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Introduction

This document contains notes taken for the class ORF 309: Probability and Stochastic Pro-
cesses at Princeton University, taken in the Spring 2024 semester. These notes are primarily
based on lectures and lecture notes by Professor Mark Cerenzia. Other references used in
these notes include the 2016 lecture notes by Professor Ramon van Handel, Introduction
to Probability Models by Sheldon Ross, Fundamentals of Probability by Saeed Ghahramani,
Markov Chains by J.R. Norris, and A First Course in Stochastic Processes by Samuel Karlin
and Howard Taylor. Since these notes were primarily taken live, they may contains typos
or errors.
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Chapter 1

Basic Probability Theory

1.1 Introduction

Probability theory deals with quantifying random or nondeterministic events; that is, exper-
iments where the outcome is unknown prior to conducting the experiment. We will approach
this quantification from an axiomatic approach, in order to codify what we mean by the
probability of an event. Historically, there have been two major theories of probability:

• (Objectivist) The probability of an event is the limit of the relative frequency of the
event when repeating an event infinitely (frequentist approach).

• (Subjectivist) The probability of an event is the degree of confidence which we lend
to the event happening (Bayesian approach).

However, both of these approaches are still nonrigorous and can lead to incorrect results.

Example 1.1

A fair coin is flipped twice. What is the probability of at least 1 heads?

Suppose we take the frequentist approach. Then we might define the probability
P(E) := (# of outcomes where E occurs)/(# of outcomes). But applying this defi-
nition to our problem, we might intuit that there are three possible numbers of heads
flipped: that is, 0, 1, or 2. Then we might incorrectly declare the probability of at
least 1 heads to be 2/3.

Thus, we are motivated to develop an axiomatic approach to probability that will allow
us to unambiguously develop a theory of probability, and allow us to identify when our
intuition is and is not correct.

1.2 Axioms of Probability

To begin developing theory that allows us to define the probability of an event, we must
first define what we mean by an event.
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Definition 1.1

A random experiment R is an experiment where all possible outcomes are known
ahead of time, but which outcome actually occurs is unknown. The sample space
ΩR of an experiment R is the set of all possible outcomes. An event is a subset of
the possible outcomes E ⊆ Ω. If, after conducting the experiment, an outcome ω
occurs, then we say E occurs if and only if ω ∈ E.

It is important to note here that ”all possible outcomes” is specifically distinct from ”ob-
servable outcomes,” that is, there may be something about the experiment which prevents
us from differentiating multiple outcomes or observing if an outcome has occurred. This
does not change our definition here. In order to quantify the notion of observable outcomes,
we need a new structure:

Definition 1.2

A σ-algebra F is a collection of subsets of Ω satisfying:

• Ω ∈ F

• A ∈ F =⇒ Ac ∈ F (the complement of A is Ac := Ω \A)

• A1, A2, . . . ∈ F =⇒
⋃∞

0 Ai ∈ F

In other words, a sigma algebra contains the set of all possible outcomes and is closed
under complements and countable unions.

The last notion that we need to formalize is the probability of an event. Rather than
construct a specific rule for the probability of an event, we once again axiomatize our
definition:

Definition 1.3

A probability rule or measure on (Ω,F) is a function P : F → [0, 1] such that

• 0 ≤ P(E) ≤ 1 for E ∈ F (this is redundant but important)

• P(Ω) = 1

• If A,B ∈ F are disjoint, then P(A ∪B) = P(A) + P(B).

For any event E ∈ F , P(E) denotes the probability of E.

At this point we have formalized all the notions that we need to completely define random
events and probabilities of those events. We can combine them into a single space:
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Definition 1.4

A triple (Ω,F ,P), where F is a σ-algebra on Ω and P is a probability rule on (Ω,F)
is called a probability space.

Example 1.2

Let Ω be a finite sample space and suppose all outcomes are observable and equally
likely. Then we have F = {all subsets of Ω} = 2Ω and P(E) := |E|/|Ω|.

Note that although the collection of all subsets of Ω is indeed a σ-algebra on Ω, a
σ-algebra need not consist of all possible subsets.

Definition 1.5

Let A be a collection of subsets of Ω. Then σ(A) denotes the smallest σ-algebra
containing A; in other words, it is the σ-algebra generated by A.

For instance, suppose we have a countable partition of Ω, B1, B2, . . .. Then G =
σ(B1, B2, . . .) = {

⋃
m∈I Bi}I⊆N is the collection of all possible unions of the Bi (includ-

ing the empty union).

The following are basic properties of probability rules as formalized above.

Theorem 1.1

Given a probability space (Ω,F ,P), the following hold:

• For any A ∈ Ω, P(A) = 1− P(Ac).

• If A ⊆ B, then P(B \A) = P(B)− P(A), so P(B) = P(A) + P(B \A) ≥ P(A).

• P(A ∪B) = P(A) + P(B)− P(A ∩B).

1.3 Conditional Probability

Given two events, A,B ∈ F , we have previously defined the probability of each event
independently: P (A), P (B). But we may also be interested in how the two probabilities are
related. We introduce the notion of conditional probability:

Definition 1.6

Given two events A,B ∈ F , with P(B) > 0, the conditional probability of A

given B is P(A|B) := P(A∩B)
P(B) . In particular, we can define an associated probability

rule PB(A) :=
P(A∩B)
P(B) . In this case, (Ω,F ,PB) is a probability space.
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By rearranging the above formula, we can see that P(A ∩ B) = P(B)P(A|B). This fact
can be extended to further events via the law of multiplication:

Theorem 1.2: Law of Multiplication

Given n events A1, A2, . . . , An, with P(Ai) > 0 for 1 ≤ i ≤ n, the following law holds:

P(
n⋂

i=1

Ai) = P(A1) ∗ P(A2|A1) ∗ P(A3|A1 ∩A2) ∗ . . . ∗ P(An|A1 ∩ . . . ∩An−1)

=

n∏
i=1

P

Ai

∣∣∣∣∣∣
i⋂

j=1

Aj


Proof. Induct over the fact that P(A ∩B) = P(A) ∗ P (B|A).

Example 1.3

Suppose we have 13 batteries, of which 3 are dead. Suppose we draw three batteries
without replacement. What is the probability that all three are dead?

Let Di := the event that the ith battery is dead, for 1 ≤ i ≤ 3. Then we are
interested in P(D1 ∩D2 ∩D3). by the law of multiplication, we have

P(D1 ∩D2 ∩D3) = P(D1) ∗ P(D2|D1) ∗ P(D3|D1 ∩D2) =
3

13

2

12

1

11
=

1

286

In order to simplify problems, it is often beneficial to eliminate outcomes which cannot
happen. For instance, consider the following example:

Example 1.4

You have 10 good batteries and 3 bad batteries. You pick out 4 good batteries and
remove them. What is the probability that the fifth battery is good?

One approach is to notice that P(≥ 4 good batteries) = 10/13 ∗ 9/12 ∗ 8/11 ∗ 7/10
and P(≥ 5 good batteries) = 10/13∗9/12∗8/11∗7/10∗6/9, and thus P(≥ 5| ≥ 4) =
P(≥ 5∩ ≥ 4)/P(≥ 4) = P(≥ 5)/P(≥ 4) = 6/9. But a simpler way to do this to simply
ignore the 4 good batteries that have been removed. If we reduce the sample space
to the remaining 6 good batteries and 3 bad batteries, it is clear that the probability
of picking a good battery is 6/9.

Thus, we reduce the sample space after an event B has occurred by only considering
those events where B occurs. We must also change our probability rule when we do this
reduction:
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Definition 1.7

Given a probability space (Ω,F ,P) and an event B ∈ F with P(B) > 0, the reduc-
tion of sample space by B is the probability space (B,F ∩ B,PB), where F ∩ B
is the σ-algebra obtained by intersecting each element of F with B.

Next, we can consider the probabilities of the four possible configurations of A and B:
that is, they both occur, neither occurs, only A occurs, or only B occurs. These probabilities
are related by the law of total probability:

Theorem 1.3: Law of Total Probability

Let A,B ∈ F , with P(B) > 0. Then we have

P(A) = P(A ∩B) + P(A ∩Bc) = P(B)P(A|B) + P(Bc)P(A|Bc)

More generally, suppose that B1, . . . Bn all have P(Bi) > 0. Suppose also that the
various Bi partition Ω (that is, Bi ∩Bj = ∅ for any i ̸= j, and

⋃
Bi = Ω). Then we

have

P(A) =
n∑

i=1

P(Bk)P(A|Bk)

Example 1.5

Suppose you randomly paint each side of a coin with heads or tails independently,
with an equal probability of each. you flip the resulting coin and get heads. What
is the probability you get heads again?

We are looking for P(HH|H). This is

P(HH|H) =
P(HH ∩H)

P(H)

But HH can only happen when H happens, so we can reduce the sample space to

P(HH|H) =
P(HH)

P(H)

Then we need to find P(H),P(HH). Let 0, 1, 2 denote the events that the coin has
the respective number of heads painted on it. Using the law of total probability:

P(H) = P(0)︸︷︷︸
1/4

P(H|0)︸ ︷︷ ︸
0

+P(1)︸︷︷︸
1/2

P(H|1)︸ ︷︷ ︸
1/2

+P(2)︸︷︷︸
1/4

P(H|2)︸ ︷︷ ︸
1

= 1/2

Similarly,
P(HH) = 1/4 ∗ 0 + 1/2 ∗ 1/4 + 1/4 ∗ 1 = 3/8

So

P(HH|H) =
P(HH)

P (H)
=

3/8

1/2
=

3

4
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Lastly, the occurrence of one event may gives us new information about the state of a
certain system, which changes the probabilities of the other events. In this case, we want
to update our probabilities:

Theorem 1.4: Bayes’ Theorem

Let A,B ∈ F , with P(A) > 0, 0 < P(B) < 1. Then

P(B|A) = P(A ∩B)

P(A)
=

P(A|B)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)

Proof. Apply the Law of Multiplication to the numerator and the Law of Total Probability
to the denominator.

In this case, B represents the probability of ”before”, and A is ”after”. In other words,
suppose you initially believe there is a P(B) probability chance of B having happened
(a priori). Afterwards, you observe that A has occurred. Then P(B|A) is our updated
probability for B having happened (a posteriori), given that we know A has resulted.

Example 1.6

Suppose you have either a $1 or $20 bill in your pocket. You receive a $1 bill in
change and put it in your pocket. You then pull out a bill at random and find a $1
bill. What is the probability that you had a $1 bill originally?

Let A be the event that you pull out a $1 bill, and B be the event that you originally
had a $1 bill. Using Bayes’ Theorem,

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
=

1 ∗ 1/2
1 ∗ 1/2 + 1/2 ∗ 1/2

=
1/2

3/4
=

2

3

Example 1.7

Suppose a test for a rare disease gives a false negative 5% of the time, and a false
positive 2% of the time. Suppose only .1% of the population has this disease. Given
that you receive a positive result, what is the probability you have the disease?

Let A be the event that the test returns positive, and B the event that you have the
disease. Using Bayes’ Theorem,

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
=

0.95 ∗ 0.001
0.95 ∗ 0.001 + 0.02 ∗ 0.999

≈ 0.04

So there is only a 4% chance of you actually having the disease, despite getting a
positive test.

These examples show that intuitively, the reason that we need to update our credences
in this way is that it is not necessarily equally likely that we start in B or Bc. To figure out
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which set we started in, we need to find the relative probabilities that B ∩ A has occurred
and that Bc ∩ A has occurred. This is what gives rise to the denominator in the theorem.
One way to rewrite the formula to reflect this is

P(B|A) = P(B ∩A)
P(B ∩A) + P(Bc ∩A)

More generally, if we have disjoint B1, B2, . . . Bn which partition Ω, then we have a path
through each of the Bi to get to A. So for any k, we would then have

P(Bk|A) =
P(Bk ∩A)∑
i P(Bi ∩A)

=
P(A|Bk)P(Bk)∑
i P(A|Bi)P(Bi)

Example 1.8: The Monty Hall Problem

On a certain game show, three doors have prizes behind them. Two are goats and
one is a million dollars. You go on the game show and choose a door. The host then
opens one of the two remaining doors, revealing a goat. He offers you the option to
switch to the other unopened door. Should you switch?

Suppose you adopt the strategy of switching. Since the host always shows you a
goat, then only way you can lose by switching is if you initially pick the door with
the million dollars. So you have a 2/3 chance of winning if you switch. This can be
verified using Bayes’ Theorem.

1.4 Independence

Suppose that we want to know the probability of an event A, and we receive the information
that event B has happened. Then we should update our probability to P(A|B). But it may
happen that B and A are completely unrelated, and that knowing B has occurred gives us no
information about whether A has occurred. Then we say that these events are independent.

Definition 1.8

Two events A,B ∈ F with P(A),P(B) > 0 are independent if P(A|B) = P(A).

It is easily shown that A,B are independent if and only if P(B|A) = P(B), so the
definition is symmetric. Moreover, we can combine these two statements to show that they
are independent if and only if P(A ∩B) = P(A) ∗ P(B).

Lemma

If A,B are independent, then all of the following pairs are independent: (A,Bc),
(Ac, B), (Ac, Bc).

Proof. For the first case, suppose A,B are independent. By the Law of Total Probability,
P(A ∩ B) + P(A ∩ Bc) = P(A). So P(A ∩ Bc) = P(A) − P(A ∩ B). By independence,
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P(A) − P(A ∩ B) = P(A) − P(A)P(B) = P(A)(1 − P(B) = P(A)P(Bc). So A,Bc are
independent. This then proves the other pairs, by relabeling A,B,Ac, Bc as necessary.

Note that A,B being disjoint does not mean that they are independent; in fact, disjoint
sets are always independent (as long as P(A),P(B) > 0), since knowing one has occurred
tells us that the other event has not occurred.

Example 1.9: The Jailer’s Paradox

Alex, Ben, and Chris are in jail. The jailer learns that two of them will go free, and
one will remain in jail, and he knows who. Alex asks the jailer to tell him the name
of one of the other two men who will go free. The jailer refuses, and says that if he
did so, then the probability that Alex would remain in jail would go from 1/3 to 1/2.
Is the jailer correct?

let A,B,C be the events that Alex, Ben, and Chris get life imprisonment, respec-
tively. Let J be the event that the jailer says Chris will go free (the situation is the
same for Ben). Then by Bayes’ Theorem, since A,B,C partition Ω,

P(A|J) = P(J |A) ∗ P(A)
P(J |A)P(A) + P(J |B)P(B) + P(J |C)P(C)

=
1
2 ∗ 1

3
1
2 ∗ 1

3 + 1 ∗ 1
3 + 0 1

3

=
1

3

So the probability does not change. Intuitively, this is because if Alex is staying
imprisoned, then the jailer has free choice in who to tell Alex. If Alex is going free,
then his choice is restricted.

Example 1.10

Suppose we flip 2 biased coins, which have a p ∈ [0, 1] chance of landing heads. As-
sume each flip is independent.

Let Hi be the event that that ith flip is heads. By assumption, H1, H2 are inde-
pendent, so P(H1 ∩ H2) = P(H1)P(H2) = p · p = p2. Since independence holds for
complements, we have P(H1 ∩Hc

2) = P(H1)P(Hc
2) = p · (1− p), and similarly for the

other combinations of events.

Note that we did not define the probability space explicitly. To do so, we would note
that Ω = {TT,HT, TH,HH}, and since we are able to distinguish all the outcomes,
F = 2Ω. Furthermore, it suffices to define the specific values of our probability rule:

P({TT}) = (1− p)2

P({HH}) = p2

P({TH}) = P({HT}) = p(1− p)

Lastly, we can define the events H1 = {HT,HH} and H2 = {TH,HH}. Then we
can see that P(H1) = P({HH}) + P({HT}) = p2 + p(1 − p) = p, and the same for
H2. Then we can verify that P(H1 ∩H2) = P({HH}) = p2 = p · p = P(H1)P(H2).
So owe see that we indeed have independent events.
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Example 1.11: Paradox of Pairwise Independence (Bernstein)

Suppose you have three events A,B,C ∈ F . Suppose that each pair of events is
independent. Then are all three independent? That is, knowing the outcome of one
event doesn’t tell you anything about the other two. Does knowing the outcome of
two events tell you anything about the last one?

Using the biased coins from the previous example, let A = H1, B = H2, C =
{HT, TH}. Suppose we let p = 0.5. We already know that A,B are independent, and
it is easily verified that A,C and B,C are independent when p = 0.5. But suppose
we know that A and B have both occurred. Then we must have H1 ∩H2 = {HH}.
But this is disjoint with C, so C cannot happen. Thus we conclude that pairwise
independence is not sufficient to conclude independence of all the events.

The last example suggested the notion of multiple events being independent simultane-
ously.

Definition 1.9

We say that events A1, A2, . . . , An are independent if for any i and any J ⊆
{1, 2, . . . , n} with i /∈ J , we have P(Ai|

⋂
j∈J Aj) = P(Ai). In other words, the occur-

rence of any combination of the other events tells us nothing about the probability
of Ai.

Similarly, to the definition of independence for two events, we can find a more symmetric
definition of independence for multiple events:

Theorem 1.5

A finite collection of events A1, A2, . . . , An are independent if and only if, for any
J ⊆ A, P(

⋂
j∈J Aj) =

∏
j∈J P(Aj).

Proof. ( =⇒ ) Label our Aj as Aj1 , Aj2 , . . . , Ajk , 1 ≤ k ≤ n. Then by the law of multiplica-
tion,

P(Aj1 ∩Aj2 ∩ . . . ∩Ajk) = P(Aj1)P(Aj2 |Aj1) . . .P(Ajk |Aj1 ∩Aj2 ∩ . . . Ajk−1
)

But we assume independence, so this reduces to

P(Aj1 ∩Aj2 ∩ . . . ∩Ajk) = P(Aj1)P(Aj2) . . .P(Ajk)

( ⇐= ) We skip this proof.

Example 1.12

Suppose we flip 5 biased p-coins, and the tosses are independent. What is the
probability of 4 heads and 1 tails?
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Letting Hi be the event that the ith flip is heads. Then we observe that

P(4 heads, 1 tails) =

P(Hc
1H2 . . . H5) + P(H1H

c
2H3 . . . H5) + . . .+ P(H1 . . . H4H

c
5)

= 5p4(1− p)
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Chapter 2

Random Variables

2.1 Random Variables

In order to quantify the outcomes of experiments, it is helpful to be able to define random
variables that represent the result of an experiment with more precision than the binary
paradigm of an event happening or not happening. We can do this by considering functions
of the form X : Ω → R, ω 7→ X(ω).

Definition 2.1

Given A ⊆ Ω, the indicator function of A is

1A(ω) :=

{
1, ω ∈ A

0, ω /∈ A

In other words, given an outcome ω, 1A(ω) indicates whether or not A has occurred.

Example 2.1

Suppose we roll a die. Then Ω = {1, 2, 3, 4, 5, 6}, and we can define X(ω) = ω.

Example 2.2

Suppose we roll two dice. Then Ω = {(i, j)|1 ≤ i, j ≤ 6}. Suppose we want to know
the sum of the dice. Then we define X(ω) = i+ j, ω = (i, j).
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Definition 2.2

Given a function X : Ω → R, we define the range of values RX = {X(ω) : ω ∈ Ω}.
We define the set {X = a} for a ∈ R as {ω ∈ Ω : X(ω) = a}. This allows us to
write, for instance, P(X = a). We define {a < X < b} and other sets of that form
similarly.

Definition 2.3

Given a random variable X : Ω → R, σ(X) is the smallest σ − algebra containing
all sets of the form {a < X < b} for any a, b ∈ R (or the σ-algebra generated by all
sets of that form). In other words, σ(X) quantifies the information obtained when
we know X takes on a certain value.

Definition 2.4

Given a probability space (Ω,F ,P), an F-random (real) variable is a function
X : Ω → R such that σ(X) ⊆ F . Intuitively, this means you can observe the random
variable X by running an experiment in F .

Example 2.3

Suppose Ω = {1, 2, 3, 4, 5, 6}, and P(ωi) = 1/6. Then suppose we define X : Ω → R
to be 1{1,2}(ω). Then X is an F-random variable on F = 2Ω. But suppose we define
G = {{1, 2, 3}, {4, 5, 6},∅,Ω}. Then X is not a G-random variable, since we are not
able to separate sets based on 1{1,2,}(ω).

In other words, we must be able to conclusively know the value of X if we get the
right outcome in F (or F separates values of X). Note that if F = 2Ω, then any function
X : Ω → R is a random variable.

At the moment, we have placed very few restrictions on the actual values that X may
assume. In particular, it may take values all along the real line, in a finite set (such as the
indicator function), or a countably infinite set. We will first consider sets which take values
in a countable set (finite or countably infinite)¿

Definition 2.5

An F-random variable X : Ω → R is discrete if RX is countable. In this case, then
σ(X) is generated by the countable sets of the form {X = x}, x ∈ Rx, and every set
of the form {a < X < b} =

⋃
a<x<b,x∈Rx

{X = x}.

Definition 2.6

Given a discrete random variable X : Ω → R, the probability mass function of
X is fX(x) : Rx → [0, 1], with fX(x) := P(X = x)
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Example 2.4

Suppose we roll a die and define X(ω) = α1{1,2}(ω+ β1{3,4}(ω) (with α ̸= β ̸= 0, so
that we can distinguish between {1, 2}, {3, 4}, {5, 6}. Then our σ-algebra is simply
the algebra generated by the sets we can distinguish between; namely, σ(X) =
σ({{1, 2}, {3, 4}, {5, 6}}. Here, X is a discrete variable.

Alternatively, we can also consider functions that take values in an interval:

Definition 2.7

An F-random variable X : Ω → R is continuous if there exists a function fX :

R → [0,∞) such that P(a < X < b) =
∫ b

a
fX(x)dx. In this case, fX is called the

probability density function of X.

Example 2.5

Suppose X is chosen ”uniformly at random” in [α, β], with α < β. Then we must
have fX(x) = 1

β−α1{α,β}(x).

Note that the above example demonstrates that X need not actually take values in all
of R in order to define fX : R → [0,∞). Moreover, note that probability mass functions are
defined for discrete variables, while probability density functions are defined for continuous
variables. In both cases, these functions represent the ”instantaneous probability” of a
certain value of X.

Definition 2.8

Given an F-random variable X, the distribution of X is the probability rule PX ,
defined on (R, βR) by Px(E) := P(X ⊆ E), E ∈ βR. Recall that βR is the σ-algebra
generated by open intervals of R.

We should note that two different random variables may have the same distribution.
For instance, the number of heads and number of tails are different variables with identical
distributions.

Example 2.6

Suppose we roll a die and consider the indicator X = 1{1,2}. Then the distribution
PX is defined as PX(X = 0) = 2/3, PX(X = 1) = 1/3.

2.2 Expected Value

In many cases, we would like to know what we can expect the value of a variable X is, before
we have actually observed any experiment. In a sense, we want to know the average of X. If
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we were to consider this value by taking the limit of outcomes of an experiment, multiplying
each value by the proportion of experiments in which it occurs and then summing the values.
This suggests that, at least for a discrete variable, the expectation should be

E[X] =
∑
x∈Rx

x ∗ P(X = x)

Using the language of pmfs and pdfs, we can write this in a concise way that reflects
correspondence between discrete and continuous random variables:

Definition 2.9

Given an F-random variable X, the expectation of X is

E[X] :=

{∑
x∈RX

xfX(x), X is discrete∫
RX

xfX(x)dx,X is continuous

One particularly important fact is that for any event A, the expected value of the indi-
cator function 1A is simply

E[1A] = 1 ∗ P(A) + 0 ∗ P(Ac) = P(A)

Example 2.7

Suppose we want to let the random variable X be the the number of flips required
before getting heads (formally, Ω is the set of all infinite sequences of H,T ). Then
X is discrete, so we define the pmf fX(n) = P(X = n) as the probability of n − 1
tails, and then a heads. Assuming the flips are independent with a probability p of
heads, then fX(n) = (1− p)n−1p.

Definition 2.10

We say that an F-random variable X has a geometric p-distribution if its mass
function is given by (1− p)x−1p, for x ≥ 1.

More generally, we can consider ”random elements,” which are essentially random vari-
ables that are not required to take real values; in other words, functions of the form
Z : Ω → D.

Example 2.8

Suppose we pick a random card from a deck. Then its suit is a random element,
Z : Ω → D, where D = {H,C, S,D}.

Similarly, we could think of random elements into the set R2, where each coordinate is
a random variable X,Y : Ω → R. However, one issue with using random elements is that
we can no longer take an expectation. To resolve this, we can add a quantifying function
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g : D → R. Then the function g ◦ Z : Ω → R is a random variable. This allows us to
generalize results about random variables to many kinds random elements.

Theorem 2.1: Law of the Unconscious Statistician

Given a random element Z and a function g : Z → R, we have

E[g(z)] = lim
n→∞

1

N

N∑
k=1

g(zk)

Then if g is discrete, we can say:

lim
n→∞

1

N

N∑
k=1

g(zk) = lim
n→∞

1

N

N∑
k=1

∑
z∈RZ

g(z)1{zk}(z)

=
∑
z∈RZ

g(z) lim
n→∞

(∑N
k=1 1zk(z)

N

)
=
∑
z∈Rz

g(z)P(Z = z)

If g is continuous, we simply replace
∑

z∈RZ
with

∫
RZ

:

E[g(Z)] =

{∑
z∈RZ

g(z)fZ(z), Z discrete∫
RZ

g(z)fZ(z), Z continuous

In other words, the expectation of a random variable can be computed as the limit of
independent trials.

Of particular importance is the class of random variables that combines multiple random
variables into an n-tuple.

Definition 2.11

Given a random element Z : Ω → R2, with Z := (X,Y ) for two random variables
X,Y : Ω → R, the joint mass function of X,Y is fZ(z) = f(X,Y )(x, y) := P(X =
x, Y = y). Similarly, the joint distribution is P(X,Y )(E) := P(X,Y ) ∈ E. This
definition can be extended to a set of random variables X1, X2, . . . , Xn.

Note that it is not enough to know each of the individual probability distributions PX ,PY

in order to find the joint distribution. However, we can still find certain information about
the joint distribution given information about the individual distributions.

Theorem 2.2: Linearity of Expected Value

Given two random variables X,Y , we have

E[X + Y ] = E[X] + E[Y ]
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Proof. Let Z = (X,Y ), g(z) = g(x, y) = x+ y. Then

E[X + Y ] = E[g(z)] =
∑
z∈RZ

g(z)P(Z − z) =
∑

x∈RX ,y∈RY

(x+ y)P(X = x, Y = y)

=
∑

x∈RX

x

 ∑
y∈RY

P(X = x, Y = y)

+
∑

y∈RY

y

( ∑
x∈RX

P(X = x, Y = y)

)

=
∑
x∈Rx

xP(X = x) +
∑

y∈RY

yP(Y = y) = E[X] + E[Y ]

Example 2.9

At a party with n people, how many pairs of people to you expect to share a birthday?

Consider each person separately. Let Xi be the birthday of the ith person. Define
Z =

∑
1≤i<j≤n 1Xi=Xj . Let Yij = 1Xi=Xj . Then by the linearity of expected value,

E[Z] =
∑
i<j

E[Yij ]

Note that for any random variable,

E[1Y ] =
∑

y∈RY

yP(Y = y) = 0 ∗ P(1Y = 0) + P(1Y = 1) = P(Y )

Now for any given i < j, P(Xi = Xj) = 1/365. So

E[Z] =
∑
i<j

1/365 =
n
2

1

365
=
n(n+ 1)

2

1

365

The above example illustrates that two variables which are not independent still have
the property of linearity. Thus, linearity of expected value is an extremely powerful result
that applies to all random variables.

Definition 2.12

We say two random variables X,Y are independent if, for all x ∈ RX , y ∈ RY , we
have f(X,Y )(x, y) = fX(x)fY (y).

Theorem 2.3

Two discrete random variables X,Y are independent if and only if each pair {X =
x}, {Y = y} for x ∈ RX , y ∈ RY are independent events.

Proof. If this is the case, then f(X,Y )(x, y) = P(X = x, Y = y) = P(X = x)P(Y = y) =
fX(x), fY (y) for any x ∈ RX , y ∈ RY .
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Theorem 2.4

Given two random elements X,Y and quantifiers g, h, if X,Y are independent, then
E[g(X)h(Y )] = E[g(X)]E[h(Y )].

2.3 Conditional Expectation

Just as the occurrence of an event may update our probabilities of a certain event occurring,
the occurrence of an event may also update our understanding of the distribution of a random
variable.

Recall that given that an event B with P(B) > 0 has occurred, we can reduce the sample
space to (B,F ∩B,PB), where PB(A) = P(A|B). We might similarly define the conditional
expectation of a random variable X. If we know an event B with P(B) > 0 has occurred,
we might define the conditional expectation of a discrete variables as

E[X|B] =
∑

x∈RX

xPB(X = x) =
∑

x∈RX

xP(X = x|B)

Example 2.10

Suppose we roll a die and are told that B = {1, 2, 3} has occurred. Then EB [X] = 2
and EBc [X] = 5.

However, we can rewrite this in an alternative form. Note that if x ̸= 0 and {X = x}∩B
is nonempty, then we have

{X = x} ∩B = {X ∗ 1B = x}

On the other hand, if x = 0 or if {X = x} ∩B is empty, then

xP({X = x} ∩B) = 0

Thus we can write

E[X|B] =
∑

x∈RX

x
P({X = x} ∩B

P(B)
=

∑
x∈RX∩B

x
P(X1B = x)

P(B)
=

E[X1B ]

P(B)

where the last equality is given by the law of the unconscious statistician. Then we can write
an alternate equation for E[X|B] in order to generalize to all kinds of random variables.
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Definition 2.13

Given any random variable X and any event B with P(B) > 0, define the condi-
tional expectation of X to be

E[X|B] =
E[X1B ]

P(B)

In the discrete case, this corresponds with the elementary formula we found above:

E[X|B] =
∑

x∈RX

xP(X = x|B)

Then suppose we want to know how the value of another random variable Y updates
our expectation of X, without knowing the exact value of Y . In other words, we consider
events of the form B = {Y = y}. Then we have

E[X|Y = y] =
E[X1(Y=y)]

P(Y = y)
=
∑

x∈RX

x
P(X = x, Y = y)

P(Y = y)

Notice that P(X = x, Y = y) is simply f(X,Y )(x, y), and P(Y = y) is fY (y). So we can write

E[X|Y = y] = x
f(X,Y )(x, y)

fY (y)

This allows to generalize nicely to the continuous case:

Definition 2.14

Given two random variables X,Y , define the conditional joint density function
as

fX|Y (x|y) :=
f(X,Y )(x, y)

fY (y)

Example 2.11

Suppose we let X be the outcome of a die roll, and let Y = 1{1,2,3}. Then we can
write the expectation of X given Y given some event ω as

E[X|Y ](ω) = 2 ∗ 1{1,2,3}(ω) + 5 ∗ 1{4,5,6} = 2Y + 5(1− Y )

Note that in the above example, we could scaled Y by π, e, or any other nonzero scalar
without changing the situation. Thus, we arrive at the important observation that the
actual value of Y doesn’t matter; only the set of what events it allows us to conclude has
occurred.

Suppose we have discrete random variables X,Y . Then the conditional expectation of X
given Y is a function E[X|Y ] : Ω → R defined by

E[X|Y ](ω) := E[X|Y = Y (ω)]
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Alternatively, define ψ(y) := E[X|Y = y]. Then E[X|Y ](ω) = ψ(Y (ω) = E[X|Y = Y (ω)].
Note that E[X|Y = Y (ω)] =

∑
x∈RX

xfX|Y (x|Y (ω)). Once again, this gives a nice method
to generalize to the continuous case.

Definition 2.15

Given two random variables X,Y , the conditional expectation of X given Y is a
function E[X|Y ] : Ω → R given by

E[X|Y ](ω) :=

{∑
x∈RX

xfX|Y (x|Y (ω))∫
RX

xfX|Y (x|Y (ω))

Remark

Note that E[X|Y ] is no longer a single value, but a function that gives a value for
each individual value of Y . This makes sense, since without knowing ahead of time
what Y is, we would otherwise just get E[X].

As we will see, many of the theorems from conditional probability of random events hold
for conditional expectation for random variables.

Theorem 2.5: Law of Total Expectation

Given any variables X,Y , we have

E[X] = E1[E2[X|Y ]] =
∑

y∈RY

E[X|Y = y]P(Y = y)

Note here that E2 is a function that gives the ”subaverage” of X given a certain
value of Y . In this case, the interpretation here is that E1, the average value of X,
is the weighted average of each of the subgroups given values of Y .

Example 2.12

Suppose we draw digits 0-9 independently. Suppose we let X be the number of draws
until we get three 0s in a row. What is E[X]?

Suppose we let Y be the number of draws until the first nonzero digit. Then by the
law of total probability, we have

E[X] =

∞∑
y=1

E[X|Y − y]P(Y = y)

Suppose y = 1, 2, 3. Then we essentially just ”restart” and increase the expectation
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by y. If y ≥ 4, then X has happened in 3 steps So we have

E[X] =

3∑
y=1

(y + E[X])P(Y = y) +

∞∑
y=4

3P(Y = y)

= (1 + E[X])
9

10
+ (2 + E[X])

9

100
+ (3 + E[X])

9

1000
+ 3

∞∑
y=4

9

10y

=
999

1000
E[X] +

1107

1000
+ 0.001

=⇒ E[X] = 1110

In the above, we saw that we can treat the expectation of a random variable X condi-
tional on a random variable Y as simply being a function mapping different events to the
conditional expectation of X given a certain value of Y . Then using this interpretation,
we can similarly define the conditional probability of an event given a variable, using the
observation earlier that P(A) = E[1A] for any event A.

Definition 2.16

Given an event A and a random variable Y , the conditional probability of A given
Y is a function P(A|Y ) : Ω → [0, 1] defined by

P(A|Y )(ω) := E[1A|Y ](ω)

Example 2.13

Let Z be the sum of outcomes of two dice. Let X,Y , be the first and second rolls,
respectively, and B the event that the first roll is 1. Then P(Z = k|B) = 0 if k > 7,
and

E[Z|B] =

7∑
k=2

P(Z = k|B) =
1

6

7∑
k=2

k =
9

2
= 4.5

Alternatively, note that Z = X+Y . Since we knowX = 1, andX,Y are independent,
we have

E[Z|X] = E[X|X] + E[Y |X] = X + E[Y ]

Here are some basic properties of conditioning with random variables:

1. If X,Y are independent, then E[X|Y ] = E[X].

2. If X is completely dependent on Y (such that X = f(Y )), then E[X|Y ] = f(Y ) = X.

3. Regardless of dependence between X,Y , E[X + Y ] = E[X] + E[Y ].

One way to interpret these properties is to note that they are all of the form E[g(X,Y )|Y ].
For instance, in the first case, we have g(X,Y ) = X, in the second we have g(X,Y ) = X =
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f(Y ), and in the third we have g(X,Y ) = X + Y . Then we can expand:

E[g(X,Y )|Y ) =
∑

x∈RX

g(x, Y )fX|Y (x|Y )

This idea leads to the following additional properties:

4 If g(X,Y ) = f(X)h(Y ), then E[f(X)h(Y )|Y ] = h(Y )E[f(X)|Y ].

5 E[g(X,Y )|Y ](y) = E[g(X, y)]

Example 2.14: Buffon’s Needle

Suppose you drop a needle of length l onto an infinite paper with ruled vertical lines
at intervals of d, with l < d. What is the probability the needle crosses a line?

Let X be the distance of the center to the nearest vertical line. Then X ∼
Uniform(0, d/2). Let θ be the angle of the line determined by the needle with the
nearest ruled line. Then θ ∼ Uniform(0, π/2). Suppose we draw a triangle from the
intersection of the vertical line and needle line, and the altitude dropped from the
midpoint of the needle to the vertical line. Then the hypotenuse is x/ sin θ, and the
needle crosses the vertical line if and only if x/ sin θ < l/2. Then

P(H < l/2) = P(X < l sin θ/2) = E[P(X < l sin θ/2|θ)]

Since X, θ are independent, we have

E[P(X < l sin θ/2)] = E
[
l sin θ

d

]
=
l

d

∫ π/2

0

sin θ
1

π/2
dθ =

2

π

l

d
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Summary

Types of Conditional Expectation

Given F-random variables X,Y , and a random event A, we have:

• E[X|A] = E[X1A]
P(A)

• E[X|Y ] : ω → R is an F-random variable with E[X|Y ](ω) := E[X|Y = Y (ω)].

• P(A|X) : ω → R is an F-random variable defined by

P(A|X)(ω) := E[1A|X](ω) = E[1A|X = X(ω)] = P(A|X = X(ω))

Basic Properties of Conditional Expectation

1. If X,Y are independent, then E[X|Y ] = E[X].

2. If X = f(Y ), then E[X|Y ] = f(Y ) = X.

3. Regardless of dependence between X,Y , E[X + Y ] = E[X] + E[Y ].

4. If g(X,Y ) = f(X)h(Y ), and Y is a G-random variable with X ⊥ G,

E[f(X)h(Y )|Y ] = h(Y )E[f(X)|Y ]

5. E[g(X,Y )|Y ](y) = E[g(X, y)].

6. E[X] = E[E[X|Y ]] =
∑

RX
E[X|Y ]fY (y).
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Chapter 3

Stochastic Processes

3.1 Bernoulli Processes

Suppose we flip a biased p-coin. Then if we let X = 1 when heads is flipped and X = 0
when tails is flipped, we say that X follows a Bernoulli distribution with parameter p; that
is, it takes the value of 1 with probability p and the value of 0 with probability q = 1− p.

Definition 3.1

We say that a random variable X follows the Bernoulli distribution with param-
eter p if if only takes the values 0, 1, with P(X = 1) = p and P(X = 0) = 1 − p. In
this case, we write X ∼ Bernoulli(p).

Now suppose we repeatedly flip this biased coin and consider the sequence of outcomes
X1, X2, . . .. Then these variables are independent and identically distributed. Moreover, we
can interpret this collection of trials as a process, roughly meaning that there is a sense of
progression or time. Thus, a set of Bernoulli trials is an example of what we call a stochastic
(or random) process.

For the time being, we will informally define a stochastic process as a collection of random
variables {Xt}t∈τ , where t essentially represents time, and τ is an indexing set that is either
N0 = N ∪ {0} or [0,∞). Then the collection (Xn)n≥0 is a stochastic processes that we call
a Bernoulli process.

Definition 3.2

A Bernoulli process with parameter p and N trials is a collection of random
variables Xi, 1 ≤ i ≤ N , such that each Xi ∼ Bernoulli(p) and the trials are
independent. (In other words, they are independent and identically distributed
(iid))
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Suppose we define Sn as the number of successes in the first n flips:

Sn :=

n∑
k=1

Xk(n ≥ 1), S0 = 0, Sk+1 = Xk+1 + Sk

Then by the binomial formula, we have

fSn
(k) = P(Sn = k) =

(
n

k

)
pk(1− p)n−k, k ∈ N =⇒ Sn ∼ Bin(n, p)

Moreover, by the linearity of expected value, we have

E[Sn] =

n∑
k=1

E[Xk] = np

Now suppose we are given n,m ∈ N. Then what is the distribution of the number of flips
in the time period (n, n +m]? In other words, what is the distribution of Sn+m − Sn? In
general, we would need the joint distribution to determine this, but because a Bernoulli
process consists of independent variables, we can easily calculate this with

Sn+m − Sn = Xn+1 +Xn+2 + . . .+Xn+m =

m∑
k=1

Xn+k ∼ Bin(m, p)

In particular, note that this distribution is stationary, meaning that Sn+m − Sn ∼ Sm for
any n ≥ 0. It also has the property of independent increments, meaning that Sm − Sn is
independent of Sk − Sl for any m ≥ n, k ≥ l (as long as the intervals don’t overlap).

Then if we construct the joint distribution f(Sn,Sn+m)(k, l), we get

f(Sn,Sm+n)(k, l) := P(Sn = k, Sn+m = l)

= P(Sn = k, Sn+m − Sn = l − k)

(Independent increments) = P(Sn = k)P(Sn+m − Sn = l − k)

(Stationary) = P(Sn = k)P(Sm = l − k)

=

(
n

k

)
pk(1− p)n−k ∗

(
m

l − k

)
pl−k(1− p)m−(l−k)

So we find that the joint distribution is given by

f(Sn,Sn+m)(k, l) =

(
n

k

)(
m

l − k

)
pl(1− p)n+m−l, 0 ≤ k ≤ l ≤ n+m, l − k ≤ m

We next consider the ”arrival time” of a Bernoulli process. Define Tk to be the time at
which a Bernoulli process reaches k successes. Formally,

Tk := min{n : Sn = k}

Then the distribution is given by

fTk
(n) = P(Sn−1 = k − 1, Xn = 1) = P(Sn−1 = k − 1)P(Xn = 1)︸ ︷︷ ︸

Independent increments

=

((
n− 1

k − 1

)
pk−1(1− p)n−1−k−1

)
p =

(
n− 1

k − 1

)
pk(1− p)n−k
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In particular, the variable T1 has distribution fT1(k) = (1 − p)k−1p, which we denote
Geom(p). Moreover, we can see that

1 =

∞∑
k=1

fT1(k) =

∞∑
k=1

(1− p)k−1p =

∞∑
k=0

qk(1− q)

Rearranging, we get the geometric series formula

1

1− q
=

∞∑
k=0

qn, q ∈ (−1, 1)

This allows us to calculate the expectation of T1, or the number of trials expected before
flipping a heads.

E[T1] = E[E[T1|X1]] = pE[T1|X1 = 1] + (1− p)E[T1|X1 = 0] = p+ (1− p)(1 + E[T1])

=⇒ pE[T1] = 1 =⇒ E[T1] =
1

p

Similarly to asking the time before flipping the first heads, we can also ask more generally
how long it will take between the kth and k + 1th heads, or the ”interarrival time.” If we
let Tk represent the number of flips until the kth heads, then we can calculate

P(T1 = n1, T2 − T1 = n2, . . . Tk − Tk−1 = nk) = qn1−1p ∗ qn2−1p . . . qnk−1p =

k∏
i=1

P(T1 = ni)

Thus we see that the interarrival times are independent and identically distributed.

Theorem 3.1

Let (Xi)i≥1 be a Bernoulli process, and define Tk = min{n : Sn =
∑n

i Xi = k}.
Then the collection (Tk)k≥1 has the following properties:

• (Independent) Each Tk − Tk−1 is independent from the others.

• (Identically distributed) Each Tk − Tk−1 ∼ T1 ∼ Geom(p).

A basic calculation also allows us to find the expected value of Tk:

E[Tk] = E[(Tk−Tk−1)+(Tk−1−Tk−2)+. . .+(T2−T1)+T1] = 1/p+ 1/p+ 1/p . . .+ 1/p︸ ︷︷ ︸
k times

=
k

p

3.2 Poisson Processes

The Bernoulli process allows us to model random occurrences over discrete time. In order
to model a situation of random arrivals over continuous time, we can use the Poisson dis-
tribution, which is essentially the infinite limit of the binomial distribution.
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Suppose we let N1 be the number of arrivals in 1 hour. Suppose that these arrivals are ran-
dom and independent, with equal probability at every time, and have an average occurrence
of λ > 0 per hour, so that E[N1] = λ. Then what is the distribution of N1?

Since we know that the probability of an arrival is the same ”at every time,” we can ap-
proximate the continuous distribution by dividing the hour into n equal subintervals. We
can then ask whether each subinterval has an arrival or not. If we let Xi be the variable
representing the ith subinterval, then Xi ∼ Bernoulli(p), and we approximate N1 with
Sn =

∑n
k=1Xk ∼ Bin(n, p). Moreover, we have λ = E[N1] ≈ E[Sn] = npn. Then we have

pn = λ/n (which is guaranteed to be in [0, 1] for large n).

Plugging back into the approximation, we have

fN1
(k) = P(N1 = k) ≈ P(Sn = k)

=

(
n

k

)
pk(1− p)n−k

=
λk

k!

n

n

(n− 1)

n
. . .

n− (k + 1)

n︸ ︷︷ ︸
→1

(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

(
1− λ

n

)−k

︸ ︷︷ ︸
→1

Then if we take the limit as our approximation becomes finer, we get

fN1(k) = P(N1 = k) = lim
n→∞

P(Sn = k) =
λk

k!
e−λ

Thus we have derived the Poisson distribution.

Definition 3.3

A random variable X is Poisson with parameter λ, or X ∼ Poisson(λ), if

fX(k) = P(X = k) =
λk

k!
e−λ

For the general case, where the average rate of arrivals is λ per hour, and we want to
know the number of arrivals in t hours, we can simply plug this into the distribution, and
find that Nt ∼ Poisson(λt), such that

fNt
(k) = P(Nt = k) =

(λt)k

k!
e−λt

Since we derived the Poisson distribution as a limit of the Bernoulli counting process, if we
view Nt as a a stochastic process (Nt)t≥0 (such that Nt counts the total number of arrivals
by time t), it will inherit the properties of the counting process.
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Theorem 3.2

Let (Nt)t≥0 be a Poisson distribution. Then we have

• (Nt)t≥0 is stationary. That is, for any t and any s, Nt+s − Ns ∼ Nt ∼
Poisson(λt).

• (Nt)t≥0 has independent increments. That is, Nt − Ns is independent from
Nu −Nv, as long as the intervals [s, t] and [v, u] are disjoint.

Theorem 3.3

Let X ∼ Poisson(λ), Y ∼ Poisson(µ), with X independent of Y . Then X + Y ∼
Poisson(λ+ µ).

Proof. Let (Nt)t≥0 be a Poisson process of parameter 1, such that Ns ∼ Poisson(s). More-
over, we have Nt−Ns ∼ Poisson(t−s) independent of Ns. Then we can insert X and Y into
this process by noting that X ∼ Nλ, and Y ∼ Nλ+µ − Nλ, with independence preserved.
So X + Y ∼ Nλ +Nλ+µ −Nλ = Nλ+µ. So X + Y ∼ Poisson(λ+ µ).

Definition 3.4

Given a random variable X, define its cumulative distribution function as

FX(x) := P(X ≤ x)

If X is continuous, then this is

FX(x) =

∫ x

−∞
fX(t)dt

Theorem 3.4

Let X be a continuous random variable. Then fX(x) = d
dxFX(x).

Suppose we ask the time that the kth arrival occurs, τk := inf{t > 0|Nt = k}. Then we
have

P(τ1 > t) = P(Nt = 0) = e−λt (λt)
k

k!
|k=0 = e−λt

Then if we consider the cumulative distribution function of τ1, we see that by definition,

Fτ1(t) := P(τ1 ≤ t) = 1− P(τ1 > t) = 1− e−λt

Then to find the probability density function, we simply differentiate the cumulative density
function

fτ1(t) = F ′
τ1(t) =

d

dt
[1− e−λt] = λe−λt
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So we have found the distribution of the first arrival time:

fτ1(t) = λe−λt1[0,∞)(t)

Definition 3.5

Suppose a random variable τ has a probability density function fτ (t) =
λe−λt1[0,∞)(t). Then we say that τ ∼ Exponential(λ).

So we have seen that τ1 ∼ Exponentialλ. In the general case, we can ask for the
distribution of τk. Then we have

P(τk > t) = P(Nt < k) =

k−1∑
i=0

P(Nt = i) =

k−1∑
i=0

(λt)i

i!
e−λt

Using the cumulative density function, we have

fτk(t) = F ′
τk
(t) =

d

dt
[1− P(τk > t)] =

d

dt
[e−λt

k−1∑
i=0

(λt)i

i!
]

−λe−λt
k−1∑
i=0

(λt)i

i!
+ e−λtλ

k−1∑
i=1

(λt)i−1

(i− 1)!
= −λe−λt[

k−2∑
i=0

(λt)i

i!
−

k−1∑
i=0

(λt)i

i!
]

= e−λtλk
tk−1

(k − 1)!
1[0,∞)(t)

Definition 3.6

If a random variable X has probability density function

fX(x) =
xk−1

(k − 1)!
λke−λt1[0,∞)(x)

for some k ≥ 1 and λ > 1, then we say X has the gamma distribution with shape
k and rate λ, written X ∼ Γ(k, λ).

Then we can see that for a Poisson distribution with parameter λ, we have τk ∼ Γ(k, λ).

Example 3.1

Suppose we have X ∼ Exponential(λ) for some λ > 0. What is E[Xk] for k ≥ N?

Let g(X) = Xk. Then we want to find E[g(X)]. By the Law of the Unconscious
Statistician, we have

E[g(X)] =

∫ ∞

0

g(x)fX(x)dx
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Consider the case where k = 0, so g = 1. Then we have

E[g(X)] = E[1] = 1

E[g(X)] =

∫ ∞

0

λe−λxdx = 1

=⇒
∫ ∞

0

e−λxdx =
1

λ

Differentiate on both sides with respect to λ (derivative and integral can be inter-
changed): ∫ ∞

0

−xe−λxdx = − 1

λ2

=⇒
∫ ∞

0

xλe−λxdx =
1

λ

But by the Law of the Unconscious Statistician, the left hand side is precisely

E[X] =

∫ ∞

0

xλe−λxdx =
1

λ

Of course, this makes sense since E[X] is precisely the expected value of the first
arrival time of a Poisson process. For higher k, we simply keep differentiating with
respect to λ (implicitly cancelling negative signs on both sides):∫ ∞

0

xe−λxdx =
1

λ2

=⇒
∫ ∞

0

x2e−λxdx =
2

λ3

=⇒
∫ ∞

0

x3e−λxdx =
2 ∗ 3
λ4

=⇒ . . .

So we find that in general, ∫ ∞

0

xke−λxdx =
k!

λk+1

Then we can move a λ to the left side and solve for E[Xk]:

E[Xk] =

∫ ∞

0

xkλe−λxdx =
k!

λk
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Example 3.2

Suppose children are born in a certain hospital at a rate of λ = 5 each day. What is
the probability at least 2 are born in the next 6 hours?

We are interested in P(N1/4 ≥ 2). Then this is

P(N1/4 ≥ 2) = 1− P(N1/4 = 0)− P(N1/4 = 1) = 1−
( 54 )

0e−5/4

0!
−

( 54 )
1e−5/4

1!

= 1− e−5/4 − 5

4
e−5/4

Example 3.3

Suppose you catch fish at a rate of λ = 2 per hour, starting at 10 am. What is the
probability you catch exactly 1 by 10:30, and exactly 3 total by 12?

We want P(N1/2 = 1, N2 = 3). We can split the second term to get

P(N1/2 = 1, N2 −N1/2 +N1/2 = 3) = P(N1/2 = 1, N2 −N1/2 = 3−N1/2)

Since we intersect only with events where N1/2 = 1, we can plug this into the right
term:

P(N1/2 = 1, N2 −N1/2 = 3−N1/2) = P(N1/2 = 1, N2 −N1/2 = 2)

Since N1/2 and N2 −N − 1/2 are independent, we have

P(N1/2 = 1, N2 −N1/2 = 2) = P(N1/2 = 1)P(N2 −N1/2 = 2)

By stationarity, this is

P(N1/2 = 1)P(N2 −N1/2 = 2) = P(N1/2 = 1)P(N3/2 = 2)

Then we can plug into the probability density function to find:

P(N1/2 = 1, N3/2 = 2) = P(N1/2 = 1)P(N3/2 = 2) =
(2 ∗ 1

2 )
1e−2∗1/2

1!
∗
(2 ∗ 3

2 )
2e2∗3/2

2!

3.3 Superposition and Thinning

Recall that if we say that (Nt)t≥0 is a Poisson process with parameter λ counting the number
of arrivals by time t, then it satisfies three properties:

• N0 = 0: the count begins at 0

• Nt −Ns ∼ Nt−s ∼ Poisson(λ(t− s)): stationarity
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Bernoulli Processes Poisson Processes

Sn+m − Sm ∼ Sn ∼ Binom(n, p) Nt+s −Ns ∼ Nt ∼ Poisson(λt)

Sn − Sm independent Sk − Sp Nt −Ns independent Nu −Nv

0 ≤ m ≤ n ≤ p ≤ k 0 ≤ s ≤ t ≤ v ≤ u

fTk
(n) = (1− p)n−1p ∼ Geom(p) fτ1(t) = λe−λt1[0,∞)(t) ∼ Exponential(λ)

E[T1] = 1
p E[τ1] = 1

λ

fTk
(n) =

(
n−1
k−1

)
pk(1− p)n−k fτk(t) =

tk−1

(k−1)!λ
ke−λt1[0,∞)(t)

E[Tk] = k
p E[τk] = k

λ

• (s, t] ∩ (u, v] = ∅ =⇒ Nt −Ns and Nv −Nu independent: Independent increments

We want to investigate a property of Poisson processes known as the Markov property.
Informally, this property means that the process can ”start fresh” independent of past
activity.

Example 3.4

Fix some r > 0. Define Ñt := Nr+t − Nr. Then we claim that (Ñt)t≥0 is also a
Poisson process with rate λ. To do this, let us check the three properties:

• Ñ0 = Nr+0 −Nr = Nr −Nr = 0

• Ñt − Ñs = Nr+t −Nr+s ∼ Nt−s ∼ Poisson(λ(t− s))

• If we have Ñv − Ñu and Ñt − Ñs with (s, t] ∩ (u, v] = ∅, then (r + s, r + t] ∩
(r + u, r + v] = ∅ so independent increments holds from the original.

Moreover, we can see from independent increments that (Ñt)t≥0 is independent of
the values of Nt for 0 ≤ t ≤ r.

Theorem 3.5: Superposition

Let (N1
t )t≥0, . . . , (N

k
t )t≥0 be Poisson processes of respective rates λ1, . . . , λk > 0. If

the processes are all independent, then the process (Nt)t≥0 with Nt := N1
t + . . .+N

k
t

is another Poisson Process of rate λ = λ1 + . . .+ λk.

This combining process is known as superposition. If we imagine marking the arrival
times of each individual process on a number line, then the arrival times of the combined
process is simply the superimposed image of all the individual number lines.

In the opposite direction, we can also apply a process called thinning, which will separate
the arrivals of one process into different categories.
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Example 3.5

Suppose (Nt)t≥0 is a Poisson process with parameter λ > 0. For each arrival τk, flip
a coin and record the result. Define the process (N1

t )t≥0 which counts the number
of arrivals by time t where a heads was flipped. Similarly, define (N2

t )t≥0 to count
the number of arrivals where a tails was flipped.

In this manner, we have thinned our original process into two subprocesses. Note that
if we superimposed the thinned processes, we would reconstruct the original process.

Theorem 3.6: Thinning

Suppose (Nt)t≥0 is a Poisson process with rate λ > 0. Suppose each arrival is
assigned, independent of (Nt) and independent of each other, one of k types with
respective probabilities p1, . . . , pk, with p1+. . .+pk = 1. Define N i

t to be the number
of arrivals of type i by time t, with 1 ≤ i ≤ k. Then the (N i

t )t≥0 are independent
Poisson processes, which have respective rates p1λ, . . . , pkλ.

Example 3.6

Suppose passengers arrive at a bus stop at rate λ > 0, and buses arrive at rate
µ > 0. Let N1

t and N2
t denote the Poisson processes for the passengers and buses,

respectively. What is the probability that k passengers get on the first bus?

While we could calculate this directly, consider the superimposed process Nt, which
counts arrivals of both buses and people. Then the probability that k passengers get
on the bus is the probability that the first k arrivals in Nt are passengers, and the
k + 1th arrival is a bus. By superposition, Nt is a Poisson process of rate λ + µ.
Moreover, we showed in homework that the probability that the first arrival is a
passenger is λ

λ+µ , and the probability that it is a bus is µ
λ+µ . Then the probability

is (
λ

λ+ µ

)k
µ

λ+ µ

Using the logic from this example, we have the following
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Corollary

Suppose σ(1), . . . , σ(k) are independent exponential variables with respective rates
λ1, . . . , λk > 0. Then

• σ := min{σ(1), . . . , σ(k)} ∼ Exponential(λ1 + . . .+ λk) = Exponential(λ)

• P(σ = σ(i)) = λi/λ

In other words, the first arrival time of any of the respective Poisson processes is
exponential with rate equal to the sum of the original rates, and the probability
that that arrival is from process i is simply the proportion of the total rate which is
contributed by λi.

Proof. The first point is essentially proved by the example above.

If we let N i
t be the Poisson process associated with σ(i), then each N i

t is a thinning of some
Nt, with a thinning rate of some pi for each i. Then if we let λ be the rate of this Nt, then
we must have λi = piλ. So we have pi = λi/λ.

Example 3.7

Suppose Y is a sum of N random variables X1, . . . , XN , where the Xi are i.i.d. as
Exponential(λ), and N ∼ Geom(p). What is the distribution of Y ?

Let Nt be a Poisson process of rate λ > 0. Note that we can then think of each Xk

as the interarrival time τk − τk−1. Then attach to each arrival a label (independent
of each other and of Nt)) of either L1 or L2, where the probability of L1 is p. Then
we can think of Y as the first arrival time of type L1. Specifically, let N1

t be the
process Nt, thinned out at rate p. Then Y is the first arrival time of N1

t , and thus
we have Y ∼ Exponential(pλ).
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Chapter 4

Limit Theorems

4.1 Variance and Covariance

Recall from the frequentist approach that one definition of the probability of an event is
calculated by conducting arbitrarily many trials and observing the ratio as the number goes
to infinity:

P(A) = lim
N→∞

SN

N

Here, the left side of the equation is just a number, so there is no randomness, but the
inside of the limit is a random variable that depends on the specific experiment outcomes.
So we observe that the ”randomness” of the quantity NA

N must go to zero as our experiments
increase. This motivates a way to quantify randomness:

Definition 4.1

Given a random variable X, the variance of X is

Var(X) = σ2
X := E[(X − E[X])2]

From a simple observation, for a constant variable X, X = E[X] and thus Var(X) = 0.
On the other hand, for a variable with high variance, X is often very far from E[X]. Thus,
the variance tells us how good of an approximation E[X] is for X.

A more general quantity that we can compute is the covariance:

Definition 4.2

Given two random variables, X,Y , the covariance of X and Y is

Cov(X,Y ) = σX,Y := E[(X − E[X])(Y − E[Y ])]

This essentially tells us how correlated two variables are. We call two variables un-
correlated if Cov(X,Y ) = 0. In particular, if we have independent variables X,Y , then
E[(X − E[X])(Y − E[Y ])] = E[X − E[X]]E[Y − E[Y ]] = 0. So independent variables are
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uncorrelated (but the converse is not necessarily true). Moreover, Var(X) = Cov(X,X).

The covariance has the important property of being bilinear. That is, it is linear in each of
the arguments independently, such that

Cov(aX + Y, Z) = aCov(X,Z) + Cov(Y,Z)

Cov(X, aY + Z) = aCov(X,Y ) + Cov(X,Z)

If we modify both arguments at once, we have:

Cov(aW + bX, cY + dZ) = acCov(W,Y ) + adCov(W,Z) + bcCov(X,Y ) + bdCov(X,Z)

More generally, we have the following:

Proposition 4.1

Given any scalars ai, bj ∈ R and random variables Xi, Yj , we have

Cov

 n∑
i=1

aiXi,

m∑
j=1

bjYj

 =

n∑
i=1

m∑
j=1

aibj Cov(Xi, Yj)

This allows us to easily prove a number of nice properties about variance and covariance:

Corollary

For any random variables X,Y , we have:

1. Var(aX + b) = a2 VarX for any a, b ∈ R.

2. Var(X) ≥ 0.

3. Var(X) = E[X2]− (E[X])2.

4. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

5. If X,Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).

Proof. 1) Note that the addition of b doesn’t change anything, since the quantity X −E[X]
is the same regardless. Then we have

Var(aX) = Cov(aX, aX) = a2 Cov(X,X) = a2 Var(X)

2) Since the quantity (X − E[X])2 ≥ 0, we have

Var(X) = E[(X − E[X])2] ≥ 0

3) By linearity,

Var(X) = E[(X − E[X])2] = E[X2]− 2E[XE[X]] + E[E[X]2]
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Since E[X] is a constant,

Var(X) = E[X2]− 2(E[X])2 + (E[X])2 = E[X2]− (E[X])2

4) Again, we can expand with linearity:

Var(X + Y ) = E[(X + Y − E[X + Y ])2]

= E[(X + Y − E[X]− E[Y ])2]

= E[((X − E[X]) + (Y − E[Y ]))2]

= E[(X − E[X])2] + E[(Y − E[Y ])2] + 2E[(X − E[X])(Y − E[Y ])]

= Var(X) + Var(Y ) + 2Cov(X,Y )

5) Follows from 4) since Cov(X,Y ) = 0 when X,Y are independent.

Example 4.1

Suppose τ ∼ exp(λ). Then we have E[τ ] = 1
λ . As we have previously calculated,

E[τk] =
k!

λk

So we have

Var(τ) = E[X2]− (E[X])2 =
2

λ2
− 1

λ2
=

1

λ2

Then if we have γ ∼ Γ(k, λ), then γ ∼ τ1 + . . .+ τk and thus

Var(γ) = Var(τ1 + . . .+ τk) = kVar(τ1) =
k

λ2

4.2 The Law of Large Numbers

Now let us revisit the situation we began this chapter with. If we conduct N trials of an
experiment, and let SN be the number of times the event A occurs, then the frequentist
approach claims that we should define

P(A) = lim
N→∞

SN

N

As we observed earlier, for this equation to make sense then the quantity SN

N must converge
to a consistent quantity; that is, the variance should be zero. To see this, observe that

Var(
SN

N
) =

1

N2
Var(SN ) =

1

N2
N Var(1A) =

Var(1A)

N

Since Var(1A) is a constant, we have

lim
N→∞

Var

(
SN

N

)
= lim

N→∞

Var(1A)

N
= 0
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This result is known as the Law of Large Numbers. This law states informally that although
SN/N may deviate from P(A) for finiteN , it will converge to a consistent limit, and moreover
that P(A) will be that limit. In other words, the distribution of SN/N will accumulate
around P(A) as N → ∞. There are two formulations of this. The first is what we have just
proved:

Theorem 4.2: Weak Law of Large Numbers

Let X be a random variable with E[X2] < ∞. Let X1, X2, . . . be i.i.d according to
X. Define Sn =

∑n
i=1Xi. Then the quantity Sn/n converges in L2 to E[X], that is,

E

[(
Sn

n
− E[X]

)2
]
→ 0

Proof. Since E[Sn/n] = nE[X/n] = E[X], this quantity is just the variance of Sn/n. From
the previous discussion, we then have

lim
n→∞

E

[(
Sn

n
− E[X]

)2
]
= lim

n→∞
Var

(
Sn

n

)
= lim

n→∞

Var(Sn)

n2

= lim
n→∞

Var(X1 + . . .+Xn)

n2
= lim

n→∞

Var(X)

n
= 0

There is also a stronger formulation of this statement, known as the Strong Law of Large
Numbers. This formulation says that Sn/n converges to E[X] almost surely; that is, for
nearly all ω ∈ Ω (or on a set of measure 1).

Theorem 4.3

Let X be a random variable with E[X4] < ∞. Let X1, X2, . . . be i.i.d. according to
X. Define S − n =

∑n
i=1Xi. Then P(Sn/n→ E[X]) = 1.

4.3 The Central Limit Theorem

The Law of Large Numbers tells us that as we take repeated values of a random variable, the
average value will converge to a single mean value (as long as E[X2] <∞, and almost surely
when E[X4] <∞). If we simulate for large (finite) values of n, we find that the distribution
of Sn/n not only centers about E[X], but tends to do so in the shape of a ”bell curve.” In
fact, this shape appears at relatively low values of n (even 10 or 20 trials is enough to begin
discerning a bell curve). Of course, in the limit, this bell curve becomes infinitely thin and
is the Dirac delta function.

For instance, if we roll a die many times, even though each individual value is equally likely,
it is unlikely that the average will be near 1, since this requires rolling lots of low numbers.
Similarly, the average is unlikely to be near 6. On the other hand, it is far more likely that
the average value is near 3.5, the expectation of one roll.
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This makes intuitive sense, since extreme behavior after repetition requires many instances
of extreme behavior in the same direction, when it is more likely that some of the extreme
behavior will act in the opposite direction and cancel out opposing behavior. Thus, in the
limit, we are less likely to get extreme behavior than to get behavior near the average. This
observation is formalized by the Central Limit Theorem.

Definition 4.3

A random variable X has the normal distribution with mean µ and variance σ2,
written X ∼ N (µ, σ2), if it is a continuous variable with probability density function

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
In particular, the standard normal is N (0, 1).

Changing the parameters of the normal distribution amounts to shifting or scaling it,
but the shape stays the same regardless. In order to describe this shape without regard to
the numerical value of the parameters, we will standardize the random variable.

Definition 4.4

The standard deviation of a random variable X is σ :=
√

Var(X).

Suppose we have some random variable Y . Then to standardize it, we would like to
shift this variable to Y ′ = Y ′(Y ) so that the following properties hold: µY ′ = 0 and
σ2
Y ′ = σY ′ = 1. Suppose we do this by setting

Y ′(Y ) :=
Y − µY

σY

Then we clearly have µY = 0. To check the variance, note that

Var(Y ′) =
1

σ2
Y

Var(Y − µY ) =
1

σ2
Y

Var(Y ) = 1

So given any random variable, we can standardize it so that it has mean 0 and variance 1.
When we do this for a normally distributed variable, we often call this a z-score. We will
apply a technique commonly used in statistics, where we identify the location of a given
point relative to the distribution.

Definition 4.5

Given a normal distribution N (µ, σ2) and some value x ∈ R, the z-score of x with
respect to N (µ, σ2) is

z :=
x− µ

σ

In other words, rather than identifying a given data point with its actual value, we will
simply measure how many standard deviations it is above or below the mean.

40



We are now prepared to state and prove the Central Limit Theorem:

Theorem 4.4: Central Limit Theorem

Let X1, X2, . . . be i.i.d according to a random variable X with µ = E[X] ∈ R and
0 < σ2 = Var(X) < ∞. Let Sn :=

∑n
i=1Xi be the sum of the first n values of Xi.

Let Xn := Sn/n be the average of the first n values of Xi.

Let µn = µXn
and σn = σXn

be the mean and standard deviations of Xn, respec-

tively. Let Zn be the standardization of Xn, that is,

Zn :=
Xn − µn

σn
=
Xn − µ

σ/
√
n

=
√
n
Xn − µ

σ

Then as n→ ∞, the distribution of Zn tends to N (0, 1).

Another way of viewing this is by looking at relative cumulative densities. That is, if we
let Y be a placeholder variable with Y ∼ N (0, σ2), then

lim
n→∞

P(a <
√
n(X − µ) ≤ b) = P(a < Y ≤ b) =

1√
2πσ2

∫ b

a

exp

(
− x2

2σ2

)
dx

In general, this may not be easy to calculate, as the integral of exp(−x2) is not able to
be expressed in terms of elementary functions. However, we can often use computers or
tables to approximate the values. We can also use DeMoivre’s rule, or the 68-95-99.7 rule,
to provide simple approximations. This rule states that for a normal distribution, 68% of
the data falls within one standard deviation of the mean, 95% within two, and 99.7% within
3.

In order to simply calculations, we will sometimes adopt two conventions for the probability
density function and cumulative distribution functions of the normal distribution. Given
some X ∼ N (µ, σ2), we write φX(x) := fX(x), and ΦX(x) := FX(x) =

∫ x

−∞ φX(x)dx.

Example 4.2

Let X be the indicator function of some event A, so X = 1A. Let X1, . . . be i.i.d.
trials of A, so Xi = 1Ai . Suppose E[X] = P(A) = p. Then

Var(X) = E[X2]− (E[X])2

Now in the case of an indicator function, X = 1 or 0, so X2 = X and we can say

Var(X) = E[X2]− (E[X])2 = E[X]− (E[X])2 = p− p2 = p(1− p)

Then letting Sn be the sum of the first n indicator functions and Zn be the stan-
dardization, then the central limit theorem says that

Zn =
Sn − nµ

σ
√
n

=
Sn − np

√
n
√
p(1− p)

n→∞−→ N (0, 1)
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Now consider a simple random walk. That is, suppose we start at position 0, and
take steps ξ1, ξ2, . . ., with P(ξi = 1) = P(ξi = −1) = 1/2. Then we can rewrite this
as ξi = 2Xi − 1, where Xi ∼ Bernoulli(p). So µξ = 0 and Var(ξ) = Var(2X − 1) =
4Var(X) = 4p(1− p). Since we have p = 1/2, this is Var(ξ) = 1.

4.4 Brownian Motion

We can use the limit theorems that we have just discussed to derive another example of
a stochastic process, known as Brownian motion. This process arose from observations in
biology, where nonliving particles were noted to spontaneously move in a chaotic pattern
at the microscopic level. Einstein later theorized that this motion arose through impacts
with randomly moving individual water molecules. Thus, this chaotic motion was the sum
of small impacts, each in a random direction.

If we let these impacts be represented by ξ1, ξ2, . . ., then we say that

B
(N)
t :=

1√
N

N∑
k=1

ξK =
√
N ξNt

N→∞−→ Bt

Here, Bt is an example of Brownian motion.

Definition 4.6

A stochastic process (Bt)t≥0 is said to be a standard Brownian Motion in one
dimension if:

• B0 = 0.

• The function t 7→ Bt is continuous.

• Bt −Bs ∼ Bt−s ∼ N (0, t− s) ∼
√
t− sB1.

• Bt −Bs is independent of Bv −Bu if (s, t] ∩ (u, v] = ∅.

It follows that for any time t, Bt ∼ N (0, t).

Intuitively that Brownian motion is a continuous time analogue of the simple random
walk, where the steps are taken to be infinitely small but happening infinitely often.

Now that we have derived Brownian motion, we can use it to prove properties of Gaussian
distributions, similarly to how we used the Poisson process to prove properties of Poisson
distributions.
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Proposition 4.5

Here are some properties of Gaussian distributions:

1. If X ∼ N (0, σ2) ⊥ Y ∼ N (0, η2), then X + Y ∼ N (0, σ2 + η2).

2. If Z ∼ N (0, 1), then σZ + µ ∼ N (µ, σ2).

3. If X ∼ N (0, a), then X ∼
√
aN (0, 1) ∼

√
aZ.

4. If X ∼ N (µ, σ2), then the z-score Z := X−µ
σ ∼ N (0, 1).

5. X1, . . . , Xn are i.i.d with distribution N (0, 1), then
∑
aiXi ∼ N (0,

∑
a2i ).

Proof. 1. If we consider a standard Brownian process (Bt)t≥0, then X ∼ Bσ2 and Y ∼
Bσ2+η2 −Bσ2 (by stationarity). By independent increments,

X + Y ∼ Bσ2 +Bσ2+η2 −Bσ2 = Bσ2+η2 ∼ N (0, σ2 + η2)

2. Using dx notation, we have

fσZ+µ(x)dx = P(σZ + µ ∈ [x, x+ dx])

= P(σZ ∈ [x− µ, x− µ+ dx]) = P(Z ∈ [
x− µ

σ︸ ︷︷ ︸
z

,
x− µ

σ︸ ︷︷ ︸
z

+
dx

σ︸︷︷︸
dz

])

= fZ(z)dz =
1√
2π
e

(x−µ)2

σ2
dx

σ

which is simply the pdf of a function with distribution N (µ, σ2).

The most important results of the above proposition can be neatly summarized using the
following important fact: linear functions of independent Gaussians are Gaussian.
If we remove the independence assumption, however, this may not be true.

When we combine Gaussian distributions, we can either combine them to create a multi-
variate Gaussian or a joint Gaussian.

Definition 4.7

A random vector
−→
Z := (X,Y ) is amultivariate Gaussian distribution with mean

−→µ =

[
µX

µY

]
and covariance matrix Σ =

[
Var(X) Cov(X,Y )

Cov(X,Y ) Var(Y )

]
if the distribution

of Z (or the joint distribution of (X,Y ) is given by

fZ(z) = f(X,Y )(x, y) =
exp( 12 (

−→z −−→µ )TΣ−1(−→z −−→µ ))√
(2π)2 det(Σ)

Here, the covariance matrix takes the place of the variance for the typical distribution.
This definition can easily be extended to any finite number of variables X1, . . . , Xn, simply
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by increasing the size of the vectors and matrices, and increasing the power of 2π.

Note that we suggestively labelled the above distribution a Gaussian distribution, but we
did not actually demand that the Xi were Gaussian variables themselves. However, we can
prove that this must be the case, and in fact we have a slightly stronger condition.

Definition 4.8

n variables X1, . . . , Xn are jointly Gaussian if for any a1, . . . , an, the linear com-
bination a1X+ . . .+ anXn is a (univariate) Gaussian distribution.

Note that if we already know the Xi are Gaussian, then this is a weaker condition than
independence by the previous proposition. On the other hand, if we know the Xi are jointly
Gaussian, then by setting all of the ai to 0 except for 1, we see that each of the Xi must be
Gaussian on their own.

Theorem 4.6

−→
Z = (X1, . . . , Xn) is multivariate Gaussian if and only if the X1, . . . , Xn are jointly
Gaussian.

If we graph a simple random walk, we will see that it consists of jagged triangular paths.
In the limit, then, Brownian motion is similarly jagged, but it is jagged everywhere. Similar
to the Weierstrass function, we have the following fact:

Proposition 4.7

The function t 7→ Bt is nowhere differentiable (with probability 1).

Proof. We have d
dtBt := limε→0

Bt+ε−Bt

ε ∼ limε→0
Bε

ε ∼ limε→0
1
εN (0, ε) ∼ limε→0 N (0, 1ε ).

This limit doesn’t exist, so the derivative does not exist (with probability 1).

Analogously to the the above facts about Gaussians, we have the following:

Proposition 4.8

If (Bt)t≥0 is Brownian motion, then (−Bt)t≥0 and (B̃s)s≥0 := (Bt+s − Bt)t≥0 are
both Brownian motion.

44



Theorem 4.9: Reflection Principle

Let (Bt)t≥0 be Brownian motion. For any number b > 0, define the arrival time at
b to be τb := min{t : Bt = b}. Then the probabilities that (Bt) ends up above b is

P(Bt > b) =
1

2
P(τb ≤ t)

That is, for every path which ends up ”above b” (at time t), there are twice as many
paths which touch b (by time t).

Proof. By the law of total probability, we have

P(Bt > b) = P(Bt > b|τb ≤ t)P(τb ≤ t) + P(Bt > b|τb > t)︸ ︷︷ ︸
=0

P(τb > t) =
1

2
P(τb ≤ t)

The term P(Bt > b|τb ≤ t) = 1
2 because of the symmetry of Brownian motion. For any path

starting at Bτb = b with Bt > b, the inverted path which also starts at Bτb = b has Bt < b.
So only half the paths starting at Bτb = b have Bt > b.

This proof is helpful because it allows us to more easily calculate the pdf of τb. By
definition, we have

Fτb(t) = P(τb ≤ t)

By the reflection principle, this is

P(τb ≤ t) = 2P(Bt > b) = 2P(
√
tB1 > b) = 2P(B1 >

b√
t
) = 2

∫ ∞

b√
t

1√
2π
e−

x2

2 dx

And using the fundamental theorem of calculus:

fτb(t) =
d

dt
Fτb(t) =

d

dt
2

∫ ∞

b√
t

1√
2π
e−

x2

2 dx = − 2√
2π
e−b2/2t(−1

2

b

t3/2
) =

1√
2π
e−b2/2t b

2t3/2

This allows us to easily extend to negative values of b:

fτb(t) =
|b|e−b2/2t

√
2πt3/2

Then we can calculate the probability that a standard Brownian motion ever hits a certain
threshold value a:

P(τa <∞) = lim
t→∞

Fτa(t) = 2

∫ ∞

−∞

e−x2/2

√
2π

= 1

Thus, Brownian motion hits every threshold value with probability 1. However, the time it
takes to do that is infinite in expectation:

E[τa] =
∫ ∞

0

t
ae−a2/2t

√
2πt3/2

dt =

∫ ∞

0

ae−a2/2t

√
2πt

dt
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However, this integral diverges, since e−a2/2t ≈ 1 for large t, and the integral
∫∞
b

1√
t
diverges.

So E[τa] = ∞.

Moreover, we can ask about the probability that we end up above a at any point in an
interval [0, t]:

P(( max
0≤s≤t

Bs) ≥ a) = P(τa ≤ t) = 2P(Bt ≥ a)

by the reflection principle. But we also have the following:

P(|Bt| ≥ a) = P(Bt ≥ a or Bt ≤ −a) = P(Bt ≥ a) + P(−Bt ≥ a) = 2P(Bt ≥ a)

In particular, we have the following fact:

Theorem 4.10

If |Bt| is the absolute value of standard Brownian motion, |Bt|, and we let
maxs∈[0,t]Bs be the ”running maximum” of Brownian motion, then |Bt| ∼
maxs∈[0,t]Bs.

4.5 Moment Generating Functions

So far, we have found two ways to extract information about an arbitrary distribution:
the mean, and the variance. These are examples of moments of a distribution or random
variable.

Definition 4.9

Given a random variable X, the n-th moment of X is E[Xn].

We can see that the mean of a distribution is simply its first moment. Moreover, the
variance is related to the second moment by the formula E[X2]− E[X]2 = Var(X).

We now turn our attention to the problem of finding the moments of the normal distribution.
In particular, consider Z ∼ N (0, 1). Then when k is odd, we have

E[Zk] =

∫ ∞

−∞
zk
e−z2/2

√
2π

dz

But this is the product of an odd and even function, so it is odd and thus the integral is 0:

E[Zk] = 0

For even k, then the moment is not zero, and the integral can be evaluated with Feynman’s
trick. Instead, we will use moment generating functions to evaluate this.

Definition 4.10

Given a random variable X, then the moment generating function of X is
MX(t) = E[etX ].
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Example 4.3

If X ∼ N (0, σ2), then MX(t) = et
2σ2/2.

In particular, the moment generating function allows us to easily calculate moments of
X:

M ′
X(0) =

d

dt
|t=0E[etX ] = E[XetX ]|t=0 = E[X]

More generally,

M
(k)
X (0) =

dk

dtk t=0
E[etX ] = E[XketX ]|t=0 = E[Xk]

So differentiating the moment generating function repeatedly allows us to calculate moment
easily. Returning to our previous question, and allowing for other variances, suppose X ∼
N (0, σ2).

MX(t) =

∫ ∞

0

1√
2πσ2

etx−x2/2σ2

dx

Moment generating functions serve an important function in probability which is analogous
to that of the Taylor series in analysis. For nice statistics f , we can express their expectations
as some polynomial

E[f(X)] = c0 + c1E[X] + c2E[X2] + . . .

In particular, as we generate more moments, we can better describe X, and in the limit, we
have the following:

Theorem 4.11

The distribution of a random variable X is uniquely determined by its moments.

This means that if computations using the moment generating function line up with a
function whose distribution we know, then the distributions must be the same.

Example 4.4

If X ∼ N (0, σ2) and Y ∼ N (0, η2), and X ⊥ Y , then the moment generating
function of X + Y is given by

MX+Y (t) = E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ]︸ ︷︷ ︸
by independence

From the previous example, we can fill this in:

MX+Y (t) = et
2σ2/2et

2η2/2 = et
2(σ2+η2)/2

But this is precisely the moment generating function of a variable with distribution
N (0, σ2 + η2), so we must have X + Y ∼ N (0, σ2 + η2).
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Example 4.5

Let X ∼ Exponential(λ). The moment generating function of X is

MX(t) = E[etX ] =

∫ ∞

0

etxfX(x)dx =

∫ ∞

0

etxλe−λxdx = λ

∫ ∞

0

e−(λ−t)xdx

=
λ

λ− t

∫ ∞

0

(λ− t)e−(λ−t)xdx =
λ

λ− t

This highlights the important note that a moment generating function may not exist
everywhere, but in order to be practical, it must exist for an interval about 0 so that we
can take the derivatives.

Recall from our discussion of normal distributions that if X,Y are normal and independent,
then X + Y is normal as well. the following is an example where this does not hold:

Example 4.6

Let X ∼ N (0, 1) and η be ±1, each with probability 1/2. Suppose X ⊥ η. Then let
Y = ηX. Note that we have

FY (y) = P(Y ≤ y) = P(X ≤ y)P(η = 1) + P(X ≥ −y)P(η = −1)

=
1

2
P(X ≤ y) +

1

2
P(−X ≤ y)

Since X is symmetric, X ∼ −X and thus

FY (y) = P(X ≤ y) = FX(y)

So FX = FY and thus X ∼ Y . Note also that X and Y are uncorrelated here:

Cov(X,Y ) = E[(X − 0)(Y − 0)] = E[XY ] = E[ηX2] = E[η]E[X2]︸ ︷︷ ︸
X⊥η

= 0

However, remember that being uncorrelated does not imply independence. Impor-
tantly, we cannot conclude that X + Y is normal, because it is not! Recall that a
normal distribution is continuous, and thus the probability that it takes any given
value must be 0. But we have

P(X + Y = 0) = P(X + ηX = 0) = P((1 + η)X = 0) = P(η = −1) =
1

2

Thus we could not have a fully continuous distribution as required by the normal
distribution.
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Remark

In fact, the distribution above is our first example of a mixed distribution. It assumes
the value 0 with probability 1/2 (discretely), and a continuous normal distribution
N (0, 4) with probability 1/2.

Recall that a collection of vectors
−→
X = ⟨X1, . . . , Xd⟩ are jointly Gaussian if we have

that, for all −→α = ⟨α1, . . . , αd⟩ ∈ Rd, we have that −→α ·
−→
X = α1X1 + . . .+ αdXd is Gaussian.

In particular, we have that −→α ·
−→
X ∼ N (−→α · −→µ ,−→α · Σ−→α ). Here, Σ is the covariance matrix,

which has Cov(Xi, Xj) as its ij-th entry.

Some notes about the covariance matrix is that it is symmetric, positive semidefinite, and
has the variances Var(Xi) along the diagonal. This matrix is a substitute in the multivariable
case for the variance, such that a multivariate Gaussian distribution is parameterized by
(−→µ ,Σ) rather than (µ, σ2).

We can alternately express the covariance matrix as follows:

Σ =


Var(X1) . . . . . . Cov(X1, Xd)

... Var(X2) . . . Cov(X2, Xd)

Cov(Xd−1, X1) . . .
. . .

...
Cov(Xd, X1) . . . . . . Var(Xd, Xd)

 = E[(
−→
X −−→µ )(

−→
X −−→µ )T

Let us now consider the moment generating function of a multivariate Gaussian variable
−→
X .

We have
M−→

X
(−→α ) = E[e

−→
X ·−→α ] = e

−→αΣ−→α/2 +−→µ · −→α

Since we know that multivariate Gaussians are also jointly Gaussian, we also have

M−→α ·
−→
X
(t) = E[et

−→α ·
−→
X ] = et

2−→α ·Σ−→α/2+t(−→µ ·−→α

4.6 Multivariate Brownian Motion

Now that we have understood how Gaussian distributions operate in multiple dimensions,
we turn our attention to the study of Brownian motion in multiple dimensions. This is
an important extension of our previous study, since Brownian motion occurs in physical
phenomena in both 2 and 3 dimensions, and not simply walks along a line.

Example 4.7

Consider the random vector
−→
X = ⟨Bs, Bt⟩ for some Brownian motion (Bt)t≥0, and

assume that s < t. Then for any −→α ∈ R2, we have

−→α ·
−→
X = α1Bs + α2Bt = α1Bs + α2(Bt −Bs +Bs) = (α1 + α2)Bs + α2(Bt −Bs)
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But we know that Bt − BS ⊥ Bs, so this is a linear combination of independent

Gaussians. Thus, −→α ·
−→
X is also Gaussian. Since −→α was arbitrary, we see that Bs, Bt

are jointly Gaussian. Note that this idea holds if we extend further to n dimensions.

Example 4.8

Suppose we define Xt := Bt − tB1, with 0 < t < 1. Then for any fixed t, Xt is a
linear combination of two times in a Brownian motion, which we just showed are
jointly Gaussian. Thus Xt is Gaussian. Then we can determine its distribution by
calculating directly:

E[Xt] = E[Bt]− tE[B1] = E[N (0, t)]− tE[N (0, 1)] = 0

We can also calculate the variance:

Var(Xt) = Var(Bt)+Var(−tB1)+2Cov(Bt,−tB1) = t+t2+−2t(min(t, 1)) = t−t2 = t(1−t)

So we see that Xt ∼ N (0, t(1− t)).
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Chapter 5

Markov Chains

5.1 Elementary Markov Chains

Suppose we consider some general stochastic process (Xn)n≥0 in discrete time which draws
from a finite sample space S = {S1, . . . , SN}. In order to fully describe this process, we
must be able to calculate the joint distributions of any finite set of times in the stochastic
process. In other words, given any n ≥ 0 and any elements x0, . . . , xn ∈ S, we must be able
to calculate fX0,...,Xn(x0, . . . , xn). This is a very difficult calculation in general, but some
of the techniques we have learned help us determine these values.

For instance, since we have a notion of these draws occurring in some temporal order, the
law of multiplication helps us break this into small products:

P(X0 = x0, . . . , Xn = xn) = P(X0 = x0) ·
n∏

k=1

P(Xk = xk|X0 = x0 . . . Xk−1 = xk−1)

One issue with these products is that they have high dimensionality. To reduce the dimension
of the problem, we use Markov chains. Markov chains, and more generally the Markov
property, essentially says that the past and future are independent, and that the process
will start over from each given state, independent of how it got there.

Definition 5.1

We say that (Xn)n≥0 has the Markov property if for any k and any values
x0, . . . xk ∈ S, we have

P(Xk = xk|X0 = x0, . . . Xk−2 = xk−2, Xk−1 = xk−1) = P(Xk = xk|Xk−1 = xk−1)

Here, Xk = xk represents the future, Xk−1 = xk−1 represents the present state, and all
the Xi, i ≤ k − 2 terms are the past. So if (Xn)n≥0 has the Markov property, then we can
simplify our first equation to be

P(X0 = x0) ·
n∏

k=1

P(Xk = xk|X0 = x0 . . . Xk−1 = xk−1) =

n∏
k=0

P(Xk = xk|Xk−1 = xk−1)
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However, this doesn’t fully capture the notion of ”starting over.” In order to do so, we want
to require not only independence of different times, but also independence with respect to
time. This is precisely the property that we have previously referred to as ”stationarity.”

Definition 5.2

We say (Xn)n≥0 is time homogeneous or has stationarity if there existN@ numbers
pi,j |i, j ∈ S such that P(Xk = xk|Xk−1 = xk−1) = pxk−1,xk

for all k.

The values pi,j here represent the probability at any given time of moving from state i
to state j. Thus we have reduced the previous formula to

n∏
k=0

P(Xk = xk|Xk−1 = xk−1) = P(X0 = x0)px0,x1
px1,x2

. . . pxk−1,xk

This means that rather than having to know every possible conditional probability for any
combination of values, we only need to know the probability that X0 assumes each of the
possible initial values, and the transition probabilities px,y. For this finite case, that means
we only need to calculate N2 +N values, rather than an infinite number of values.

Definition 5.3

A stochastic process in discrete time with finite state space S = {s1, . . . , sn} that
has the Markov property and is time homogeneous is a time homogeneous finite
Markov chain.

From the discussion above, we only need two pieces of information to identify a Markov
chain. First, we need to know the initial distribution µ = (µs1 , . . . , µsn), which is a 1 × n
row vector such that µsi is just the probability that the starting value is si, such that
µsi = P(X0 = si). In order for these probabilities to make sense, we would mandate that
µi ≥ 0 for all i and that

∑
µi = 1.

We will also record all the transition probabilites in a stochastic matrix P = (pxi,xj
)xi,xj∈S ,

where pxi,xj = P(Xk = xj |Xk−1 = xi) represents the probability of moving from the row
state xi to the column state xj . In order for this to make sense, we must have pxi,xj ≥ 0
for all xi, xj and

∑
j pij = 1 when summing over a row (but not necessarily a column).

We conventionally refer to P itself as the Markov chain, since µ only determines the initial
state, and P governs all the changes throughout time.

Before we move on, let us make some notes about notation. Given some initial distribution
µ, we write P(Xn = xn), or more generally P(Xn ∈ A) for some A ⊆ S, to be Pµ(Xn = xn)
and Pµ(Xn ∈ A) to explicitly specify the original state of the Markov chain. Moreover,
when µ = (0, . . . 0, 1, 0 . . . , 0), such that it is guaranteed that we start in state sx, then we
write Psk = Pµ to specify the known starting value, such that Psk(Xn = xj) = P(Xn =
xj |X0 = sk). Lastly, we will write the transition properties in the shorthand pij . Moreover,
when there is understood to be some fixed ordering of S = {s1, . . . , sn}, we will sometimes
refer to the state si as simply i.
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Suppose we want to calculate the general distribution of X1, given the initial distribution
µ. Then this is

Pµ(X1 = j) =
∑
k∈S

Pµ(X0 = k)︸ ︷︷ ︸
µk

Pµ(X1 = j|X0 = k)︸ ︷︷ ︸
pkj

In order to calculate this, consider what happens when we calculate

µP =
[
µ1 . . . µn

] p11 . . . p1n
...

. . .
...

pn1 . . . pnn

 =
[∑

j µjpj1 . . .
∑

j µjpjn
]

So we see that the probability Pµ(X1 = j) is precisely given by the jth element of µP . So
the row vector µP essentially gives us the ”initial distribution” for time 1 rather than time
0.

If we then consider X2, we have the following

Pµ(X2 = j) =
∑
k∈S

∑
i∈S

Pµ(X0 = i)Pµ(X1 = k|X0 = i)Pµ(X2 = j|X0 = i,X1 = k)︸ ︷︷ ︸
=P(µ(X2=j|X1=k)

=
∑
k∈S

∑
i∈S

µipikpkj =
∑
k∈S

(µP )kpkj

By the previous calculation, this value is the jth element of µPP = µP 2. Then by induction,
we have the following:

Theorem 5.1

Let (Xn)n≥0 be a Markov chain with initial distribution µ and stochastic matrix P .
Then for any value j and any time n, we have

Pµ(Xn = j) = (µPn)j

where (µPn)j is the jth element of µPn.

Example 5.1

Suppose a frog hops between two lily pads. Before each hop, the frog flips a p-coin
if the frog is on pad 1, and a q-coin if the frog is on pad 2 (with not p+ q necessarily
1). If the frog flips heads, it switches pads, otherwise, it stays on the same pad.

Given this information, we can write the stochastic matrix as follows:

P =

[
p11 p12
p21 p22

]
=

[
1− p p
q 1− q

]
Moreover, the distribution of the initial pad the frog is on must take the form

µ =
[
r 1− r

]
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For some r ∈ [0, 1]. Then the distribution of the pad the frog is on at time n is

P(Xn = 1) = (µPn)1,P(Xn = 2) = (µPn)2

There is in general no guarantee that any single path through states in a Markov chain
converges to some single state. In the example above, if p, q > 0, then the frog’s path almost
never converge to one lily pad. However, it is indeed possible for the distribution at time n,
given by µ(n), to converge.

Suppose that µ(n) converges to some row vector π. Then we must have

π = lim
n→∞

µ(n) = lim
n→∞

µPn+1 = P lim
n→∞

µPn = Pπ

So π can only be a limit for the distribution if it satisfies π = πP . We can think of these
distributions as fixed points or steady states within the space of distributions.

Definition 5.4

A 1× n row vector π which has π = Pπ and has πi > 0 for all i and
∑

i πi = 1 is a
stationary distribution for P .

Note that we do not have guarantees of uniqueness here - different initial states may
accumulate around different steady states. Moreover, we have not yet shown that every
chain converges.

Example 5.2

Consider the 2 × 2 case. Suppose that π =
[
π1 π2

]
. Also, the stochastic matrix

must take the form

[
1− p p
q 1− q

]
. So if π is a stationary distribution, it must be

the case that

π =
[
π1 π2

]
=

[
1− p p
q 1− q

] [
π1 π2

]
=

[
π1(1− p) + π2q
π1q + π2(1− q)

]
Which implies that

0 = −pπ1 + qπ2 = −pπ1 + q(1− π1) =⇒ π1 =
q

p+ q

and similarly

π2 =
p

p+ q

So
π =

[ q
p+q

p
p+q

]
if the limit exists.
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We can interpret this result by saying that the kth entry of π is the fraction of time, on
average, that the chain spends in state k.

Let us now handle the question of convergence in the 2× 2 case. Although we do not know
whether there is convergence, we do know that if there is convergence, we must have π as
the limit. Thus, define ∆(n) := µ(n) − π. So we want to show that ∆(n) → 0.

For any n, we can use the properties of the Markov chain to replace matrix multiplication.
We have

∆
(n+1)
1 = µ

(n+1)
1 + π1 = µ

(n)
1 (1− p) + µ

(n)
2 q − q

p+ q

using the fact that µ
(n)
2 = 1− µ

(n)
1 ,

∆
(n+1)
1 = µ

(n)
1 (1− p− q) + q

[
1− 1

p+ q

]
= µ

(n)
1 (1− p− q)− q

[
1− p− q

p+ q

]
= (1− (p+ q))(µ

(n)
1 − q

p+ q︸ ︷︷ ︸
π1

) = (1− p− q)∆
(n)
1

Thus we must have ∆(n) = µ(n) − π. Moreover, from this calculation,

∆n+1 = (1− p− q)∆(n) = (1− (p+ q))n∆(0) = (1− (p+ q))n(µ− π)

Then µ(n) converges to π if |1− (p+ q)| < 1.

Let us also consider some corner cases. If p = q = 0, then the previous formula for π is
invalid by division by 0. Moreover, we can see intuitively that the initial distribution will
never change, so that every distribution is a stationary distribution. This makes sense,
because our matrix in this case is given by

P =

[
1 0
0 1

]
Additionally, if p = q = 0, then the chain will never converge to our stationary point π,
unless µ = π.

Example 5.3

Suppose we extend the previous lily pad example to any larger number of pads. How-
ever, we mandate that there are two groups of lily pads, and that there probability of
moving between groups is 0. We impose no constraints on the probability of moving
within a group. Then the matrix is given by

P =

[
P̃ O

O Q̃

]
where P̃ and Q̃ are the stochastic matrices of the restrictions to each group.
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We call the ability to break the chain into two smaller chains a ”reduction” of the chains.
When a chain can be reduced, we see that convergence to the steady state π fails unless
µ = π.

Definition 5.5

Let i, j ∈ S be two states. Let M > 0 be an integer. Then we denote by p
(M)
ij the

probability P(XM = j|X0 = i). Moreover, p
(M)
ij is the i, jth entry of PM .

Intuitively, this is the probability that we reach state j from state i in exactly M steps.
Then to be irreducible, we want there to be no isolated subgroups. That is, we should
eventually be able to get between any two states.

Definition 5.6

A chain P is called irreducible if for any states i, j ∈ S, there exists some M > 0

such that p
(M)
ij > 0.

Note that M may depend on i, j in general.

In another edge case, when p = q = 1, then we have ”periodic” behavior cycling through the
states. For instance, if we alternate between two states, then a distribution which begins
entirely in one state will never converge to any stationary distribution.

Intuitively, periodicity occurs when there are states such that travel between them over
exactlyM steps depends onM . For instance, in the alternating case, we would only be able
to travel between i, j in an odd number of steps. This restriction is what we call periodicity.

Definition 5.7

Let i ∈ S be a state. Consider the set Ri := {n ≥ 1|p(n)ii > 0} of all the numbers
such that there is a path between i and itself. Then the period of i is di := gcd(Ri).

Definition 5.8

A chain P has period d ∈ N if every state i ∈ S has period di = d.

Definition 5.9

A chain P is aperiodic if it has period 1.

For instance, if there is always a nonzero probability of remaining in any state, then the
chain is aperiodic.
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Example 5.4

Consider the set Z4, and consider a random walk on this graph (visualized as a walk
around a circle with four points). Is this walk periodic?

Take i = 1, and consider R1. Note that after every step, the parity of the state must
change. So it takes an even number of steps to return to 1: R1 = {2, 4, 6, . . .}. Thus
d1 = 2. Similarly, di = 2 for every i here. So the period of the walk is 2 and the
walk is periodic.

However, if we consider Z3 instead, we get R1 = {2, 3, 4, . . .} = N \ {1}. So d1 = 1
and this walk is aperiodic.

Note that our definition above only defines the period when every state has the same
period. Thus, some states are not aperiodic, but also do not have a period. This ends
up being sufficient for our purposes, since we only consider aperiodic chains which are also
irreducible.

Lemma

Let P be an irreducible chain. Then every state has the same period, so there is
some d such that di = d for every i ∈ S.

Then every time we discuss an irreducible chain, we can assume it has a well-defined
period.

Lemma

If P is finite, irreducible, and aperiodic, then there is someM > 0 such that p
(m)
ij > 0

for any m > M .

The result of this lemma essentially says that although some states may initially be
inaccessible from others, the graph of reachable states will eventually be fully connected.

Example 5.5

For any odd integer n = 2k + 1, if P is a random walk on the circular graph of Zn,
then there is a way to pass between any two states in an odd number of steps or
an even number of steps. Since we can always increase this number of steps by 2
by taking two steps in opposite directions, there is a path of any sufficiently large
length between any two states. Precisely, this number is M = k.

Definition 5.10

Let i ∈ S be a state and (Xn)n≥0 be a chain. Then define Ti = min{k ≥ 0|Xk = i}
to be the first hitting time of i. Define T+

i := min{k ≥ 1|Xk = i} to be the first
return time of i.
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Definition 5.11

A state i is recurrent if Pi(T
+
i <∞) = 1. That is, if the chain starts in state i, then

it eventually returns with probability 1. If this is not the case, then i is transient.

Proposition 5.2

If P is a finite irreducible chain beginning in state i, Ei[T
+
i ] <∞ and there exists a

unique stationary distribution π with the ith entry given by πi =
1

Ek[Tk]
.

Proof. Fix some state i ∈ S. Let S+,1
i , S − i+,2, . . . be the inter-return times to the state i,

given that we started in state i. Note that S+,1
i = Ti. Moreover, by the Markov property,

these are independent and identically distributed. Finally, consider Nm := S+,1
i + . . .+S+,m

i

to be the time it takes to return m times. Then the total count of visits is m. Then since
πi is the fraction of time spent in state i in the long run, we have

πi = lim
n→∞

1

n

n∑
k=1

1{Xk=i} = lim
m→∞

m

Nm
=

1

Ei[T
+
i ]

where the second equality follows from the irereducibility argument, which gives us recur-
rence. Thus the theorem is proved.

Example 5.6: Knight’s Walk

Consider a knight traveling around a chessboard. How long, on average, does it take
to return to the starting square?

We first order the squares on the board and create an unnormalized stationary dis-
tribution π̃. Recalling that the entries represent the relative amount of time spent
at a given square, and that the ability to get to a square depends on the number
of squares which are connected to it by a knight’s move (the degree of the square
within the graph of knight’s moves). So our unnormalized vector has π̃i = deg(i).

To normalize, we then divide by twice the number of edges, to get πi =
deg(i)
2|E| . Then

we can use the above formula to get

Ei[Ti] =
1

πi
=

2|E|
deg (i)

=
336

deg(i)

For instance, if the knight starts in a corner, then the degree is 2, and thus
Ecorner[T

+
corner] = 168.

Theorem 5.3

If a finite chain P is irreducible and aperiodic, then there exists some stationary
distribution π such that for all initial distributions µ, µ(n) = µPn → π.
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Note that the irreducible and aperiodic condition is necessary but not sufficient. For
instance, consider the chain

P =

[
1 0
1 0

]
Then every distribution converges to the distribution π =

[
1 0

]
, but the chain is reducible

as there is no way to reach state 2 from state 1 (i.e. the right column is 0 for any power
P k).

This discussion allows us to approach the law of large numbers when we don’t have an
independence assumption.

Definition 5.12

We call a chain ergodic if there exists π stationary such that for any function
F : S → R, then

lim
n→∞

1

n

n∑
k=1

F (Xk) =
∑
i∈S

F (i)πi

Theorem 5.4: Ergodic Theorem

If a finite chain P is irreducible and aperiodic, then it is ergodic.

In other words, the average of a function F over time (n considered as time), is the
same as as the average of the function over space (S considered as space). This idea is very
powerful and used in physics and Fourier analysis.

Remark

The above three theorems hold if S is finite. They also hold for countably infinite
S, so long as Ei[Ti] <∞.

Recall that we can think of πi as the long-run fraction of time spent in state i. In other
words, we have

πi = lim
n→∞

1

n

n∑
k=1

1{Xn=i}

We can also consider the inter-return times, that is, S+,1
i = Ti, S

+,2
i , . . ., and we write

Nm =
∑m

k=1 S
+,k
i . When we have Ei[T

+
i ] <∞, then m goes to infinity as n does, so we can

rewrite as

lim
n→∞

1

n

n∑
k=1

1{Xn=i} = lim
m→∞

m

Nm
= lim

m→∞

1
S+,1
i +...+S+,m

i

m

By the Markov property, each of these inter return times is independent, and all of the terms
Sk,+
i with k > 1 are distribution according to T+

i , so using the law of large numbers we get

lim
m→∞

1
S+,1
i +...+S+,m

i

m

=
1

Ei[T
+
i ]

59



(Note that the first term is distributed according to Ti instead of T+
i , since we may not

start in state i; however, this distinction does not matter in the limit).

5.2 First Step Analysis

Suppose we generalize the notion of hitting times for a state to hitting times for a set.

Definition 5.13

Let A ⊆ S. Then define the first hitting time of A to be

TA(X0, X1 . . .) = TA := min{n ≥ 0|Xn ∈ A}

Of course, when x ∈ A, then we start in A so PX(TA = 0) = 1. On the other hand, if
x /∈ A, then we are guaranteed to have to take at least one step. So we can rewrite this as

TA(X0, X1, . . .) = 1 + TA(X1, X2, . . .)

Let us define some convenience functions:

p(x) := Px(TA <∞)

g(x) := Px(XTA
= b)

m(x) := Ex[

TA−1∑
k=0

g(Xk)]

Then when we start outside of A, we can write

m(x) = g(x) + Ex[

TA−1∑
k=1

g(Xk)

Conditioning on the first step we take, this is

m(x) = g(x) =
∑
y∈S

Px(X1 = y)Ex

[
TA−1∑
k=1

g(Xk)|X1 = y

]
= g(x) +

∑
y∈S

pxym(y)

with the boundary condition
m(x) = 0, x ∈ A

5.3 Classification of States

We will now investigate further ways that we can classify different states in a Markov chain.

Definition 5.14

Given a chain P , we say that two states i, j ∈ S communicate, denoted i ↔ j, if

there exists m,n ≥ 0 such that p
(m)
ij , p

(n)
ji > 0.
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Intuitively, this means you can pass from one state to the other and back. We note that
this is an equivalence relation on S. Thus, we can define the equivalence classes:

Definition 5.15

Given some state i ∈ S, the communication class of i is defined as [i] = {j ∈ S :
i↔ j}.

Recall that a state i ∈ S is recurrent if Pi(T
+
i <∞) = 1, and is transient otherwise. We

can apply siilar language to communication casses:

Definition 5.16

A communication class R is recurrent if pij = 0 for all i ∈ R, j /∈ R.

In other words, there is no way to leave the communication class.

Definition 5.17

A communication class T is transient if it is not recurrent; that is, there exist
i ∈ T , j /∈ T such that pij > 0.

Note that this definition implies you can not return to the communication class, since
otherwise that would mean that j would be in the transient class. So you can leave a
transient class, but not return to it.

Proposition 5.5

If i ∈ R for some recurrent communication class, then Pi(T
+
i < ∞) = 1 (all states

are recurrent) and for any j ∈ R, Pi(Xn = j for infinitely many n) = 1.

Proposition 5.6

If T is transient, any Markov chain starting in T will eventually leave it and never
return.

Definition 5.18

A chain P is irreducible if it has exactly one communication class S = R (which
must be recurrent).

Example 5.7: Gambler’s Ruin

Consider a biased random walk with a p-coin, such that we stop the walk when it
reaches the lower bound of a or the upper bound of b. This stopping condition means
that any chain is ”absorbed” when it hits the boundary A = {a, b}. So the recurrent
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communication classes are R1 = {a} and R2 = {b} and the transient class is the
remainder: T = {a+ 1, . . . , b− 1}.

Example 5.8

Suppose we have a six state space S = {1, 2, 3, 4, 5, 6} and a chain with transition
matrix

P =


1/3 2/3 0 0 0 0
1/2 1/2 0 0 0 0
1/6 1/6 1/6 1/3 1/6 0
0 0 3/5 1/5 1/5 0
0 0 0 0 1/2 1/2
0 0 0 0 2/3 1/3


Note that the diagonal entries are nonzero, so every state can return to itself after
an iteration of the chain. Let us consider the states which can be passed to:

1 → {1, 2}
2 → {1, 2}
3 → {1, 2, 3, 4, 5}
4 → {3, 4, 5}
5 → {5, 6}
6 → {5, 6}

If we represent this as a graph, we can draw paths through the graph to determine
the recurrent and transient states and classes. Note that the classes {1, 2} and {5, 6}
are both communication classes, since they have arrows in both directions within
the class, but there are no arrows out of the class. So the recurrent classes are
[1] = [2], [5] = [6]. This directly implies that 1,2,5,6 are all recurrent. Lastly, states 3
and 4 communicate with each other, so {3, 4} is a communication class, and we can
clearly leave this class, so it is transient. Then 3,4 are both transient states.

Theorem 5.7

For any chain P with finite state space, we can partition S into a disjoint union of
recurrent communication classes R1, . . . ,Rm and transient communication classes
T1, . . . , Tn.

If we do this and then reorder our states so that the recurrent classes are together and
come before the transient classes, then our matrix will take the form of a block matrix:

P =


P1 O . . . O
O P2 . . . O
...

...
. . .

...
∗ ∗ ∗ ∗


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where the stars represent the rows for the transient classes (since they can enter other classes,
but cannot be entered into by recurrent classes). We call this a substochastic matrix.

By partitioning our general chain in this way, we can apply the theorems we found about
specific chains, restricted to each recurrent class. That is, if we think about the submatrices
P1, P2, . . . as subchains, then they will behave like an irreducible Markov chain within their
respective recurrent classes.

Note that if we know some state i ∈ S is transient, then attempting to compute the expected
return time to Ei[T

+
i ] will always give ∞. Thus, we need to ignore the transient states. On

the other hand, if i is recurrent, then computing Ei[Ti] allows us to determine the stationary
distribution.

Continuing the above example,

Example 5.9

We want to compute P3(T{12} < ∞). In other words, given that we start in the
transient state 3, what is the probability we end up in the class [1]?

using first step analysis, define r(x) = Px(T{1,2} <∞). Clearly, r(1) = r(2) = 1 and
r(5) = r(6) = 0. By looking at the matrix, r(3) = 1/6r(1) + 1/6r(2) + 1/6r(3) +
1/3r(4) + 1/6r(5). Similarly, we compute r(4) and solve to get r(3) = 4/7.

5.4 Countable Markov Chains

We will now extend our discussion of Markov chains so far to allow for countable state
spaces S.

Example 5.10

Consider a biased random walk reflected at 0, such that S = N. Then if we consider
any state besides 0, it will transition into other states as follows:

pij =


p, j = i+ 1

1− p, j = i− 1

0 otherwise

In the case i = 0, any flip will be ”reflected” into 1, so

p0j =

{
1, j = 1

0 otherwise

We will now recast some of the properties we investigated in the finite case in a manner
that will allow us to convert into countable chains.
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Theorem 5.8

Let P be an irreducible chain. Then there exists a recurrent states i ∈ S if and only
if all states are recurrent and for any states i, j ∈ S, the expected number of visits
to j starting from i is infinite:

Ei

[ ∞∑
k=0

1{Xk=j}

]
= ∞

Theorem 5.9

Let P be irreducible. Then P is transient if and only if for any i, j ∈ S,

Ei

[ ∞∑
k=0

1{Xk=j}

]
<∞

We should note that although we have defined both using statements about all pairs of
states, irreducibility shows that these two cases are the only two cases (and are disjoint).

Note that we can use linearity and expectation of indicators in the equation above to find
that this is

∞∑
k=0

Pi(Xk = j) =

∞∑
k=0

p
(k)
ij

Moreover, p
(k)
ij → πj in the limit.

We will now sketch a proof for the above two theorems.

Proof. Fix a state i ∈ S and let Vi be the number of visits to state i:

Vi =

∞∑
k=0

1{Xk=i}

Define q to be the probability that i is eventually returned to:

q := Pi(T
+
i <∞)

Then letting p = 1−q, this is the probability that the chain never returns to state i. I claim
that Vi ∼ Geom(p).

To see this, note that the event Vi = m is equivalent to the chain returning to i m−1 times,
and subsequently never returning. This means for the first m− 2 returns, we have a return
afterward, and the probability of this is given by q. Then the probability of never returning
after is p:

Pi(Vi = m) = qm−2p

Then we have
∞∑

n=0

p
(n)
ii = Ei[Vi] =

1

p
=

1

1− q
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So this expectation is finite whenever q < 1 (there is a chance of leaving), then the state is
transient. This makes sense, since as time goes to infinity, it becomes increasingly unlikely
that we hit p at least once. If q = 1 (we are guaranteed to stay), then the expectation is
infinite and the state is recurrent.

To summarize, we find that a chain is transient when the expected number of revisits is
finite, and recurrent when the expectation is infinite. This extends neatly to any two states,
since we have the irreducibility assumption.

This means that when P is transient, we have Ei[T
+
i ] = ∞, so πi = 1

Ei[T
+
i ]

= 0. So the

interpretation is that the chain spends none of the long-run fraction of time in a transient
state. Note, however, that this can also happen for recurrent chains.

Definition 5.19

An irreducible chain P is null recurrent if, given any state i, the expected number
of visits is infinite but the long-run time spent in i is zero:{∑∞

n=0 p
(n)
ii = ∞

limn→∞ p
(n)
ii = 0

P is positive recurrent if, given any i, the expected number of visits is infinite but
the long-run time spent in i is positive:{∑∞

n=0 p
(n)
ii = ∞

πi = limn→∞ p
(n)
ii > 0

The key fact is that for an infinite state space S, positive recurrent chains enjoy all the
properties of finite chains.

Theorem 5.10: Kac’s Theorem

Let P be a chain on an infinite state space S.

1. An irreducible chain P is positive recurrent if and only if Ei[T
+
i ] <∞ for all i

and there exists a unique stationary distribution such that πi =
1

Ei[T
+
i ]

.

2. If P is irreducible, aperiodic, and positive recurrent, there exists π such that
given any initial distribution µ,

Pµ(Xn = i) = (µPn) → π

3. For any F : S → R,

lim
n→∞

1

n

n∑
k=1

F (Xk) =
∑
i∈S

F (i)πi = Eπ[F (X0)]
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Example 5.11

Returning to the biased random walk, then if we start in some state x ≥ 1 and ask
the probability that we reach some fixed N before 0 (gambler’s ruin) is

Px(XT0,N
= N)

When p = 1
2 , this is

x− 0

N − 0
=

x

N

When p ̸= 1
2 , this is

( qp )
x − 1

( qp )
N − 1

Given this, the probability that we never hit x is the limit as N goes to infinite:

Px(T0 = ∞) =


lim x

N = 0, p = 1/2

lim
( q
p )

x−1

( q
p )

N−1
= 1− ( qp )

x, p > 1/2

lim
( q
p )

x−1

( q
p )

N−1
= 0, p < 1/2

Then, starting at x, the probability that we do hit 0 is

Px(T0 <∞) = 1− Px(T0 = ∞) =

{
1, p ≤ 1/2
q
p
x
, p > 1/2

So we can only hope to have a stationary distribution when p ≤ 1/2, since otherwise
we have transience. However, for p = 1/2, we can show that there is no stationary
distribution, since πi = 0, so we have null recurrence. Lastly, we have positive
recurrence when p < 1/2, and in this case the distribution is

πx = c(
q

p
)x =

p

p− q
(
q

p
)x

5.5 Branching Processes

Suppose we have some population of individuals, and after some fixed time period, each
individual dies and is replaced with a number of individuals according to some random
variable N . Suppose that each of these replacements is independent as well. Then after
another period of time, or round, this occurs again for each of the new individuals. This is
an example of what we call a branching process.
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Definition 5.20

The following is the definition of a branching process known as a Galton-Watson
tree. Suppose a random variable N takes nonnegative integer values. Suppose a

certain population has Xk individuals at round k. Let N
(k)
i denote the number of

individuals which replace individual i, such that N
(k)
i ∼ N for all i, k. Then we

recursively define Xk+1 = N
(k)
1 + . . . + N

(k)
Xk

to be the number of individuals in
round Xk+1. If we fix the number of starting individuals X0, then this defines a
Galton-Watson tree. In particular, we adopt the convention X0 = 1 unless stated
otherwise.

Note that we can interpret this as a Markov chain with countable state space (0, 1 . . . , ).
Note also that 0 is an absorbing state. Moreover, for any k > 0, because each individual
branches independently of the others, the probability that there are k individuals in one
round and 0 in the next is given by P(N = 0)k.

Definition 5.21

Suppose a random variable X takes nonnegative integer values. Then the generat-
ing function of X is

ϕX(t) := E[tX ]

This can also be represented as the formal power series

∞∑
k=0

tkP(X = k)

Proposition 5.11

Consider a Galton-Watson tree with branching variable N . Then the extinction
probability η := limn→∞ P(Xn = 0) is a fixed point of ϕN (x).

Proof. Suppose that the individual branches into k individuals. Then each new individual
defines a new tree, which goes extinct independent of the others. So P(extinction|X1 = k) =
ηk. Then define ηi as the probability of extinction by round i. Thus for any n, we have

ηn+1 =

∞∑
k=0

P(Xn+1 = 0|X1 = k)P(X1 = k)

But by the independence argument we have

P(Xn+1 = 0|X1 = k) = ηkn

So

ηn+1 =

∞∑
k=1

ηknP(N = k) = ϕN (ηn)

67



Since η = limn→∞ ηn, and ϕN is continuous, we have

η = lim
n→∞

ηn+1 = lim
n→∞

ϕN (ηn) = ϕN ( lim
n→∞

ηn) = ϕN (η)

So η is a fixed point of ϕN .

Theorem 5.12

The extinction probability of a Galton-Watson tree with branching variable N is the
smallest fixed point of ϕN in the interval [0, 1].

Proof. Let η∗ be the smallest fixed point of ϕN in [0, 1]. We have

η0 = 0 ≤ η∗

From the proof of the previous proposition, we have

η1 = ϕN (η0) = ϕN (0)

Since P(N = k) ≥ 0 for all k, it can be seen that ϕN is increasing on [0,∞). So

ϕN (0) ≤ ϕN (η∗) = η∗

By induction this holds for further ηn, so

η = lim
n→∞

ηn ≤ η∗

but η is a fixed point in [0, 1] so it must be at least η∗. Thus η = η∗.

By the arguments made previously, we can adjust for any number of starting individuals
by raising the power of η, so that the new extinction probability is η′ = ηX0 .

Proposition 5.13

For a Galton-Watson tree (Xn)n≥0 with branching variable N , E[Xn] = E[N ]n.

Proof. Induct. We have E[X1|X0 = 1] = E[N ]. If E[Xn] = E[N ]n, then by linearity,

E[Xn+1] = E[N (n)
1 + . . .+N

(n)
Xn

] = E[Xn]E[N ] = E[N ]n+1

5.6 Optimal Stopping

Example 5.12

Suppose you play a game where you can roll a die up to three times. After each die,
you can decide whether you want to stop and accept the current roll, or to continue
rolling. What is the optimal stopping strategy?
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Let v(n, k) be the expected value of the game after you have rolled n times and the
current state (or roll) is k. Working backward, v(3, k) = k for any k. So the expected
value of the third roll is 3.5.

Going back to the second roll, if you roll a 4, 5, or 6, stopping will give a greater
payout than the expected payout of a third roll. So v(2, 4) = 4, v(2, 5) = 5, v(2, 6) =
6. On the other hand, we should reroll on a 1, 2, or 3, so v(2, 1) = v(2, 2) = v(2, 3) =
3.5. Thus the expected value of the second roll is 4.25.

Similarly, for the first roll, we would reroll on a 1, 2, 3, or 4, and stay on a 5 or 6.
So v(1, 5) = 5, v(1, 6) = 6 and v(1, 1) = v(1, 2) = v(1, 3) = v(1, 4) = 4.25. So the
expected value of the first roll (and thus the whole game) is 29

6 = 4.83.

We will now investigate a more general framework for stopping problems that will allow
us to easily compute optimal strategies and expected values. First we will consider the time
homogeneous case, where rewards are based only on the state, and invariant with respect
to time.

Suppose S is the state space of a certain game, and suppose f : S → R is a function
representing the reward for stopping at state i. We also have an initial distribution µ which
contains the probabilities for starting in a given state. Lastly, let P be a stochastic matrix
representing the probabilities for state changes.

As we can see, this setup has essentially determined a finite Markov chain. Note that we
implicitly assumed the Markov property for state changes in this system. Then in order to
solve this problem, we will need to compute the expected value of the game at each state
(and time, if the game is time dependent). In other words we need to calculate v(k) for each
k, and v(t, k) for each t, k.

Of course, at any state k, we have the option to stay or continue, and since we are seeking
the optimal strategy, v(k) would simply be the maximum of the two expected values. The
expected value of staying is just the immediate reward f(k). The value of continuing is the
weighted values of the future states,

∑
i∈S pkiv(i). So

v(k) = max{f(k),
∑
i∈S

pkiv(i)}

which we can also write in the form of the following two inequalities:{
v(k) ≥ f(k)

v(k) ≥
∑

i∈S pkiv(i)

In the time dependent case, we will simply add in parameters for time in the value terms
and adjust them appropriately:{

v(t, k) ≥ f(k(

v(t, k) ≥
∑

i∈S pkiv(t+ 1, k)

If we have a maximum number of rounds T , then we add in the boundary condition v(T, k) =
f(k) (not an inequality).
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Definition 5.22

The expected value of a game is the average payout, given by

E =

{∑
i∈S v(i)µi∑
i∈S v(1, i)µi

Example 5.13

You roll a die and can stop at any point too receive the amount on the die. However,
if you roll a 6 at any point, the game ends and you receive nothing. What is the
optimal strategy and expected value?

First note that this game is time invariant. The transition matrix is

P =


1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 0 0 1


At state 6, v(6) = 0 since we stop and get nothing.

At state 5, since the payout is never more than 5,
∑

i∈S p5iv(i) ≤ f(5) = 5. So
v(5) = 5.

At state 4, suppose for the sake of contradiction that it is optimal to continue. Then
it is also optimal to continue for 1, 2, 3, so we would continue until a 5 or a 6. Each
is equally likely, so the value would be 2.5. But this is lower than f(4) = 4, so it is
optimal to stay.

At state 3, suppose continuing is optimal. Then we would also continue for 1, 2,
meaning we continue until 4, 5, or 6. Then v(1) = v(2) = v(3). Since we are
assuming continuing is optimal, we also have

v(3) =
1

6
(v(3) ∗ 3 + v(4) + v(5) + v(6)) =

1

2
v(3) +

3

2

This implies that in the continuing case, v(3) = 9
3 = 3. This is precisely the value in

the staying case as well, so we can take either strategy equally well.

Using the above discussion, we conclude that v(1) = v(2) = 3. Then the value of the
game is equal to

E =
1

6
(3 + 3 + 3 + 4 + 5) = 3
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