j > i+2,
so there are only finitely many nonzero φ at x, and thus only finitely many φ′ are nonzero
at x.

So Φ is a partition of unity. Let φ′ ∈ Φ. Then φ ∈ Φj for some j. Φj is subordinate to Oj ,
so there exists O′ = O ∩ (intAj+1 \Aj−2) ∈ Oj such that φ is zero outside of a compact set
contained in O′ ⊆ O. Then φ′ is also zero outside this set (assured since U ⊆ intAj+1 ⊆ A,
and φ′ is defined on A ⊆ U). So Φ′ is subordinate to O.

Case 3: A is open.

Let d(x, ∂A) be the distance from x to ∂A as defined in Exercise 1-21 part a). Define

Ai : {x : |x| ≤ i, d(x, ∂A) ≥ 1

i
}

For any x ∈ A, |x| < M for some M ∈ N, and d(x, ∂A) ≥ 1
N for some other N ∈ N since

A is open. So x ∈ Ai for some i and thus A =
⋃∞
i=1Ai. So A is of the type considered in

Case 2.

Case 4: A is arbitrary.

Let B =
⋃
O∈O O. Then apply Case 3 to get a partition of unity Φ for B subordinate to O.

Then this is also a partition of unity for A.

1For details, see my answer here
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Remark 3.1

For any C ⊆ A, if Φ is a partition of unity for A, then for x ∈ C, there exists Vx
open containing x such that only finitely many φ are nonzero on Vx. Then these Vx
are an open cover of C, so by compactness we only need finitely many and thus only
finitely many φ are nonzero on C. In particular, if A is compact then we only need
finitely many φ (this was already proved in Case 1).

Remark 3.2

Note that our proof shows that we may demand that our partition of unity is count-
able.

Similarly to compactness, partitions of unity will allow us to make local constructions
and combine them into a global result. We will demonstrate this by extending our definition
of the integral to general open sets.

Definition 3.15

Let A ⊆ Rn be open and let O be an open cover of A. O is said to be admissible
if O ⊆ A for each O ∈ O (equivalently, if

⋃
O∈O O = A).

Let Φ be a partition of unity for an open set A ⊆ Rn (not necessarily bounded) subor-
dinate to an admissible open cover O. Suppose also that f : A→ R is bounded in an open
set around each point of A, and that its set of discontinuities has measure zero. Since φ has
compact support, let Cφ ⊆ A be a closed rectangle such that φ = 0 outside of Cφ (Cφ ⊆ A is
guaranteed since Φ is subordinate to O, which is admissible). Since f is bounded in an open
neighborhood around each point, we apply compactness to pick a finite number of them and
conclude f is boudned on Cφ. |f | is continuous whenever f is, so it is discontinuous on a set
of measure zero and thus |f | is integrable on Cφ. φ is also continuous, so

∫
Cφ
φ|f | exists.

Now, by Remark 3.2, Φ is countable. So we may consider the series∑
φ∈Φ

∫
Cφ

φ|f |

Suppose this series converges. Since 0 ≤ φ ≤ 1, φ|f | = |φf |, and thus by Exercise 3-6,∣∣∣∣∣
∫
Cφ

φf

∣∣∣∣∣ ≤
∫
Cφ

|φf | =
∫
Cφ

φ|f |

so the series ∑
φ∈Φ

∣∣∣∣∣
∫
Cφ

φf

∣∣∣∣∣
converges absolutely. This means it is independent of our ordering of Φ. Moreover, we will
show that this value is also independent of our choices of Φ and O, allowing us to define
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this value without reference to any specific cover or partition of unity. Noe that this is only
the case if the series

∑
φ∈Φ

∫
Cφ
φ|f | converges; the convergence of

∑
φ∈Φ |

∫
Cφ
φf | is not a

sufficient condition.

Definition 3.16

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Let Φ be a partition of
unity for A subordinate to an admissible open cover O of A. For each φ ∈ Φ, let
Cφ ⊆ A be a closed rectangle such that φ = 0 outside of Cφ. Then if the series∑

φ∈ϕ

∫
Cφ

φ|f |

converges, then we say that f is extended integrable relative to Φ. Moreover, we
define the extended integral of f on A relative to Φ to be

ext
Φ

∫
A

f =
∑
φ∈ϕ

∫
Cφ

φf

Theorem 3.14

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Let Φ be a partition
of unity for A subordinate to an admissible open cover O of A. Let Ψ be another
partition of unity for A subordinate to another admissible open cover O′ of A. If f
is extended integrable relative to Φ, then it is extended integrable relative to Ψ, and

ext
Φ

∫
A

f =
∑
φ∈Φ

∫
Cφ

φf =
∑
ψ∈Ψ

∫
Cψ

ψf = ext
Ψ

∫
A

f

Proof. For each φ ∈ Φ, Cφ is compact, so by Remark 3.1, only finitely many ψ ∈ Ψ are
nonzero on Cφ. Moreover, the finite sum

∑
ψ∈Ψ ψ = 1 on Cφ ⊆ A (the subset follows since

O is admissible), so we have

∑
φ∈Φ

∫
Cφ

φ|f | =
∑
φ∈Φ

∫
Cφ

φ|f |

∑
ψ∈Ψ

ψ

 =
∑
φ∈Φ

∫
Cφ

∑
ψ∈Ψ

φψ|f | =
∑
φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f |

Now, since the left sides series converges by assumption, the right side series does as well.
Since |φψ|f || = φψ|f |, ∑

φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f |
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converges absolutely and thus we may switch the order of the sums:∑
φ∈Φ

∑
ψ∈Ψ

∫
Cφ

φψ|f | =
∑
ψ∈Ψ

∑
φ∈Φ

∫
Cφ

φψ|f |

Now, since ψ and φ are both zero outside of a compact set, if we let R be a rectangle
containing both Cφ and Cψ, we have∫

Cφ

φψ|f | =
∫
R

φψ|f | =
∫
Cψ

φψ|f |

So ∑
ψ∈Ψ

∑
φ∈Φ

∫
Cφ

φψ|f | =
∑
ψ∈Ψ

∑
φ∈Φ

∫
Cψ

φψ|f |

By the argument we made at the beginning, the sum
∑
φ∈Φ is finite and equal to 1 on Cψ,

so we have ∑
ψ∈Ψ

∑
φ∈Φ

∫
Cψ

φψ|f | =
∑
ψ∈Ψ

∫
Cψ

ψ|f |

So we have shown that ∑
φ∈Φ

∫
Cφ

φ|f | =
∑
ψ∈Ψ

∫
Cψ

ψ|f |

so the right side converges, and thus f is extended integrable relative to Ψ. Repeating this
argument with f substituted for |f | shows that

ext
Φ

∫
A

f =
∑
φ∈Φ

∫
Cφ

φf =
∑
ψ∈Ψ

∫
Cψ

ψf = ext
Ψ

∫
A

f

By Theorem 3.14, our choice of partition is irrelevant when considering extended inte-
grability and the value of the integral, so long as f is extended integrable with respect to
some partition. Thus we may define this without reference to a particular partition.

Definition 3.17

Let A ⊆ Rn be open. Suppose f : A → R is bounded in an open set around each
point of A, and its set of discontinuities has measure zero. Then f is extended
integrable if it is extended integrable relative to some partition of unity Φ, and the
extended integral of f on A is

ext

∫
A

f = ext
Φ

∫
A

f

Theorem 3.15

If A ⊆ Rn is open and bounded, f : A→ R is bounded, and its set of discontinuities
is a set of measure zero, then f is extended integrable.
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Proof. Let Φ = {φ1, φ2, . . .} be a countable (by Remark 3.2) partition of unity subordinate
to some admissible cover O. Suppose |f | ≤M on A. Then let

Sk =

k∑
i=1

∫
Cφi

φi|f |

be the kth partial sum of the corresponding infinite series. Since φi|f | ≥ 0,∫
Cφi

φi|f | ≥ 0

for each i, and thus (Sk) is increasing. Let B be some rectangle containing A. Since Φ is
subordinate to an admissible cover, Cφ ⊆ A ⊆ B, and thus∫

B

φ =

∫
Cφ

φ

and thus

Sk =

k∑
i=1

∫
Cφi

φi|f | ≤
k∑
i=1

M

∫
Cφi

φ =M

∫
B

k∑
i=1

φ ≤M

∫
B

1 =Mv(B)

which is constant. So (Sk) is increasing and bounded above, so it is convergent and thus f
is extended integrable.

Theorem 3.16

Let A ⊆ Rn be open and Jordan-measurable. Let f : A → R be bounded, and
suppose its set of discontinuities has measure zero. Then∫

A

f = ext

∫
A

f

Proof. Note that since A is Jordan-measurable, it is bounded and thus f is extended inte-
grable by Theorem 3.15.

Let ε > 0, and let Φ be an arbitrary partition of unity subordinate to an admissible open
cover O. Let M be such that |f | ≤ M . Then by Exercise 3-22, there exists a compact
Jordan-measurable set C ⊆ A such that∫

A\C
1 <

ε

M

By Remark 3.1, the subpartition Φ′ of those φ ∈ Φ which are nonzero on C is finite. Then
we have ∣∣∣∣∫

A

f − ext

∫
A

f

∣∣∣∣ =
∣∣∣∣∣∣
∫
A

f −
∑
φ∈Φ′

∫
Cφ

φf

∣∣∣∣∣∣
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Since O is admissible, Cφ ⊆ A for each φ ∈ Φ′ and thus∫
A

φf =

∫
Cφ

φf

so that ∣∣∣∣∣∣
∫
A

f −
∑
φ∈Φ′

∫
Cφ

φf

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
A

f −
∫
A

∑
φ∈Φ′

φf

∣∣∣∣∣∣ ≤
∫
A

|f |

1−
∑
φ∈Φ′

φ


Now, we have ∑

φ∈Φ

φ = 1

on A, so we may write

∫
A

|f |

1−
∑
φ∈Φ′

φ

 =

∫
A

|f |

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′

 ≤M

∫
A

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′


Let Ψ be the collection of φ ∈ Φ such that φ /∈ Φ′. In other words, Ψ is the collection of φ
which are zero on C. Then

M

∫
A

∑
φ∈Φ

φ−
∑
φ′∈Φ′

φ′

 =M

∫
A

∑
ψ∈Ψ

ψ

Since the ψ ∈ Ψ are zero on C, they are only nonzero on A \ C. Thus

M

∫
A

∑
ψ∈Ψ

ψ ≤M

∫
A\C

∑
ψ∈Ψ

ψ ≤M

∫
A\C

1 < ε

So ∫
A

f = ext

∫
A

f

3.6 Change of Variables

Consider the ”u-substitution” strategy employed in single variable calculus. If u : [a, b] → R
is a continuously differentiable function and f : R → R is continuous, then let F be such
that F ′ = f . By the chain rule, (F ◦ u)′ = (f ◦ u)u′. Thus∫ u(b)

u(a)

f =

∫ u(b)

u(a)

F ′ = F (u(b))− F (u(a)) =

∫ b

a

(F ◦ u)′ =
∫ b

a

(f ◦ u)u′

For instance, this strategy could be used computationally as follows:∫ 3

0

2x sin(x2) dx =

∫ 9

0

sinudu = cos 0− cos 9 = 1− cos 9
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Claim

Let u : [a, b] → R be continuously differentiable and injective. Let f : R → R be
continuous. Then ∫

u(a,b)

f =

∫
(a,b)

(f ◦ u)|u′|

Proof. Since u is continuous and injective, it is strictly monotone. Suppose it is
strictly increasing. Then |u′| = u′ and u(b) > u(a), so u(a, b) = (u(a), u(b)) and the
claim follows directly from the equality above.

If u is decreasing, then |u′| = −u′, and u(b) < u(a), so that u(a, b) = (u(b), u(a)).
Thus ∫

u(a,b)

f =

∫ u(a)

u(b)

f = −
∫ u(b)

u(a)

f =

∫ b

a

−(f ◦ u)u′ =
∫ b

a

(f ◦ u)|u′|

This method is invaluable for computational calculus, which motivates the development
of an equivalent technique in multiple dimensions. We will do so by first proving it for linear
transformations.

Lemma 3.17

Let A ⊆ Rn be open and let u : A→ Rn be injective and continuously differentiable
with detu′(x) ̸= 0 on A. Suppose there exists an admissible cover O for A such that
for all U ∈ O and f : U → R integrable it is the case that

ext

∫
u(U)

f = ext

∫
U

(f ◦ u)|detu′|

Then

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu′|

Proof. The collection U = {u(O)}O∈O is an open cover for u(A), so we may pick a partition
of unity Φ for u(A) subordinate to U . Suppose that Uφ ∈ U contains Cφ for each φ. Then
we have

ext

∫
u(A)

f =
∑
φ∈Φ

∫
Uφ

φf

=
∑
φ∈Φ

∫
u−1(Uφ)

(φ ◦ u)(f ◦ u)|detu′|

=
∑
φ∈Φ

∫
A

(φ ◦ u)(f ◦ u)|detu′|
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Let Ψ be the partition of unity for A given by {φ ◦ u}φ∈Φ. Then Ψ is thus subordinate to
O. Then∑

φ∈Φ

∫
A

(φ ◦ u)(f ◦ u)|detu| =
∑
ψ∈Ψ

∫
A

ψ(f ◦ u)|detu′| = ext

∫
A

(f ◦ u)|detu|

Lemma 3.18

Let A ⊆ Rn be open and let u : A → Rn be linear, with detu(x) ̸= 0 on A. Then if
f : u(A) → R is integrable, we have

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu|

Proof. First note that by Exercise 3-35, if f is the constant function 1 and U is an open
rectangle, then ∫

u(U)

1 = v(u(U)) = |detu|v(U) = |detu|
∫
U

1 =

∫
U

|detu|

We can make an analogous argument for u−1, so for any open rectangle U we have∫
u−1(U)

1 =

∫
U

|detu−1| =⇒
∫
U

1 =

∫
u−1(U)

|detu|

Now suppose f is arbitrary. Let V ⊆ u(A) be a rectangle, and let P be a partition of V .

L(f,P) =
∑
S∈P

v(S)mS(f)

=
∑
S∈P

mS(f)

∫
S

1

=
∑
S∈P

mS(f)

∫
u−1(intS)

|detu|

=
∑
S∈P

∫
u−1(intS)

mS(f)|detu|

For each S ∈ P, define f |S : S → R to be the constant function f |S(x) = mS(f). Then we
have ∑

S∈P

∫
u−1(intS)

mS(f)|detu| =
∑
S∈P

∫
u−1(intV )

(f |S ◦ u)|detu|

≤
∑
S∈P

∫
u−1(intS)

(f ◦ u)|detu|

≤
∫
u−1(V )

(f ◦ u)|detu|
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So
∫
u−1(V )

(f ◦ u)|detu| is an upper bound for all L(f,P), but
∫
V
f is the least such upper

bound, so we have ∫
V

f ≤
∫
u−1(V )

(f ◦ u)|detu|

An analogous argument shows the reverse inequality, so we conclude that∫
V

f =

∫
u−1(V )

(f ◦ u)|detu|

for every V ⊆ u(A) and any f .

Since A is open, and u is a continuous injection, u(A) is open. So for each α ∈ u(A), we
may pick Vα ⊆ u(A) containing u(A). Then the collection V = {Vα}α∈u(A) is an admissible
open cover for u(A), and the hypothesis of Lemma 3.17 applies. So we conclude that

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu|

We now progress to the general case. To do so, we will need to replace u with u′ (which
are equal in the linear case).

Theorem 3.19

Let A ⊆ Rn be open and let u : A → Rn be one-to-one and continuously dif-
ferentiable. Moreover, suppose that detu′(x) ̸= 0 on A. Then for any integrable
f : u(A) → R, we have

ext

∫
u(A)

f = ext

∫
A

(f ◦ u)|detu′|

We first prove one simplifying lemma.

Lemma 3.20

Suppose that the conclusion of Theorem 3.19 holds for two change-of-variable func-
tions g : A → Rn and h : B → Rn. Moreover, assume that g(A) ⊆ B. Then the
theorem holds for h ◦ g.

Proof. We have

ext

∫
(h◦g)(A)

f = ext

∫
g(A)

(f ◦ h)|deth′|

= ext

∫
A

(f ◦ h ◦ g)[|deth′| ◦ g]|det g′|

= ext

∫
A

(f ◦ (h ◦ g))|det(h ◦ g)′|

Returning to the main proof,
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Proof of Theorem 3.19. We induct on n. For the base case n = 1, we can form an admissible
open cover of A by open intervals, and the result follows from the discussion beginning this
section combined with Lemma 3.17.

Suppose the theorem is proved for n − 1. Then for n, we will attempt to find an open set
Uα ⊆ A containing α for each α ∈ A such that∫

u(Uα)

f =

∫
Uα

(f ◦ u)|detu′|

Then the theorem follows from Lemma 3.17. Thus, fix some α ∈ A. Then

(Du(α)−1 ◦ u)′(α) = u(α)−1

′ u′(α) = I

Note that Lemma 3.18 implies that the theorem is true for Du(α)−1. If the theorem is true
for (Du(α)−1 ◦ u), then it follows from Lemma 3.20 that it is true for u. So we may assume
that Du(α) = id.

Define the function h : A→ Rn by

h(x) = (u1(x), . . . , un−1(x), xn)

Then h′(α) = I. h is continuously differentiable, so there exists an open set U ′ ⊆ A
containing α where h is injective and invertible. Then define k : h(U ′) → R by

k(x) = (x1, . . . , xn−1, un(h
−1(x)))

so that u = k ◦ h. Both of these functions only change at most n − 1 variables, so we will
be able to apply the inductive hypothesis. Afterward, we would now like to apply Lemma
3.20; however, we cannot be assured that k is injective with k′ invertible.

To remedy this, note that

(gn ◦ h−1)′(α) = (gn)′(h−1(h(α))) [h′(h−1(h(α)))]−1︸ ︷︷ ︸
Inverse Function Thm

= (gn)′(α)[h′(α)]−1 = (gn)′(α)

So Dn(g
n ◦ h−1)(h(α)) = Dng

n(α) = 1, and thus k′(h(α)) = I. So we can find an open set
V ⊆ h(U) containing h(α) where k is injective and k′ is invertible. We can then restrict h
to U = k−1(V ), and then h, k satisfy the hypotheses of Lemma 3.20.

We now prove that the theorem applies to h. The proof for k is easier. Pick an open
rectangle W ⊆ U , and suppose W = D × [an, bn], with D ⊆ Rn−1. Because h does not
change the n-th coordinate, Fubini’s Theorem gives∫

h(W )

1 =

∫
[an,bn]

(∫
h(D×{xn})

1 dx1 . . . dxn−1

)
dxn

For each xn, define hxn : D → Rn−1 by

hxn(x1, . . . , xn−1) = h(u1(x1, . . . , xn), . . . , un−1(x1, . . . , xn))
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so that
deth′xn(x1, . . . , xn−1) = deth′(x1, . . . , xn) ̸= 0

Moreover, hxn is injective, so the inductive hypothesis applies. We also have∫
h(D×{xn})

1 dx1 . . . dxn−1 =

∫
hxn (D)

1

Then using the inductive hypothesis, we have∫
h(W )

1 =

∫
[an,bn]

(∫
h(D×{xn})

1 dx1 . . . dxn−1

)
dxn

=

∫
[an,bn]

(∫
hxn (D)

1

)
dxn

=

∫
[an,bn]

(∫
D

|deth′xn |
)
dxn

=

∫
[an,bn]

(∫
D

|deth′(x1, . . . , xn)|
)
dxn

=

∫
W

|deth′|

From the proof for Lemma 3.18, it is sufficient to prove the theorem for the constant function
1. So we conclude that the theorem holds for h. A similar argument holds for k. By Lemma
3.20, it holds for u.

We will now prove a simple version of an important theorem.

Theorem 3.21: Sard’s Theorem

Suppose g : A→ Rn is continuously differentiable, with A ⊆ Rn open. Let B = {x ∈
A : det g′(x) = 0} be the set of critical values of g. Then g(B) has measure zero.

Proof. Suppose that U ⊆ A is a closed n-cube with side length ℓ. Since U is compact, each
Djg

i is uniformly continuous on U . Thus there exists N large enough such that when U is
divided into Nn subcubes, then for any x, y which are both in the same subcube and any
i, j we have

|Djg
i(y)−Djg

i(x)| < ε

n2

Fix some subcube S and some x ∈ S. Define f(z) = Dg(x)(z) − g(z), so that its partial
derivatives are bounded:

|Djf
i(z)| = |Djg

i(x)−Djg
i(z)| < ε

n2

Then by Lemma 2.10, for any y ∈ S we have

|Dg(x)(y − x)− g(y) + g(x)| = |f(y)− f(x)| < ε|y − x| ≤ ε
√
n
ℓ

N
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We can repeat this for each x, so this holds whenever x, y are in the same subcube. If
S∩B ̸= ∅, then fix x ∈ S∩B. Then we have det g′(x) = 0, soDg(x)(S) is a subset of an n−1
dimensional subspace V of Rn. Then every point {g(y)− g(x) : y ∈ S} is contained within
ε
√
n(ℓ/N) of V , meaning that g(S) is contained within ε

√
nℓ/N of V + g(x). Moreover,

each Djg
i is uniformly continuous on S, so they are boudned by some M . Then by Lemma

2.10, we have

|g(x)− g(y)| < n2M |x− y| ≤ n2M
√
n
ℓ

N

Thus g(S) lies within a cylinder with height 2ε
√
nℓ/N and base given by a n−1-sphere with

radius n2M
√
nℓ/N , which has volume bounded by C(ℓ/N)nε for an appropriate constant

C. Then the total volume of these cylinders (which covers g(U ∩ B) for each S is Cℓnε.
So g(U ∩ B) has measure zero. Now, we can produce a cover of A (countable by Exercise
3-13) and repeat this process, so g(B) is the countable union of measure zero sets, and thus
measure zero.

Sard’s Theorem, among many other applications, allows us prove Theorem 3.19 without
the assumption detu′(x) ̸= 0. This is the content of Exercise 3-39.
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Chapter 4

Integration on Chains

4.1 Algebraic Preliminaries

In this chapter, we will begin to develop our theory of integration over objects with richer
structure than pure subsets of Rn. This will allow us to define integrals over parameterized
objects, such as line integrals and surface integrals, and we will prove a version of Stokes’
Theorem for this setting. We will also set th egroundwork for the development of a similar
theory for manifolds in Chapter 5.

Definition 4.1

Let V be a real vector space, and let V k = V × . . . × V k times. A multilinear
function T : V k → R is a function such that, for each 1 ≤ i ≤ k and each v =
(v1, . . . , vk) ∈ V k the function T iv : V → R defined by

T iv(y) = T (v1, . . . , y︸︷︷︸
i

, . . . , vk)

is linear. Such a function is also called a k-tensor on V .

Definition 4.2

The set of all k-tensors on a fixed vector space V is denoted Jk(V ). Jk(V ) is a real
vector space if the operations are defined as

(S + T )(v1, . . . , vk) = S(v1, . . . , vk) + T (v1, . . . , vk)

(aS)(v1, . . . , vk) = a(S(v1, . . . , vk))
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Definition 4.3

Suppose S ∈ Jk(V ) and T ∈ Jk(V ). Then the tensor product of S and T is a
k + l-tensor S ⊗ T defined by

(S ⊗ T )(v1, . . . , vk, vk+1, . . . , vk+l) = S(v1, . . . , vk) · T (vk+1, . . . , vk+l)

Note that the tensor product is clearly not commutative. Because tensors are maps into
R, we may use properties of R to derive similar properties for tensors.

Proposition 4.1

The following are properties of the tensor product:

1. (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T

2. S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2

3. (aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T )

4. S ⊗ (T ⊗ U) = (S ⊗ T )⊗ U

Proof. 1. Let S1, S2 ∈ Jk(V ) and T ∈ Jl(V ). Let v = (v1, . . . , vk+l) ∈ V k+l. Let
vk = (v1, . . . , vk) and v

l = (vk+1, . . . , vk+l). Then

((S1 + S2)⊗ T )(v) = (S1 + S2)(v
k) · T (vl)

= (S1(v
k) + S2(v

k)) · T (vl)
= S1(v

k) · T (vl) + S2(v
k) · T (vl)

= (S1 ⊗ T )(v) + (S2 ⊗ T )(v)

= (S1 ⊗ T + S2 ⊗ T )(v)

2. Let S ∈ Jk(V ) and T1, T2 ∈ Jl(V ). Using the same notation,

(S ⊗ (T1 + T2))(v) = S(vk) · (T1 + T2)(v
l)

= S(vk) · (T1(vl) + T2(v
l))

= S(vk) · T1(vl) + S(vk) · T2(vl)
= (S ⊗ T1)(v) + (S ⊗ T2)(v)

= (S ⊗ T1 + S ⊗ T2)(v)

3. Let a ∈ R, S ∈ Jk(V ), and T ∈ Jl(V ). Then

((aS)⊗ T )(v) = (aS)(vk) · T (vl)
= a(S(vk) · T (vl))
= a(S ⊗ T (v))

= S(vk) · a(T (vl))
= (S ⊗ (aT ))(v)
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4. Let S ∈ Jk(V ), T ∈ Jl(V ), and U ∈ Jm(V ). Let v = (v1, . . . , vk+l+m), and let
vk = (v1, . . . , vk), v

l = (vk+1, . . . , vk+l), and v
m = (vk+l+1, . . . , vk+l+m). Then

(S ⊗ (T ⊗ U))(v) = S(vk) · (T ⊗ U)(vl, vm)

= S(vk) · (T (vl) · U(vm))

= (S(vk) · T (vl)) · U(vm)

= (S ⊗ T )(vk, vl) · U(vm)

= ((S ⊗ T )⊗ U)(v)

Since the tensor product is associative, we will drop the parentheses in general. Note
that we already know how to describe J1(V ): since it is the set of all linear maps from
V → R, it is precisely the dual space V ∗. We can use this to help us understand higher
order Jk(V ).

Theorem 4.2

Let v1, . . . , vn be a basis for V . Let φ1, . . . , φn be the natural dual basis given by
φi(vj) = δij . Then the set of k-tensors of the form

φi1 ⊗ . . .⊗ φik

where 1 ≤ ij ≤ n for each index, is a basis of Jk(V ).

Proof. We first show that this collection spans Jk(V ).

Let T ∈ Jk(V ). Suppose that w1, . . . , wk ∈ V , and wi =
∑n
j=1 ai,jvj . Then

T (w1, . . . , wk) = T (

n∑
j1=1

a1,j1vj1 , w2, . . . , wk)

=

n∑
j1=1

a1,j1T (vj1 , w2, . . . , wk)

...

=

n∑
j1=1

. . .

n∑
jk=1

a1,j1 · . . . · ak,jkT (vj1 , . . . , vjk) (∗)

Now, we have

φi1 ⊗ . . .⊗ φik(vj1 , . . . , vjk) = δi1,j1 · . . . · δik,jk =

{
1, i1 = j1, . . . , ik = jk

0
(∗∗)
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Since φi1 ⊗ . . .⊗ φik ∈ Jk(V ), we can use (∗) and (∗∗) to conclude that

φi1 ⊗ . . .⊗ φik(w1, . . . , wk) =

n∑
j1=1

. . .

n∑
jk=1

a1,j1 · . . . · ak,jk(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vjk)

=

n∑
j1=1

. . .

n∑
jk−1=1

a1,j1 · . . . · ak−1,jk−1
ak,ik(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vik)

=
...

= a1,i1 · . . . · ak,ik

Substituting into (∗), we have

T (w1, . . . , wk) =

n∑
j1=1

. . .

n∑
jk=1

T (vj1 , . . . , vjk)(φj1 ⊗ . . .⊗ φjk)(w1, . . . , wk)

So

T =

n∑
j1=1

. . .

n∑
jk=1

T (vj1 , . . . , vjk)(φj1 ⊗ . . .⊗ φjk)

so T is a linear combination of the φj1 ⊗ . . .⊗ φjk .

To show that the φi1 ⊗ . . .⊗ φik are linearly independent, suppose that

n∑
i1=1

. . .

n∑
ik=1

ai1,...,ik(φi1 ⊗ . . .⊗ φik) = 0

Then plugging in some combination of basis vectors (vj1 , . . . , vjk), by (∗∗) we have

0 =

n∑
i1=1

. . .

n∑
ik=1

ai1,...,ik(φi1 ⊗ . . .⊗ φik)(vj1 , . . . , vjk) = aj1,...,jk

Repeating this with each combination of basis vectors shows that the linear combination is
trivial. So the φi1 ⊗ . . .⊗ φik are linearly independent and thus a basis.

Recall that if T : V → W is a linear transformation, then its adjoint T ∗ : W ∗ → V ∗ is
the linear operator defined such that for any Φ ∈ W ∗ it is the case that T ∗(Φ) = Φ ◦ T .
Then we can extend this notion to arbitrary Jk(V ).

Definition 4.4

Let f : V →W be linear. Then define the (k-tensor) pullback of f to be the linear
transformation f∗ : Jk(W ) → Jk(V ) by

(f∗(T ))(v1, . . . , vk) = T (f(v1), . . . , f(vk))

where T ∈ Jk(W ) and v1, . . . , vk ∈ V .
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Proposition 4.3

If S ∈ Jk(V ) and T ∈ Jl(V ), and f : V →W , then

f∗(S ⊗ T ) = f∗S ⊗ f∗T

Proof. Let vk = (v1, . . . , vk) ∈ V k and vl = (vk+1, . . . , vk+l) ∈ V l. Then

f∗(S ⊗ T )(vk, vl) = (S ⊗ T )(f(v1), . . . , f(vk), f(vk+1), . . . , f(vk+l))

= S(f(v1), . . . , f(vk)) · T (f(vk+1), . . . , f(vk+l))

= f∗S(vk) · f∗T (vl)
= (f∗S ⊗ f∗T )(vk, vl)

An example of a k-tensor which is not a linear functional is the dot product on Rn, which
is a 2-tensor. We can use this language to make an equivalent definition for arbitrary real
inner products.

Definition 4.5

An inner product on a real vector space V is a 2-tensor T ∈ J2(V ) which satisfies
the following:

• T (v, w) = T (w, v) (symmetric)

• T (v, v) > 0 if v ̸= 0 (positive definite)

We can similarly reproduce some theorems from linear algebra.

Definition 4.6

A basis v1, . . . , vn for a real vector space V is orthonormal with respect to an inner
product T ∈ J2(V ) if T (vi, vj) = δij .

Theorem 4.4

For any inner product T on V , there is an orthonormal basis with respect to T .

Proof. Pick a basis and apply Gram-Schmidt.

Corollary 4.5

If T is an inner product on V , then there exists an isomorphism f : Rn → V such
that T (f(x), f(y)) = x · y, or equivalently so that f∗T is the dot product on Rn.
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Proof. Let v1, . . . , vk be an orthonormal basis for T . Define f by f(ei) = vi. Then if
x = (a1, . . . , an) and y = (b1, . . . , bn), we have

T (f(x), f(y)) = T (

n∑
i=1

aivi,

n∑
j=1

bjvj)

=

n∑
i=1

n∑
j=1

aibjT (vi, vj)

=

n∑
i=1

n∑
j=1

aibjδij

=

n∑
i=1

aibi

= x · y

Suppose we consider a square n × n matrix as a vector whose entries are column vec-
tors. That is, we will associate Mn×n(R) with (Rn)n. Then det : Mn×n(R) → R may be
considered as a k-tensor for Rn. Recall that one definition of the determinant defines it as
the unique alternating multilinear map with det I = 1. Let us attempt to generalize this
notion.

Definition 4.7

A k-tensor T ∈ Jk(V ) is alternating if, for every pair i < j, we have

T (v1, . . . , vk) = −T (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vk)

In other words, switching the role of two entries also switches the sign of T .

Definition 4.8

The set of all alternating k-tensors on V is denoted Ak(V ).a

aSpivak uses the notation Λk(V ), but writes in the Addenda that Ωk(V ) should be used instead.
This definition, if V is finite dimensional, is naturally isomorphic to

∧
(V ∗). See here for why neither

of these are quite accurate.

One can quickly verify that Ak(V ) is a subspace of Jk(V ). The close relationship of
alternating tensors with signed quantities will help us to define oriented objects. Due to
this, it is of interest to us to investigate how to consistently represent elements of Ak(V ).

Recall that the sign of a permutation σ, denoted sgnσ, is +1 if σ is even (that is, it is
composed of an even number of transpositions), and −1 if it is odd.
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Definition 4.9

Let T ∈ Jk(V ). Then Alt(T ) ∈ Jk(V ) is defined by

Alt(T )(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k))

We can see Alt as a kind of projection from Jk(V ) into Ak(V ):

Theorem 4.6

Let V be a real vector space.

1. If T ∈ Jk(V ), then Alt(T ) ∈ Ak(V ).

2. If ω ∈ Ak(V ), then Alt(ω) = ω.

3. If T ∈ Jk(V ), then Alt(Alt(T )) = Alt(T ).

Proof. 1. Fix i, j, and let (i, j) be the transposition of i and j. For each σ ∈ Sk, write
σ′ = σ · (i, j). We have Sk(i, j) = Sk. So

Alt(T )(v1, . . . , vj , . . . , vi, . . . , vk) = Alt(T )(v(i,j)(1), . . . , v(i,j)(k))

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ((i,j)(1)), . . . , vσ((i,j)(k)))

=
1

k!

∑
σ∈Sk

sgnσ · T (vσ′(1), . . . , vσ′(k))

=
1

k!

∑
σ′∈Sk·(i,j)

− sgnσ′ · T (vσ′(1), . . . , vσ′(k))

= − 1

k!

∑
σ∈Sk

sgnσ · T (vσ(1), . . . , vσ(k))

= −Alt(T )(v1, . . . , vk)

2. Let ω be alternating. For a transposition σ = (i, j), we have

ω(vσ(1), . . . , vσ(k)) = −ω(v1, . . . , vk) = sgnσ · ω(v1, . . . , vk) (∗)

For arbitrary permutations σ, σ can be decomposed into a product of transpositions
σ1, . . . , σm. Since sgn(σ1 ◦ . . .◦σm) = sgnσ1 · . . . · sgnσm, we simply apply (∗) m times
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to see that (∗) holds when σ is arbitrary. Now,

Alt(ω)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

ω(vσ(1), . . . , vσ(k))

=
1

k!

∑
σ∈Sk

sgnσ · sgnσ · ω(v1, . . . , vk)

=
1

k!

∑
σ∈Sk

ω(v1, . . . , vk)

= ω(v1, . . . , vk)

3. Follows from 1) and 2).

One way of describing alternating tensors would be to produce a basis of Ak(V ). Note
that we cannot necessarily apply Theorem 4.2. This is because if ω ∈ Ak(V ) and η ∈ Ak(V ),
it is not necessarily the case that ω⊗ η is alternating (consider a transposition which swaps
entries in the ω and η domains). Thus, we will need to define an analogous product which
takes alternating tensors to alternating tensors.

Definition 4.10

Let ω ∈ Ak(V ) and η ∈ Al(V ). Then the wedge product of ω and η, denoted
ω ∧ η ∈ Ak(V ), is defined by

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η)

We can prove properties of ∧ using similar methods as we did for ⊗.

Proposition 4.7

Let ω, ω1, ω2 ∈ Ak(V ), η, η1, η2 ∈ Al(V ), and a ∈ R. Then

1. (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η

2. ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2

3. (aω) ∧ η = ω ∧ (aη) = a(ω ∧ η)

Proof. 1. Let vk = (v1, . . . , vk) ∈ V k and vl = (vk+1, . . . , vk+l) ∈ V l. Write σ(vk, vl) =
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(vσ(1), . . . , vσ(k+l)). Then

[(ω1 + ω2) ∧ η](vk, vl) =
(k + l)!

k!l!
Alt((ω1 + ω2)⊗ η)(vk, vl)

=
(k + l)!

k!l!
Alt(ω1 ⊗ η + ω2 ⊗ η)(vk, vl)

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω1 ⊗ η + ω2 ⊗ η)(σ(vk, vl))

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω1 ⊗ η(σ(vk, vl)) + ω2 ⊗ η(σ(vk, vl)))

=
(k + l)!

k!l!
(Alt(ω1 ⊗ η) + Alt(ω2 ⊗ η))

= ω1 ∧ η + ω2 ∧ η

2. Analogous.

3. We prove the first and third expressions are equal. The other equality is proved
analogously. Then

((aω) ∧ η)(vk, vl) = (k + l)!

k!l!
Alt((aω)⊗ η)(vk, vl)

=
(k + l)!

k!l!
Alt(a(ω ⊗ η))(vk, vl)

=
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · a(ω ⊗ η)(σ(vk, vl))

= a
(k + l)!

k!l!
· 1

(k + l)!

∑
σ∈Sk

sgnσ · (ω ⊗ η)(σ(vk, vl))

= a
(k + l)!

k!l!
Alt(ω ⊗ η)(vk, vl)

= a(ω ∧ η)(vk, vl)

We can also take advantage of the alternating nature of these tensors to prove additional
properties.

Proposition 4.8

Let ω ∈ Ak(V ) and η ∈ Al(V ). Let f : V → V be linear. Then

1. ω ∧ η = (−1)kl(η ∧ ω)

2. f∗(ω ∧ η) = f∗(ω) ∧ f∗(η).

Proof. 1. Let v = (v1, . . . , vk+l) ∈ V k+l. Let σ∗ ∈ Sk+l be a permutation which sends
{1, 2, . . . , k + l} to {k + l, 1, 2, . . . , k + l − 1}. Note that this can be achieved using
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k+ l−1 permutations (as (k+ l, k+ l−1) · (k+ l, k+ l−2) · . . . · (k+ l, 1)). Then (σ∗)l

is the permutation which takes {1, 2, . . . , k + l} to {k + 1, . . . , k + l, 1, . . . , k}, and

sgn(σ∗)l = (sgn(σ∗))l = ((−1)k+l−1)l = (−1)kl+l
2−l = (−1)kl

Then we have

(ω ∧ η)(v) = (k + l)!

k!l!
Alt(ω ⊗ η)(v)

=
(k + l)!

k!l!

1

(k + l)!

∑
σ∈Sk+l

sgnσ · (ω ⊗ η)(vσ(1), . . . , vσ(k), vσ(k+1), . . . , vσ(k+l))

= (−1)kl
(k + l)!

k!l!

1

(k + l)!

∑
σ·(σ∗)l

sgn(σ) · (ω ⊗ η)(vσ(k+1), . . . , vσ(k+l), vσ(1), . . . , vσ(k))

= (−1)kl
(k + l)!

k!l!

1

(k + l)!

∑
σ

sgn(σ) · (η ⊗ ω)(vσ(1), . . . , vσ(k), vσ(k+1), . . . , vσ(k+l))

= (−1)kl
(k + l)!

k!l!
Alt(η ⊗ ω)(v)

= (−1)kl(η ∧ ω)(v)

2. This follows from Proposition 4.3:

f∗(ω ∧ η) = (k + l)!

k!l!
Alt(f∗(ω ⊗ η))

=
(k + l)!

k!l!
Alt(f∗ω ∧ f∗η)

= f∗ω ∧ f∗η

We can also prove associativity of the wedge product:

Theorem 4.9

1. Let S ∈ Jk(V ), T ∈ Jl(V ), and suppose Alt(S) = 0. Then

Alt(S ⊗ T ) = Alt(T ⊗ S) = 0

2. Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗Alt(η ⊗ θ))

3. If ω ∈ Ak(V ), η ∈ Al(V ), and θ ∈ Am(V ), then

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) = (k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

Proof. 1. Let G < Sk+l be the set of all permutations which fix the k-th through k+ l-th
elements. This is a subgroup of Sk+l, so we may consider the set of right cosets Gσ′
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for σ′ ∈ Sk+l. Let vk = (v1, . . . , vk) ∈ V k, vl = (vk+1, . . . , vk+l), and let σ(v) =
(vσ(1), . . . , vσ(k+l)). Then

Alt(S ⊗ T )(vk, vl) =
1

(k + l)!

∑
σ∈Sk+l

sgnσ · (S ⊗ T )(σ(vk, vl))

=
1

(k + l)!

∑
Gσ′

∑
σ∈G

sgn(σσ′) · S(σσ′(vk)) · T (σσ′(vl))

=
1

(k + l)!

∑
Gσ′

sgn(σ′)T (σ′(vl))
∑
σ∈G

sgn(σ) · S(σσ′(vk))

Write σ′(vk) = wk. Noting that G ∼= Sk, we have∑
σ∈G

sgn(σ) · S(σσ′(vk)) =
∑
σ∈Sk

sgn(σ) · S(σ(wk)) = k! Alt(S)(wk) = 0

So Alt(S ⊗ T ) = 0 and similarly Alt(T ⊗ S) = 0.

2. Noting that Alt is linear, we know that

Alt(Alt(ω⊗ η)−ω⊗ η) = Alt(Alt(ω⊗ η))−Alt(ω⊗ η) = Alt(ω⊗ η)−Alt(ω⊗ η) = 0

Applying part 1),

0 = Alt((Alt(ω ⊗ η)− ω ⊗ η)⊗ θ) = Alt(Alt(ω ⊗ η)⊗ θ)−Alt(ω ⊗ η ⊗ θ)

so
(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ θ ⊗ η)

and the other equality is similar.

3. We have

(ω ∧ η) ∧ θ = (k + l +m)!

(k + l)!m!
Alt((ω ∧ η)⊗ θ)

=
(k + l +m)!

(k + l)!m!
Alt(

(k + l)!

k!l!
Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

As a result, we will also drop the parentheses when discussing wedge products.

Theorem 4.10

Let V be a real vector space with basis v1, . . . , vn, and let φ1, . . . , φn be the induced
dual basis. Then the collection of all k-tensors of the form

φi1 ∧ . . . ∧ φik

where 1 ≤ i1 < . . . < ik ≤ n, is a basis for Ak(V ).
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Proof. Let ω ∈ Ak(V ). Then ω ∈ Jk(V ). By Theorem 4.2, the collection of φj1 ⊗ . . .⊗ φjk
is a basis for Jk(V ) and we have

ω =
∑

aj1,...,jkφj1 ⊗ . . .⊗ φjk

Since ω is alternating, we have

ω = Alt(ω) =
∑

aj1,...,jk Alt(φj1 ⊗ . . .⊗ φjk) =
∑

aj1,...,jk
(nk)!

(k!)n
φj1 ∧ . . . ∧ φjk

Let j′1, . . . , j
′
k be a reordering of j1, . . . , jk such that j′1 ≤ . . . ≤ j′k. This may be accomplished

by a series of transpositions, each of which changes only the sign of the wedge product by
Proposition 4.8. Moreover, if any two of the φj′1 are equal, then the entire wedge product is
zero. So we may assume j′1 < . . . < j′k, and we have∑

aj1,...,jk
(nk)!

(k!)n
(−1)Mj1,...,jkφj′1 ∧ . . . ∧ φj′k

So the φj′1 ∧ . . . ∧ φj′k span Ak(V ).

To show linear independence, suppose we have some linear combination

ω =
∑

aj1,...,jkφj1 ∧ . . . ∧ φjk
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Definitions

k-tensor, 60

admissible, 49
alternating, 65

boundary, 6

Cartesian product, 5
characteristic function, 40
closed, 5
closed k-cell, 5
closed rectangle, 5
common refinement, 32
compact, 6
component functions, 9
composition, 8
content, 41
content zero, 35
continuous, 9
continuously differentiable, 21

derivative, 12
differentiable, 12

Euclidean n-space, 3
extended integrable, 50, 51
exterior, 6

functional limit, 9

image, 8
inner product, 4, 64
integrable, 33
integral, 33
interior, 6
inverse, 8
iterated integrals, 42

Jacobian matrix, 13
Jordan-measurable, 40

level curve, 28
lower integral, 42

measure zero, 34
multilinear, 60

norm, 3
Note:, 46

open, 5
open k-cell, 5
open cover, 6
open rectangle, 5
orthonormal, 64
oscillation, 10

partial derivative, 19
partition, 31
partition of unity, 46
preimage, 8
projection function, 9
pullback, 63

refinement, 32

sign, 65
standard basis, 5
subcover, 6
subordinate, 46
subrectangles, 31

tensor product, 61

upper integral, 42
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vector valued functions, 8
volume, 41

wedge product, 67

73


	Euclidean Space
	Vector Properties of Euclidean Space
	Topology of Euclidean Space
	Functions and Continuity

	Differentiation
	Basic Definitions
	Basic Theorems
	Partial Derivatives
	Derivatives
	Inverse Functions
	Implicit Functions

	Integration
	Basic Definitions
	Measure Zero and Content Zero
	Integrable Functions
	Fubini's Theorem
	Partitions of Unity
	Change of Variables

	Integration on Chains
	Algebraic Preliminaries

	Definitions

