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1 Vectors

1.1 Definition

Vectors are defined as mathematical quantities with both direction and magnitude.

1.2 Notation

v⃗: A vector
û: Unit vector (length 1)

î, ĵ, k̂: Unit vectors in x, y, z directions, respectively
(a1, a2): Point with coordinates (a1, a2)

⟨a1, a2⟩: Vector given by a1î+ a2ĵ−−→
PQ: Vector between points P and Q

P⃗ =
−−→
OP = P : Origin vector (origin as tail)

|A⃗| =
√
a21 + a22: Magnitude or length of A⃗

1.3 Basic Operations

Let A⃗ = ⟨a1, a2⟩, B⃗ = ⟨b1, b2⟩, c = constant. Then:

cA⃗ = ⟨ca1, ca2⟩

A⃗+ B⃗ = ⟨a1 + b1, a2 + b2⟩

A⃗− B⃗ = A⃗+ (−B⃗) = ⟨a1 − b1, a2 − b2⟩

1.4 Dot Product

Let A⃗ = ⟨a1, a2, a3⟩, B⃗ = ⟨b1, b2, b3⟩. Then

A⃗ · B⃗ = a1b1 + a2b2 + a3b3

A⃗ · B⃗ =

n∑
i=1

aibi

A⃗ · B⃗ = |A⃗||B⃗| cos θ

A⃗ · A⃗ = |A⃗|2

A⃗ ⊥ B⃗ ⇐⇒ A⃗ · B⃗ = 0

1.5 Cross Product

Let A⃗ = ⟨a1, a2, a3⟩, B⃗ = ⟨b1, b2, b3⟩. Then

A⃗× B⃗ =

∣∣∣∣∣∣
î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣a2 a3
b2 b3

∣∣∣∣ î+ ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ ĵ + ∣∣∣∣a1 a2
b1 b2

∣∣∣∣ k̂
A⃗ ⊥ (A⃗× B⃗) ⊥ B⃗ (direction given by right hand rule)

|A⃗× B⃗| = |A⃗||B⃗| sin θ

A⃗× B⃗ = −B⃗ × A⃗

A⃗× A⃗ = 0⃗

A⃗× (B⃗ × C⃗) ̸= (A⃗× B⃗)× C⃗
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1.6 Equation of Planes

N⃗ = ⟨a, b, c⟩

P⃗1 = ⟨x0, y0, z0⟩

P⃗ = ⟨x, y, z⟩

 =⇒


−→
P 1P · N⃗ = 0

P⃗ · N⃗ = P⃗1 · N⃗
a(x− x0) + b(y − y0) + c(z − z0) = 0

P1, P2, P3 in plane =⇒ N⃗ =
−−−→
P1P2 ×

−−−→
P2P3

intercepts (a, 0, 0), (0, b, 0), (0, 0, c) =⇒ x

a
+

b

y
+

c

z
= 1

ax+ by + cz = d =⇒ N⃗ = ⟨a, b, c⟩

1.7 Applications

Component of A⃗ in direction of û : A⃗û = A⃗ · û

Area of parallelogram with sides A⃗ and B⃗ : A = det(A⃗, B⃗) = |A⃗× B⃗|

Volume of parallelepiped with sides A⃗, B⃗,C⃗ : V = det(A⃗, B⃗, C⃗) = A⃗ · (B⃗ × C⃗)

Distance from point P to plane : d =
|
−−→
PQ · N⃗ |
|N⃗ |

2 Matrices

2.1 Definition

An m× n matrix has m rows and n columns.· · · ·
· · · ·
· · · ·

 = 3× 4 matrix

2.2 Notation

Given matrix A,

aij = entry at row i, column j

(aij) = matrix composed of aij at each entry

A = B ⇐⇒ corresponding entries equal

AT = transpose of A

A−1 = inverse ofA

det(A) =|A|

In =


1

1
. . .

1

 = n× n identity matrix
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2.3 Basic Operations

cA = (caij)

A+B = (aij + bij)

A−B = (aij − bij)

AT = (aji)

= switch rows and columns

2.4 Properties

A(B + C) = AB +AC, (A+B)C = AC +BC

(AB)C = A(BC)

AB ̸= BA (generally, if defined)

det(AB) = det(A) det(B)

ImA = AIn =A (for m× n A)

AA−1 = A−1A = I

2.5 Matrix Multiplication

A
m×n

· B
n×p

= C
m×p

Cij =

n∑
k=1

aikbkj

Cij = dot product of i-th row, j-th column

2.6 Determinant

Laplace expansion along first row: ∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
det(A) = dot product of entries and cofactors along row

2.7 Inverse Matrices

For 2× 2 A,

A =

[
a b
c d

]
=⇒ A

−1
− 1

ad− bc

[
d −b
−c a

]
For square A, det(A) ̸= 0:a b c

d e f
g h i


Matrix

=⇒

a1,1 a1,2 a1,3
a2.1 a2,2 a2.3
a3,1 a3.2 a3.3


Minors

=⇒

C1,1 C1,2 C1,3

C2,1 C2,2 C2.3

C3,1 C3,2 C3,3


Cofactors

=⇒ A
−1

=
1

det(A)
C

T

Transpose of Cofactors

Where ai,j = determinant of matrix with i-th row, j-th column deleted and Ci,j = ±ai,j according to
checkerboard pattern:

Sign of cofactor =

+ − +
− + −
+ − +


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2.8 Linear Systems

Let A = n × n square matrix, X = n × 1 column matrix, B = n × 1 column matrix. AX = B is a linear
system of equations.

det(A) ̸= 0 det(A) = 0
AX = 0
(homogeneous)

X = 0 is only solution line through origin
perpendicular to each
row of A

AX = B
(nonhomogeneous)

X = A−1B is only solution either 0 or infinitely
many solutions

3 Parametric Curves

3.1 Definition

A parametric curve C = r⃗(t) is the set of values of r⃗(t) within a given interval of t (trajectory of moving
point).

3.2 Equation of a Line

Line containing

x0

y0
z0

 parallel to

ab
c

 =⇒ r⃗(t) =

x0 + at
y0 + bt
z0 + ct

 = ⟨x0, y0, z0⟩+ t⟨a, b, c⟩

3.3 Derived Quantities

r⃗(t) = ⟨x(t), y(t), z(t)⟩

v⃗(t) =
d

dt
r⃗ = ⟨x′(t), y′(t), z′(t)⟩

a⃗(t) =
d2

dt2
r⃗ = ⟨x′′(t), y′′(t), z′′(t)⟩

Speed = |v⃗| =
∣∣∣∣dsdt

∣∣∣∣ = ∣∣∣∣dr⃗dt
∣∣∣∣

T̂ =
v⃗

|v⃗|
= dir(v⃗)

dr⃗

dt
= v⃗ = T̂

ds

dt

3.4 Parametric Vector Differentiation

d

dt
(u⃗ · v⃗) = du⃗

dt
· v⃗ + u⃗ · dv⃗

dt
d

dt
(u⃗× v⃗) =

du⃗

dt
× v⃗ + u⃗× dv⃗

dt

4 Partial Derivatives

4.1 Definition

Given a function f(x, y),

fx =
∂

∂x
f = lim

∆x→0

f(x+∆x, y)− f(x, y)

∆x

4.2 Approximation Formulae

∆f ≈ fx∆x+ fy∆y: tangent plane approximation

z − z0 = fx(x− x0) + fy(y − y0): tangent plane
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4.3 Gradient

∇f = ⟨fx, fy⟩
∇f ⊥ (S := f(x, y) = c)

dir(∇f) = dir(steepest increase)

df

ds

∣∣∣∣
û

= ∇f · û

4.4 Optimization

Critical points of f occur when ∇f = 0⃗, extrema lie at either critical points or along boundary.

4.5 Second Derivative Test

Let A = fxx, B = fxy = fyx, C = fyy. Then

AC −B2
=⇒


> 0 :

{
A < 0 : local max

A > 0 : local min

= 0 : inconclusive

< 0 : saddle point

4.6 Total Differentials, Chain Rule

df = fxdx+ fydy

∂f

∂u
= fx

∂x

∂u
+ fy

∂y

∂u

4.7 Lagrange Multipliers

To optimize f(x, y, z) given a constraint g(x, y, z) = c, solve the system of equations

∇f = λ∇g =⇒


fx = λgx

fy = λgy

fz = λgz

g(x, y, z) = c

4.8 Constrained Partial Derivatives

When f(x, y, z) is subject to the constraint g(x, y, z) = c,

fx = formal partial (all treated independent)(
∂f

∂x

)
y

= fx + fz
∂z

∂x
= partial with y independent, z dependent

5 Vector Fields

5.1 Definition

A vector field F⃗ is associated with a vector valued function F⃗ (x, y, z).
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5.2 Conservative Fields

F⃗ is conservative ⇐⇒


F⃗ = ∇f for some function f(x, y, z)¸
C
F⃗ · dr⃗ = 0 for all closed curves C´

C
F⃗ · dr⃗ = 0 is path independent

curl(F⃗ ) = 0 on a simply connected region

5.3 Potential Functions

If F⃗ is conservative, then to find a function f representing its potential, use:
Method 1:

f(x1, y1, z1) =

ˆ (x1,y1,z1)

(a,b,c)

F⃗ · dr⃗ =

ˆ x1

0

Pdx

∣∣∣∣
y=0
z=0

+

ˆ y1

0

Qdy

∣∣∣∣x=x1
z=0

+

ˆ z1

0

Rdz

∣∣∣∣x=x1
y=y1

Method 2:

fx = P =⇒ f =

ˆ
Pdx+ g(y, z) =⇒ fy =

∂

∂x

ˆ
Pdx+

∂

∂y
g(y, z) = Q . . .

5.4 Curl

2D Curl (scalar valued):

curl(F⃗ ) = ∇× F⃗ = Nx −My

3D Curl (vector valued):

curl(F⃗ ) = ∇× F⃗ =

∣∣∣∣∣∣
î ĵ k̂
∂x ∂y ∂z
P Q R

∣∣∣∣∣∣
dir(∇× F⃗ ) = main axis of rotation

|∇ × F⃗ | = magnitude of rotation about axis

ω(n̂) =
1

2
|∇ × F⃗ | · n̂

5.5 Divergence

div(F⃗ ) = ∇ · F⃗ = Px +Qy +Rz

5.6 Del Notation

∇ =

〈
∂

∂x
,
∂

∂y
.
∂

∂z

〉
grad(f) = ∇f =

〈
∂

∂x
f,

∂

∂y
f.

∂

∂z
f

〉
div(F⃗ ) = ∇ · F⃗ =

∂

∂x
P +

∂

∂y
Q+

∂

∂z
R

curl(F⃗ ) = ∇× F⃗ =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
6 Line Integrals

6.1 Definition ˆ
C

f(x, y, z)ds = integral over curve C
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6.2 Scalar Line Integrals

ˆ
C

f(x, y, z)ds =

ˆ
C

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

ˆ
C

f(x, y, z)dx =

ˆ
C

f(x(t), y(t), z(t))x′(t)dt

6.3 Vector Line Integrals

Work =

ˆ
C

F⃗ · dr⃗ =

ˆ
C

F⃗ · T̂ ds =
ˆ
C

Pdx+Qdy +Rdz

Flux =

ˆ
C

F⃗ · n̂ds =
ˆ
C

−Ndx+Mdy (in 2D, n̂ = −⟨dy,−dx⟩)

6.4 Fundamental Theorem of Line Integrals

F⃗ = ∇f =⇒
ˆ P1

P0

∇f · dr⃗ = f(P1)− f(P0) ⇐⇒
˛
C

∇f · dr⃗ = 0

7 Double Integrals, Triple Integrals

7.1 Definition

¨
R

f(x, y)dA = integral over planar region R

˚
D

f(x, y, z)dV = integral over domain in space D

7.2 Iterated Integrals

¨
R

f(x, y)dA =

¨
R

fdxdy =

ˆ y1

y0

ˆ x1(y)

x0(y)

fdxdy

=

¨
R

fdydx =

ˆ x1

x0

ˆ y1(x)

y0(x)

fdydx

7.3 Polar, Cylindrical, Spherical Coordinates

Polar:
x = r cos θ r =

√
x2 + y2

y = r sin θ θ = tan−1
(y
x

) dA = rdrdθ

Cylindrical:

x = r cos θ r =
√

x2 + y2

y = r sin θ θ = tan−1
(y
x

)
z = z z = z

dV = dzrdrdθ

Spherical:

x = ρ sinϕ cos θ ρ =
√

x2 + y2 + z2

y = ρ sinϕ sin θ θ = tan−1
(y
x

)
z = cosϕ ϕ = tan− 1

(r
z

) dV = ρ2 sinϕdρdϕdθ

8



7.4 Change of Variables, Jacobian


x

y

z

→


u(x, y, z)

v(x, y, z)

w(x, y, z)

=⇒ dxdydz =

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ dudvdw
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
xu yu zu
xv yv zv
xw yw zw

∣∣∣∣∣∣ , ∂(u, v, w)

∂(x, y, z)
=

∣∣∣∣∣∣
ux vx wx

uy vy wy

uz vz wz

∣∣∣∣∣∣
7.5 Applications

Area =

¨
R

dA

Volume =

˚
V

dV

Mass =

¨
R

δdA =

˚
V

δdV

Average =
1

A

¨
R

fdA =
1

V

˚
V

fdV

Weighted Average =
1

M

¨
R

fδdA =
1

M

˚
V

fδdV

xCM =
1

M

˚
V

xδdV =
1

V

˚
V

xdV

Fgz = Gm

˚
M

sinϕ cosϕ δ dρdϕdθ

I =

¨
R

r2δdA =

˚
V

r2δdV

8 Surface Integrals

8.1 Definition ¨
S

f(x, y, z) = lim
∆S→0

∑
i

f(x∗
i , y

∗
i , z

∗
i )∆S

8.2 Scalar Surface Integrals

Suppose z = g(x, y). Then

¨
S

f(x, y, z)dS =

¨
R

f(x, y, g(x, y))

√(
∂g

∂x

)2

+

(
∂g

∂y

)2

+ 1 dxdy

If S is parameterized by r⃗(u, v), then

¨
S

f(x, y, z)dS =

¨
S′

f(r⃗(u, v)) |r⃗u × r⃗v| dudv

8.3 Surface Flux

Flux =

¨
S

F⃗ · n̂dS =

¨
S

F⃗ · dS⃗

Evaluating flux requires an orientation (choice of set of n̂). For closed S, n̂ conventionally points outward.
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8.4 Calculating dS

x2 + y2 + z2 = a2 =⇒

{
n̂ = ± ⟨x,y,z⟩

a

dS = a2 sinϕdϕdθ

x2 + y2 = a2 =⇒

{
n̂ = ± ⟨x,y,0⟩

a

dS = adθdz

z = a =⇒

{
n̂ = ±k̂

dS = dxdy

z = z(x, y) =⇒ n̂dS = ±⟨−zx,−zy, 1⟩dxdy

F (x, y, z) = c

z = z(x, y)

}
=⇒ n̂dS = ±∇F

Fz
dxdy

⟨x, y, z⟩ = r⃗(u, v) =⇒ n̂dS = ±
(
∂r⃗

∂u
× ∂r⃗

∂v

)
dudv

N⃗ = N⃗(x, y, z) =⇒ n̂dS =
N⃗

N⃗ · k̂
dxdy

9 Integral Theorems

9.1 Theorem Relationships

1D 2D 3D
Work Fund. Theorem for Line Integrals Green’s Theorem (tangential form) Stokes’ Theorem
Flux Green’s Theorem (normal form) Divergence Theorem

9.2 Green’s Theorem

Statement (Tangential Form): If C is a positively oriented (counterclockwise) simple, closed, piecewise

smooth curve in R2 enclosing a region R, and F⃗ is defined and differentiable on C and R, then˛
C

F⃗ · dr⃗ =

¨
R

(Nx −My)dA =

¨
R

curl(F⃗ ) · k̂dA

Statement (Normal Form): If C is a positively oriented (counterclockwise) simple, closed, piecewise

smooth curve in R2 enclosing a region R, and F⃗ is defined and differentiable on C and R, then˛
C

F⃗ · n̂ds =
¨

R

(Mx +Ny)dA =

¨
R

div(F⃗ )dA

Converse: If F⃗ is defined and differentiable on a simply connected region R ⊆ R2, then

curl(F⃗ ) = 0 =⇒ F⃗ is conservative

9.3 Stokes’ Theorem

Statement: If C is a simple, closed, piecewise smooth curve in R3, and S is any surface with boundary
C, and F⃗ is defined and differentiable on C and S, then˛

C

F⃗ · dr⃗ =

¨
s

(∇× F⃗ ) · n̂dS =

¨
S

curl(F⃗ ) · n̂dS

Converse: If F⃗ is defined and differentiable on a simply connected region R ⊆ R3, then

curl(F⃗ ) = 0⃗ =⇒ F⃗ is conservative

Note: To choose a compatible orientation for C and S, use the right hand rule on C: the thumb points in
the positive direction on C, index points into S, and middle finger points in the direction of n̂.

9.4 Divergence Theorem

Statement: If S is a closed surface, oriented with n̂ outward, S encloses a region D, and F⃗ is defined and
differentiable everywhere in S and D, then‹

S

F⃗ · n̂ dS =

˚
D

(Px +Qy +RZ) dV =

˚
D

div(F⃗ ) dV
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