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Introduction

This document contains notes taken for the class MAT 335: Complex Analysis at Princeton
University, taken in the Fall 2024 semester. These notes are primarily based on lectures
by Professor Assaf Naor. Other references used in these notes include Complex Analysis
by Elias Stein and Rami Shakarchi, Complex Analysis by Lars Ahlfors, Visual Complex
Analysis by Tristan Needham, Real and Complex Analysis by Walter Rudin. Since these
notes were primarily taken live, they may contains typos or errors.
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Chapter 1

Preliminaries

1.1 The Complex Number System

The set of complex numbers, denoted C is identified with ordered pairs (x, y) ∈ R2. We
may alternately write this as x+ iy, where the symbol i is currently undefined.

For a given complex number z = x+ iy, x = Re(z) is called the real part of z, y = Im(z)

is called the imaginary part, |z| =
√
x2 + y2 is the modulus of z, and the argument of

z, θ = arg(z), is the angle between (x, y) and the x-axis, defined up to integer multiples of
2π.

Definition 1.1

Let θ ∈ R. We define

eiθ = cos θ + i sin θ = (cos θ, sin θ)

One can observe using the identity cos2 +sin2 = 1 that eiθ lies on the unit circle. More-
over, if r = |z|, then elementary geometry shows that we have z = reiθ using the definition
above.

Proposition 1.1

For any z ∈ C, |Re(z)| ≤ |z| and |Im(z)| ≤ |z|.

Proof. |z| =
√
Re(z)2 + Im(z)2.

One of the distinguishing features of C from the real plane R2 is the algebraic structure
present on C.
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Definition 1.2

Let z1 = x1 + iy1 and z2 = x2 + iy2. Then we define addition and multiplication on
C by

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2)

Taking i = (0, 1), then we observe that i2 = −1 + 0i = −1. Thus we recover the basic
identity i2 = −1. We also observe that Re and Im are both linear operators.

Proposition 1.2

Addition and multiplication over C are commutative and associative. Moreover,
multiplication distributes over addition.

Proof. Commutative and associativity of addition is inherited from R.

Using the definition of eiθ, we can reinterpret complex multiplication in a much more
pleasant manner than the definition above.

Proposition 1.3

If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then

z1z2 = (r1r2)e
i(θ1+θ2)

Proof. We have proved commutativity. From here, we apply trig identities.

Thus multiplication results in multiplication of lengths and addition of arguments.

Proposition 1.4

For z1, z2 ∈ C, the triangle inequality holds:

|z1 + z2| ≤ |z1|+ |z2|

Proof. Choose r, θ such that z1 + z2 = reiθ. Then

|z1 + z2| = r = (z1 + z2)e
−iθ = z1e

−iθ + z2e
−iθ = Re(z1e

−iθ + z2e
−iθ)

Now note that Re(z + w) = Re(z) + Re(w). So

Re(z1e
−iθ + z2e

−iθ) = Re(z1e
−iθ) + Re(z2e

−iθ) ≤
∣∣z1e−iθ∣∣+ ∣∣z2e−iθ∣∣ = |z1|+ |z2|

The above proof amounts to applying the real triangle inequality to the components of
z1, z2 in the direction of z1 + z2.
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Corollary 1.5

The reverse triangle inequaliiangle inequality also holds:

||z| − |w|| ≤ |z − w|

Proof. We have{
|z| ≤ |z − w|+ |w|
|w| ≤ |w − z|+ |z|

=⇒

{
|z| − |w| ≤ |z − w|
−|z − w| ≤ |z| − |w|

=⇒ ||z| − |w|| ≤ |z − w|

Definition 1.3

Let z = x+ iy ∈ C. Then the complex conjugate of z is defined as

z = x− iy

Geometrically, this is reflection over the x axis.

Proposition 1.6

For z ∈ C, zz = |z|2.

Proof. Let z = x+ iy. Then

zz = (x+ iy)(x− iy) = x2 + y2 = |z|2

Definition 1.4

For z ̸= 0, define
1

z
=

z

|z|2

The above proposition and definition show that

z · 1
z
= 1

Definition 1.5

A sequence of complex numbers {zn}∞n=1 converges to z ∈ C (written limn→∞ zn =
z) if {

limn→∞ Re(zn) = Re(z)

limn→∞ Im(zn) = Im(z)

This equivalent to the familiar definition:
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Proposition 1.7

A sequence {zn} ⊆ C converges to z if and only for ε > 0 there exists N ∈ N such
that whenever n ≥ N we have

|zn − z| < ε

Proof. ( =⇒ ) Let ε > 0. Then pick N1, N2 such that{
n ≥ N1 =⇒ |Re(zn)− Re(z)| < ε√

2

n ≥ N2 =⇒ |Im(zn)− Im(z)| < ε√
2

Letting N = max{N1, N2}, whenever n ≥ N we have

|zn − z|2 = Re(zn − z)2 + Im(zn − z)2 = |Re(zn)− Re(z)|2 + |Im(zn)− Im(z)|2 < ε2

2
+
ε2

2

Taking square roots on both sides we have

|zn − z| < ε

( ⇐= ) |Re(zn)− Re(z)| = |Re(zn − z)| ≤ |zn − z|

We similarly define the limit of a complex function limz→a f(z).

Definition 1.6

A Cauchy sequence is a sequence (zn) ⊆ C such that (Re(zn)) and (Im(zn)) are
both Cauchy.

Again we can formulate this analogously to the single variable case:

Proposition 1.8

A sequence {zn} ⊆ C is Cauchy if and only if for all ε > 0 there exists N ∈ N such
that whenever m,n ≥ N it follows that

|zn − zm| < ε

Proof. Same as the proof of Proposition 1.7.

Proposition 1.9

A Cauchy sequence is convergent.

Proof. Follows from completeness of R:

{zn} conv. ⇐⇒

{
{Re(zn)} conv.

{Im(zn)} conv.
⇐⇒

{
{Re(zn)} Cauchy

{Im(zn)} Cauchy
⇐⇒ {zn} Cauchy
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1.2 Topology of C
The topological nature of C should not be unfamiliar to the reader, since it is essentially
the same as that of R2, rephrased slightly using complex variables.

Definition 1.7

Let r > 0 and z0 ∈ C. Then the open disk of radius ε about z is the set

Dr(z0) = {z ∈ C : |z − z0| < r}

and the closed disk as

Dr(z0) = {z ∈ C : |z − z0| ≤ r}

We also specify Dr = Dr(0) and D = D1.

Definition 1.8

An interior point z0 ∈ Ω of a subset Ω ⊆ C is a point such that there exists r > 0
where Dr(z0) ⊆ Ω.

Definition 1.9

The set of interior point in Ω is the interior of Ω, denoted intΩ.

Definition 1.10

An open set in C is a subset Ω ⊆ C such that for any z0 ∈ Ω there exists ε > 0
such that Dε(z0) ⊆ Ω.

It is immediate that Ω is open if and only if intΩ = Ω.

Definition 1.11

Let Ω ∈ C and let z ∈ C. z is a limit point of Ω if there exists a sequence of points
{zn}∞n=1 ⊆ Ω such that zn ̸= z for each n and lim zn = z.

We can equivalently define a limit point as a point z such that Dr(z) \ {z} ∩ Ω ̸= ∅ for
each r > 0

Definition 1.12

A ⊆ C is a closed set if C \A is open.
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Proposition 1.10

A is closed if and only if it contains all its limit points.

Proof. ( =⇒ ) Suppose not. Then pick z which is a limit point of A that is not in A. Then
there is no disk around z entirely contained in C \A. Thus A is not closed.

( ⇐= ) Suppose A is not closed. Then there exists z /∈ A such that each Dr(z)\{z} intersects
A. Then z is a limit point of A.

Definition 1.13

The closure of Ω ⊆ C, denoted Ω, is the union of Ω with its limit points.

Definition 1.14

The boundary of Ω ⊆ C, denoted ∂Ω, is defined as Ω \ intΩ.

Definition 1.15

Ω ⊆ C is bounded if there exists M > 0 such that |z| < M for each z ∈ Ω (or
equivalently, Ω ⊆ DM ).

Definition 1.16

Let Ω ⊆ C be bounded. Then the diameter of Ω is defined as

diamΩ = sup
z,w∈Ω

|z − w|

The following definition, as in the real case, is critical:

Definition 1.17

Ω ⊆ C is compact if it is closed and bounded.

Theorem 1.11: Bolzano-Weierstrass Theorem

Let Ω ⊆ C. Then the following conditions are equivalent:

1. Ω is compact.

2. Each sequence {zn}∞n=1 ⊆ Ω has a subsequence {znk
}∞k=1 which converges to

some z ∈ Ω.

We can treat C similarly to R2 to prove this.

8



Proof. (1 =⇒ 2) If Ω is compact, then {zn}∞n=1 ⊆ C may be written as {xn+ iyn}∞n=1 ⊆ C.
Since Ω is bounded, there exists M > 0 such that |z| < M for all z ∈ Ω. In particular√
x2n + y2n = |zn| < M . So the real sequences {xn}∞n=1, {yn}∞n=1 are bounded. Apply the

real version of Bolzano-Weierstrass, there exists a convergent subsequence {xnk
}. Then

consider the sequence {ynk
}. This is also bounded, so we apply Bolzano-Weierstrass again

to produce {ynki
} convergent. Then the sequence {znki

} is a convergent subsequence. If
z = zn for some n, then z ∈ Ω; otherwise it is a limit point. Since Ω is closed it contains its
limit points so z ∈ Ω.

(2 =⇒ 1) Suppose each sequence has a convergent subsequence. Let z be a limit point and
let {zn} ⊆ Ω \ {z} be a sequence converging to z. Then there exists a subsequence {znk

}
which converges to z′ ∈ Ω. But subsequences converge to the same value as the original
sequence, so z = z′ ∈ Ω. So Ω is closed. If Ω is not bounded, then we may take {zn} such
that |zn| ≥ n, and that |zn+1| > |zn| + 1. But then |zm − zm−1| > 1 so no subsequence is
Cauchy and thus no subsequence converges. So Ω is bounded.

Definition 1.18

An open cover of a set Ω ⊆ C is a collection O of open sets such that each z ∈ Ω is
contained in some O ∈ O. A subcover of O is a subcollection which is still a cover.

Theorem 1.12: Heine-Borel Theorem

A set Ω ⊆ C is compact if and only if every open cover has a finite subcover.

Proof. ( =⇒ ) Since Ω is bounded, it is a subset of a closed rectangle K. We showed in R2

that X × Y is compact when X,Y ⊆ R are, and the same is true here. So K is compact.
Take an open cover O of Ω and add the (open) set C \ Ω. This is an open cover of C and
thus one of K, so only finitely many are needed. Remove C \ Ω if necessary and we still
have an open cover of Ω.

( ⇐= ) Boundedness is immediate by covering Ω with balls of finite radius.

For closure, suppose not. Then take a limit point w /∈ Ω. Each z ∈ Ω has |z − w| > 0, so
we may cover Ω with open balls Oz = Dε(z) where ε < |z − w|/2. Then a finite number of
them cover Ω but this implies that y is not a limit point.

For the sake of completeness, here is an independent proof that a set is sequentially
compact if it is covering compact.

Proof that covering compactness =⇒ sequential compactness. Let K be covering compact
and pick a sequences {an} ⊆ K. Suppose for contradiction that an has no convergent
subsequence in K. Then for each x ∈ K, there exists εx > 0 and Nx ∈ N such that
whenever n ≥ Nx it follows that an /∈ Dεx(x). Then the collection of Dεx(x) for x ∈ K is
an open cover of K, so we may pick a finite subcover

Dεx1
(x1), . . . ,Dεxm

(xm)

Then let N = maxNxi
. For n ≥ N it follows that an /∈ K, contradiction.
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Proposition 1.13: Nested Compact Set Property

Suppose that Ω1 ⊇ Ω2 ⊇ . . . is a nested sequence of compact, nonempty subsets of
C. Then

∞⋂
n=1

Ωn ̸= ∅

Moreover, if limn→∞ diamΩn = 0, then there is a unique point z ∈ C such that
z ∈ Ωn for all n.

Proof. Choose zn ∈ Ωn for each n. Then the sequence of points {zn} ⊆ Ω1, and Ω1 is
compact, so there exists a convergent subsequence {znk

} tending to z ∈ Ω1. Then for
arbitrary Ωn, there exists a subsequence {znk+k0

} ⊆ Ωn for sufficiently large k0, which
converges to z and we see that z ∈ Ωn. So the intersection is nonempty.

To show uniqueness, take z, w ∈
⋂∞
n=1 Ωn. Then

|z − w| ≤ diamΩn

for each n, but diamΩn → 0 so |z − w| = 0 and thus z = w.

Remark

With the assumption that diamΩn → 0, we need not take subsequences as {zn}
itself is Cauchy. To see this, pick ε > 0 and let N be such that diamΩn < ε for any
n ≥ N . Then for any n,m ≥ N , zn, zm ∈ ΩN and thus |zn − zm| ≤ diamΩN < ε.

Definition 1.19

A set Ω ⊆ C is connected if there are no nonempty disjoint sets A,B ⊆ Ω such that
Ω = A ⊔B such that A ∩B = ∅ and A ∩B = ∅.

The above definition may be rephrased as saying that Ω is not the disjoint union of
nonempty sets which are open in the subspace topology of Ω:

Proposition 1.14

A topological space X is connected if and only if it cannot be written as X = Ω1∪Ω2

with Ω1,Ω2 nonempty, disjoint and open (in X).

Proof. ( =⇒ ) Suppose X ⊆ C is connected. Let Ω1,Ω2 ⊆ X be nonempty, open and
disjoint. Consider Ω2. Then Ω2 ⊆ X \Ω1. By definition X \Ω1 is closed. Ω2 is the smallest
closed set containing Ω2, so Ω2 ⊆ X \ Ω1 and thus Ω1 ∩ Ω2 = ∅. Similarly Ω1 ∩ Ω2 = ∅.
Since X is connected, we conclude that Ω1 ∪ Ω2 ̸= X.

( ⇐= ) Pick A,B nonempty with X = A ∪ B. Assume that A ∩ B = B ∩ A = ∅, so that
A ⊆ X \B and B ⊆ X \A. Define Ω1 = X \B and Ω2 = X \A. Since X = A∪B, we have
X = Ω1 ∪Ω2. Ω1,Ω2 are both open in X, so it must not be the case that they are disjoint.
So there exists some x ∈ Ω1 ∩ Ω2. But this implies that x /∈ A and x /∈ B.
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Thus the above general definition can be simplified for nicer sets:

Proposition 1.15

If Ω is open, then it is connected if and only if it cannot be written as the union of
disjoint open sets (in C). Similarly if F is closed then it is connected if and only if
it is not the union of disjoint closed sets.

We may also introduce another notion of connectedness, which involves functions into
Ω.

Definition 1.20

Suppose Ω ⊆ C and f : Ω → C. f is continuous at z0 if for every ε > 0 there exists
δ > 0 such that whenever z ∈ Ω and |z − z0| < δ, it follows that |f(z)− f(z0)| < ε.

Proposition 1.16

f is continuous at z0 if and only if for every {zn} ⊆ Ω with zn → z0, it follows that
f(zn) → f(z0). We say that f is continuous on Ω if it is continuous at each point in
Ω.

Definition 1.21

A path is a function f : [0, 1] → C. A continuous path is a continuous such function.

Definition 1.22

A set Ω ⊆ C is path connected if for any z, w ∈ Ω there exists a continuous path
with f(0) = z and f(1) = w with f(t) ∈ Ω for each t ∈ [0, 1].

Proposition 1.17

An open set Ω is path connected if and only if it is connected.

Definition 1.23

A nonempty open, connected set Ω ⊆ C is called a region.

Corollary 1.18

A region is path connected.
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1.3 Functions on C
We now turn our attention to functions which map complex numbers to complex numbers,
the primary object of study in this course. Continuing from the definition of continuity from
the previous section, we have the following:

Proposition 1.19

If f is continuous at z0 then |f | is continuous at z0.

Proof. By the reverse triangle inequality we have ||f(z)| − |f(z0)|| ≤ |f(z) − f(z0)|. The
conclusion follows.

Definition 1.24

f attains its maximum on Ω ⊆ C if there exists z0 ∈ Ω such that

|f(z)| ≤ |f(z0)|

for each z ∈ Ω. The minimum case is analogous.

Theorem 1.20

Suppose that Ω ⊆ C is compact and f : Ω → C is continuous. Then f attains is
maximum (and minimum) on Ω.

Proof. First we show that f is bounded on Ω. If not, then we may take a sequence of points
{zn} ⊆ Ω such that |f(zn)| → ∞. Then {zn} contains a convergent subsequence {znk

}
tending to some z ∈ Ω. It follows that

|f(znk
)| → |f(z)|

But the left side diverges to ∞, contradiction. Thus f(Ω) is bounded.

Let M = sup |f |(Ω). Then there exists a sequence {zn} ⊆ Ω such that |f(zn)| → M . Then
there exists a subsequence {znk

} converging to z ∈ Ω. By continuity we have

|f(z)| = lim |f(znk
)| =M

We now make the most important definition of this course:

Definition 1.25

Let Ω ⊆ C be open and let z0 ∈ Ω. Let f : Ω → C. We say that f is holomorphic
at z0 (or complex differentiable) if the limit

lim
h→0

f(z0 + h)− f(z0)

h

exists. In this case, the limit is denoted f ′(z0).
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If f is holomorphic at every z ∈ Ω, then we simply say it is holomorphic on Ω. If f
is holomorphic on C it is said to be entire.

We will sometimes also say that f is analytic or complex differentiable when it is
holomorphic.

Note that the specification that Ω is open ensures that the difference quotient is actually
defined (for sufficiently small h). Moreover, although this definition appears similar to
the real analogue, the structure of the complex numbers means that it has far-reaching
implications.

We will prove the following theorems in this class:

• (Cauchy’s Theorem) If f is holomorphic on Ω, then it has derivatives of all
orders.

• (Liouville’s Theorem) If f is entire and bounded, then it is constant.

• (Prime Number Theorem) If π(n) denotes the number of prime numbers less
than or equal to n, then

lim
n→∞

π(n) · lnn
n

= 1

• (Hardy-Ramanujan Theorem) Define p(n) (the partition function) to be the
number of ways to write n = k1 + k2 + . . .+ kn where k1 ≥ k2 ≥ . . . ≥ kn are
all integers. For instance, p(4) = 5. Then

p(n) ∼ 1

n
√
48
eπ
√

2
3 ·
√
n

Example 1.1

The function f(z) = z is holomorphic:

f(z + h)− f(z)

h
=
z + h− z

h
=
h

h
= 1

so z′ = 1.

Definition 1.26

If A ⊆ C is closed and f : A→ C, then we say f is holomorphic on A if there exists
Ω ⊇ A open and F : Ω → C which is holomorphic, and F |A = f .

We can rewrite the definition of holomorphicity similarly to the multivariable real case
as the following:
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Proposition 1.21

f : Ω → C (Ω open) is holomorphic at z0 if and only if there exists a ∈ C and
ψ : C → C with ψ(h) → 0 as h→ 0 such that

f(z0 + h) = f(z0) + ah+ hψ(h)

on some Dr(z0) ⊆ Ω.

Proof. We can rewrite the above as

ψ(h) =
f(z0 + h)− f(z0)

h
− a

which goes to 0 if and only if
f(z0 + h)− f(z0)

h
→ a

so that f ′(z0) = a.

This recharacterization allows for a simple proof of the following:

Proposition 1.22

If f is holomorphic at z0, then it is continuous at z0.

Proof. Let {zn} be a sequence with zn → z0. We want to show that f(zn) → f(z0). Let
hn = zn − z0. Then

f(zn) = f(z0 + hn) = f(z0) + ahn + hnψ(hn)

by assumption, the second and third terms go to zero, so f(zn) → f(z0).

Example 1.2

Let f : C \ {0} → C be defined by f(z) = 1
z . Then

lim
h→0

1
z0+h

− 1
z0

h
= lim
h→0

−h
h(z0)(z0 + h)

= − 1

z20

so f ′(z0) = − 1
z20
.

Proposition 1.23

Let Ω ⊆ C be open, and let f, g : Ω → C be holomorphic at z0. Then

1. f + g is holomophic at z0, and (f + g)′ = f ′ + g′.

2. fg is holomorphic at z0, and (fg)′ = f ′g + fg′.
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3. If g(z0) ̸= 0, then f
g is well defined on an open disk aroud z0, and

f
g is holo-

morphic at z0 with
(
f
g

)′
= f ′g−fg′

g2 .

Proof. Let ψ,φ be such that

f(z0 + h) = f(z0) + f ′(z0)h+ hψ(h)

g(z0 + h) = g(z0) + g′(z0)h+ hφ(h)

Then

f(z0 + h) + g(z0 + h) = f(z0) + g(z0) + [f ′(z0) + g′(z0)]h+ h(ψ(h) + φ(h))

limh→0 φ+ ψ = 0, so the above shows that (f + g)′ = f ′ + g′.

Letting

ϕ(h) = f ′(z0)g
′(z0) + ψ(h)[g(z0) + g′(z0)] + φ(h)[f(z0) + f ′(z0)] + φ(h)ψ(h)

which tends to 0 as h→ 0, we have

f(z0 + h)g(z0 + h) = f(z0)g(z0) + [f(z0)g
′(z0) + f ′(z0)g(z0)]h+ hϕ(h)

so (fg)′ = f ′g + g′f .

The quotient rule may be derived from the Chain Rule using the fact that
(
1
z

)′
= − 1

z2 when
z ̸= 0.

Proposition 1.24: Chain Rule

Let Ω, U ⊆ C be open, and let f : Ω → U and g : U → C. Then g ◦ f : Ω → C is
holomorphic and

(g ◦ f)′(z) = g′(f(z))f ′(z)

Proof. Using the alternative characterization of holomorphicity, we have

f(z0 + h) = f(z0) + f ′(z0)h+ hψf (h)

where ψf (h) → 0 as h→ 0. Similarly,

g(f(z0) + w) = g(f(z0)) + g′(f(z0))w + wψg(w)

Then

(g ◦ f)(z0 + h) = g(f(z0) + f ′(z0)h+ hψf (h))

= g(f(z0)) + g′(f(z0))(f
′(z0)h+ hψf (h)) + (f ′(z0)h+ hψf (h))ψg(f

′(z0)h+ hψf (h))

= g(f(z0)) + g′(f(z0))f
′(z0)h+ h[ψf (h)g

′(f(z0)) + (f ′(z0) + ψf (h))ψg(f
′(z0)h+ hψf (h))]

Note that

lim
h→0

ψf (h)︸ ︷︷ ︸
=0

g′(f(z0)) + (f ′(z0) + ψf (h)︸ ︷︷ ︸
=0

)ψg(f
′(z0)h+ hψf (h)︸ ︷︷ ︸

=0

) = 0

so (g ◦ f)′(z0) = g′(f(z0))f
′(z0).
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Example 1.3

Let f be a constant function. Then f is entire and f ′(z) = 0.

We showed in Example 1.1 that the identity g(z) = z is entire with g′(z) = 1.

Combination of the two functions above, together with Proposition 1.23 gives

Corollary 1.25

Let p(z) = a0+a1z+. . .+anz
n. Then p is entire and p′(z) = a1+2a2z+. . .+nanz

n−1.

Let us consider a non-example.

Example 1.4

Let f(z) = z, so that f(x + iy) = x − iy. This is a smooth function in the case of
R2; in fact since it is linear, Df = f , so that f has infinitely many derivatives.

However, in the complex case, we have

f(z + h)− f(z)

h
=
z + h− z

h
=
h

h

But

lim
t→0

t

t
= 1

and

lim
t→0

it

it
= −1

so the limits disagree and f is not holomorphic at any z.

Consider some function f : Ω → C. Let us denote its real and imaginary parts by u, v,
respectively, so that

f(x+ iy) = u(x, y) + iv(x, y)

(u, v are defined on Ω′ ⊆ R2 which is equivalent to Ω in the obvious way.) This allows us
to consider f as a pair of functions from R2 → R, which are surfaces lying in R3. We will
investigate which choices of u, v may be associated with a holomorphic f .

Let h be a (small) complex number and write h = h1 + ih2. Then write

f(z + h)− f(z)

h
=
u(x+ h1, y + h2)− u(x, y)

h1 + ih2
+
v(x+ h1, y + h2)− iv(x, y)

h1 + ih2

Let us consider what happens as h tends to 0 from different directions. For instance, suppose
h is entirely real, so h2 = 0. Then

lim
h1→0

f(z + h1)− f(z)

h1
= lim
h1→0

(u+ iv)(x+ h1, y)− (u+ iv)(x, y)

h1
=
∂u

∂x
+ i

∂v

∂x

16



and similarly

lim
h2→0

f(z + h2)− f(z)

ih2
=

1

i

∂u

∂y
+
∂v

∂y
=
∂v

∂y
− i

∂u

∂y

Then if f is holomorphic, then we can match components to get the following:
∂u

∂x
=
∂v

∂y

∂v

∂y
= −∂u

∂y

(∗)

The system of equations (∗) are known as the Cauchy-Riemann equations. We have
shown that these are a necessary conditions for f to be holomorphic; below we will show
that if we also assume that the partials are continuous, then we have a sufficient condition.
Later, we will show that u, v are necessarily continuously differentiable, so that these are
equivalent characterizations. For now we will content ourselves with one direction:

Theorem 1.26

Let Ω ⊆ C be open and let f : Ω → C. Let f = u + iv, where u, v : Ω → R are
continuously differentiable and satisfy the Cauchy-Riemann equations. Then f is
holomorphic.

Proof. Consider the first-order Taylor expansion in two variables, which says that

u(x+ h1, y + h2) = u(x, y) +
∂u

∂x
h1 +

∂u

∂y
h2 + hψu(h)

where h = h1 + ih2 and ψu(h) → 0 as h→ 0. Similarly

v(x+ h1, y + h2) = v(x, y) +
∂v

∂x
h1 +

∂v

∂y
h2 + hψv(h)

Now by assumption, f satisfies the Cauchy-Riemann equations, so

v(x+ h1, y + h2) = v(x, y)− ∂u

∂y
h1 +

∂u

∂x
h2 + hψv(h)

so

f(x+ h) = u(x+ h1, y + h2) + iv(x+ h1, y + h2)

= u(x, y) +
∂u

∂x
h1 +

∂u

∂x
h2 + hψu(y) + iv(x, y)− i

∂u

∂y
h1 + i

∂u

∂x
h2 + ihψv(h)

= f(x, y) + (h1 + ih2)

(
∂u

∂x
− i

∂u

∂y

)
+ h(ψu(h) + iψv(h)︸ ︷︷ ︸

ψ(h)

)

= f(z) + h

(
∂u

∂x
− i

∂u

∂y

)
+ hψ(h)

so f is holomorphic using the alternative characterization and

f ′(z) = f ′(x, y) =
∂u

∂x
− i

∂u

∂y
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Let f be a complex valued function of the form f(x+ iy) = u(x, y) + iv(x, y). Associate
with it a R2-valued function

F (x, y) = (u(x, y), v(x, y))

Recall that its Jacobian matrix is

JF (x, y) =

[
ux uy
vx vy

]
(∗∗)

and that F is differentiable in the real sense if it is true that

lim
(h1,h2)→(0,0)

F (x+ h1, y + h2)− F (x, y)− JF (x, y)

[
h1
h2

]
|(h1, h2)|

= 0

Comparing this to the complex condition

lim
h→0

f(z + h)− f(z)− f ′(z)h

h
= 0

we can see that complex differentiability requires Jf (x, y) to be of the form of multiplying
by some complex number. This happens if and only if

JF (x, y) =

[
a −b
b a

]
for a, b ∈ R. By reconciling this with (∗∗) we recover the Cauchy-Riemann equations (∗).

Definition 1.27

Let f : Ω → C with Ω open. Then we define

∂f

∂x
:=

∂u

∂x
+ i

∂v

∂x

and
∂f

∂y
:=

∂u

∂y
+ i

∂v

∂y

We further define
∂f

∂z
:=

1

2

(
∂f

∂x
− i

∂f

∂y

)
and

∂f

∂z
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)

18



Proposition 1.27

Let Ω ⊆ C be open and let f : Ω → C be of the form f(x+ iy) = u(x, y) + iv(x, y).
If f is holomorphic on Ω, then

1.
∂f

∂z
= 0.

2.
∂f

∂z
=
∂f

∂x
= −i∂f

∂y
.

3.
∂f

∂z
= f ′.

4. f ′(z0) = 2
∂u

∂z
(z0).

5. F = (u(x, y), v(x, y)) is differentiable in the real sense, and det JF (x, y) =

|f ′(x+ iy)|2.

Proof. 1. By Cauchy-Riemann,

∂f

∂z
=

1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
= 0

2. By part 1,
∂f

∂z
=
∂f

∂z
+
∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y
+
∂f

∂x
+ i

∂f

∂y

)
=
∂f

∂x

Similarly,
∂f

∂z
=
∂f

∂z
− ∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y
− ∂f

∂x
− i

∂f

∂y

)
= −i∂f

∂y

3. Take h1 real and z0 ∈ Ω. Then

∂f

∂x
(z0) = lim

h1→0

f(z0 + h1)− f(z0)

h1
= lim
h→0

f(z0 + h)− f(z0)

h
= f ′(z0)

By part 2 the conclusion follows.

4. By parts 2 and 3,

f ′ =
∂f

∂z
=
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
=
∂u

∂x
− i

∂u

∂y
= 2

∂u

∂z

5. We have

det JF (x, y) =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

By the Cauchy-Riemann equations and parts 2 and 3 this is(
∂u

∂x

)2

+

(
∂v

∂x

)2

= |f ′(x+ iy)|2
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1.4 Power Series

We will now discuss power series, which are defined similarly to the real case. They will
initially serve as a valuable example of holomorphic functions. Later we will see that they
are actually the only example, which justifies particular attention in their study.

Definition 1.28

A power series (centered around z0) is a function f of the form

f(z) =

∞∑
n=0

an(z − z0)
n := lim

N→∞

N∑
n=0

an(z − z0)
n

where {an} ⊆ C, which is defined wherever the right hand limit converges.

Note that it is certainly a necessary condition that anz
n → 0 as n→ ∞, since

lim
n→∞

anz
n = lim

n→∞

[
n∑
k=0

akz
k −

n−1∑
k=0

akz
k

]
= lim
n→∞

[
n∑
k=0

akz
k

]
− lim
n→∞

[
n−1∑
k=0

akz
k

]
= 0

In this section, we will first consider only power series which are centered at 0.

Definition 1.29

We say that a power series
∑∞
n=0 anz

n converges absolutely (in the complex sense)
if the series

∞∑
n=0

|an| · |z|n

converges in the real sense.

Proposition 1.28

If
∑∞
n=0 anz

n converges absolutely, then it converges (in the complex sense).

Proof. Let ε > 0.

Write

SN (z) =

N∑
n=0

anz
n

Since
∞∑
n=0

|an| · |z|n

converges, there exists N0 ∈ N such that

∞∑
n=N0+1

|an| · |z|n < ε
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Then for M,N ≥ N0, assume without loss of generality that M < N . Then we have

|SN (z)− SM (z)| =

∣∣∣∣∣
N∑

n=M+1

anz
n

∣∣∣∣∣ ≤
N∑

a=M+1

|an| · |z|n ≤
∞∑

a=N0+1

|an| · |z|n < ε

so {SN (z)} is a Cauchy sequence, and thus

∞∑
n=0

anz
n

converges.

Recall that in the single real variable case, we found that power series converge on some
interval (possibly open, closed, or half-open) which is centered around 0 (or any other point
of expansion). An analogous statement is true here, with the interval replaced by a disk.

Theorem 1.29

For any power series
∑∞
n=0 anz

n there exists 0 ≤ R ≤ ∞a (called the radius of
convergence) such that for any z ∈ C:

1. If |z| < R, then
∑∞
n=0 anz

n converges absolutely.

2. If |z| > R, then
∑∞
n=0 anz

n does not converge.

Moreover, R is given by Hadamard’s formula:

R =
1

lim supn→∞
n
√
|an|

aR = ∞ means the condition |z| < R is satisfied for all z ∈ C.

This theorem says that we have absolute convergence inside the disk DR (called the disk
of convergence), and divergence outside of it. As in the real case, this theorem makes no
statement about convergence on the boundary of the disk.

Proof. Denote L = lim supn→∞
n
√
|an|. Suppose that L ̸= 0,∞. If |z| < 1

L = R , then
L|z| < 1, so there exists ε > 0 such that (L + ε)|z| = r < 1. By the definition of lim sup,
there exists N ∈ N such that for all n ≥ N ,

n
√

|an| < L+ ε =⇒ |an| < (L+ ε)n =⇒ |an||z|n < ((L+ ε)|z|)n = rn

so
∑∞
n=0 anz

n is dominated by the absolutely convergent geometric series
∑∞
n=0 r

n and thus
converges absolutely.

On the other hand, if |z| > R = 1
L , then L|z| > 1 so there exists a subsequence {ank

} such
that

nk

√
|ank

| · |z| > 1

for all k. Then
|ank

| · |z|nk > 1
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which does not tend to 0 as k → ∞, so convergence is impossible.

If L = 0, then R = ∞. For any z there exists N such that n ≥ N implies that

n
√
an <

1

|z|

Then
|an||z|n < r < 1

So
∞∑
n=N

|an||z|n

is dominated by
∑∞
n=N r

n, and thus converges for |z| < R = ∞.

If L = ∞, then L|z| > 1 and we apply the argument for the case |z| > R.

Example 1.5

The power series
∞∑
n=0

zn

n!

has R = ∞, since the real-valued power series

∞∑
n=0

|z|n

n!
= e|z|

converges absolutely everywhere. This also allows us to define the exponential of
z as

ez :=

∞∑
n=0

zn

n!

Example 1.6

The power series
∞∑
n=0

zn

has radius of convergence 1. This can be seen either by direct computation in the
real case, or using Hadamard’s formula and the fact that each an is 1:

R =
1

lim supn→∞
n
√
1
=

1

1
= 1

Moreover, this power series satisfies the equation

∞∑
n=0

zn =
1

1− z
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This can be seen using the identity for partial sums (which holds in all fields)

N∑
n=0

zn =
1− zN+1

1− z

so

lim
N→∞

1− zN+1

1− z
=

1

1− z

Definition 1.30

We define the trigonometric functions in terms of power series:

cos z :=

∞∑
n=0

(−1)n
z2n

(2n)!

sin z :=

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!

Note that both of the above series converge with R = ∞. Moreover, we can observe that

cos z =
eiz + e−iz

2

sin z =
eiz − e−iz

2i

and that this is consistent with our previous definition in terms of the identity

eiz = cos z + i sin z

We now prove a fundamental fact about power series which, while analogous to the real
case, will have farther reaching implications for us.

Theorem 1.30

The function f(z) =
∑∞
n=0 anz

n is holomorphic on the disk of convergence DR.
Moreover, its derivative is given by

f ′(z) =

∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

which has the same radius of convergence.

s of convergence.

Proof. To show that the radius of convergence is the same, simply apply Hadamard’s formula
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to the new power series. Letting R′ be the radius of convergence of
∑∞
n=1 nanz

n−1, we have

1

R′ = lim sup
n→∞

n
√
(n+ 1)|an| = lim sup

n→∞

n
√
n+ 1 n

√
|an|

But n
√
n+ 1 → 1 so

lim sup
n→∞

n
√
n+ 1 n

√
|an| = lim sup

n→∞

n
√
|an| =

1

R

so R′ = R.

Denote

g(z) =

∞∑
n=1

nanz
n−1

We want to show that f ′ = g. It suffices to show that

f(z0 + h)− f(z0)

h
− g(z0) →

h→0
0

whenever z0 ∈ DR.

To show this, pick any z0 ∈ DR and let ε > 0. Then there exists r such that |z0| < r < R.
Then whenever |h| < r − |z0| we have |z0 + h| ≤ |z0| + |h| < r < R. So for small h,
z0 + h ∈ DR.

Denote the partial sums and error terms by

SN (z) =

N∑
n=1

anz
n

EN (z) =

∞∑
n=N+1

anz
n

By our observation about Hadamard’s formula,

∞∑
n=1

n|an|zn−1

converges, so there exists N0 ∈ N such that

∞∑
n=N0+1

n|an||z|n−1 <
ε

3
(1)

SN0
is a polynomial, which we showed is holomorphic. So

SN0
(z0 + h)− SN0

(z0)

h
− S′

N (z0) =
SN0

(z0 + h)− SN0
(z0)

h
−

N0∑
n=1

nanz
n−1 →

h→0
0
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Thus there exists δ > 0 such that whenever |h| < δ,∣∣∣∣SN0
(z0 + h)− SN0

(z0)

h
− S′

N (z0)

∣∣∣∣ < ε

3
(2)

The difference quotient ∣∣∣∣f(z0 + h)− f(z0)

h
− g(z0)

∣∣∣∣
may be written as∣∣∣∣SN0(z0 + h)− SN0(z0)

h
− S′

N0
(z0) + S′

N0
(z0)− g(z0) +

EN0(z0 + h)− EN (z0)

h

∣∣∣∣
≤
∣∣∣∣SN0

(z0 + h)− SN0
(z0)

h
− S′

N0
(z0)

∣∣∣∣+ ∣∣S′
N0

(z0)− g(z0)
∣∣+ ∣∣∣∣EN0

(z0 + h)− EN (z0)

h

∣∣∣∣
For small h, the first term is less than ε

3 by (2). Also,

∣∣S′
N0

(z0)− g(z0)
∣∣ = ∣∣∣∣∣−

∞∑
n=N0+1

nanz
n−1

∣∣∣∣∣ ≤
∞∑

n=N0+1

n|an| · |z|n−1 <
ε

3

by (1). Lastly, ∣∣∣∣EN0
(z0 + h)− EN0

(z0)

h

∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N0+1

an
(z0 + h)n − zn0

h

∣∣∣∣∣
Using the identity

an − bn = (a− b)

n−1∑
k=0

akbn−1−k

for a = z0 + h, b = z0 we have∣∣∣∣∣
∑∞
n=N0+1 an ((z0 + h)n − zn0 )

h

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N0+1

an

(
n−1∑
k=0

(z0 + h)kzn−1−k
0

)∣∣∣∣∣
≤

∞∑
n=N0+1

|an|
n−1∑
k=0

|z0 + h|k|z0|n−1−k
<

∞∑
n=N0+1

|an|nrn <
ε

3

where the last inequality follows from (1). Thus∣∣∣∣f(z0 + h)− f(z0)

h
− g(z0)

∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε
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Corollary 1.31

A power series is infinitely complex differentiable on its disk of convergence.

Proof. Induct using Theorem 1.30.

Corollary 1.32

A power series may be integrated term-by-term on its disk of convergence.

Proof. The integrated power series has some radius of convergence, and Theorem 1.30 says
that this is the same radius as the original power series.

We now note that for the case of power series
∑∞
n=0 an(z−z0)n centered around arbitrary

z0, they converge on DR(z0), where R is the radius of convergence of
∑∞
n=0 anz

n. In other
words, the behavior is identical, merely translated. Thus it suffices to consider power series
centered around 0.

Definition 1.31

Let Ω ⊆ C be open and z0 ∈ Ω. Then f : Ω → C is said to be analytic at z0 if there
exists r > 0 such that Dr(z0) ⊆ Ω and there exist coefficients {an} ⊆ C such that

∞∑
n=0

anz
n

converges absolutely on Dr and

f(z) =

∞∑
n=0

an(z − z0)
n

on Dr(z0).

We say that f is analytic on Ω if it is analytic at each z0 ∈ Ω.

By Theorem 1.30, each analytic function is (infinitely) holomorphic. We will show later
that every holomorphic function is also analytic. Thus the terms are often used inter-
changably, but we will not do so until we have proved this fact.

1.5 Integration on Curves

We will soon show that the behavior of analytic functions can be well understood by studying
the behavior of those functions when integrated over various curves in the plane. This will
motivate the particular definitions of an integral over a curve that appear in this section.
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Definition 1.32

A parameterized curve is a continuous function z : [a, b] → C. Writing z(t) =
z1(t) + iz2(t), we say that z is a smooth curve if z′1(t), z

′
2(t) exist for all t ∈ [a, b].

z is said to be piecewise smooth if there exist a = a0 < a1 < . . . < an = b such
that z is smooth on [ak, ak+1] for each k.

z is a closed curve if z(a) = z(b).

Note that in our definition of piecewise smooth curves, z must be continuous at each ak,
but the left and right derivatives need not coincide.

We will adopt the convention that all curves are assumed to be piecewise smooth, unless
stated otherwise.

A parameterized curve traces out a particular image in the complex plane, which is intu-
itively a curve in the plane. Thus it is useful to distinguish the function z and its image.

Definition 1.33

Two parameterized curves z1 : [a, b] → C and z2 : [c, d] → C are said to be equiv-
alent curves if there exists a continuously differentiable bijection t : [a, b] → [c, d]
such that t′(s) > 0 and z2(s) = z1(t(s)) for all s ∈ [a, b].

The condition that t′(s) > 0 could be equivalently stated as saying that t(a) = c and
(b) = d (so that the direction does not change). It follows that z1([a, b]) = z2([c, d]).

Definition 1.34

A curve is an equivalence class of parameterized curves.

Note that for a given curve, there is another curve which has the same image in C, but
with the opposite orientation.

Definition 1.35

If γ ⊆ C is a curve, and z : [a, b] → C is a parameterization of γ, then γ− is the
curve parameterized by z(a+ b− t).

A commonly used curve is the circle, so it is convenient to define some conventional
parameterizations of the circle:

Definition 1.36

The circle with radius r > 0 and center z ∈ C is

Cr(z0) := ∂Dr(z0)

The positive orientation of Cr(z) is the curve parameterized by z : [−π, π] → C
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and
z(θ) = z0 + reiθ

The negative orientation is the curve parameterized by

z−(θ) = z0 + re−iθ

Now, let us define the manner in which we will integrate functions over smooth planar
curves.

Definition 1.37

Let γ ⊆ C be a smooth curve. Let f : γ → C be continuous. Let z : [a, b] → C be a
smooth parameterization of γ. Then define the contour integral of f along γ with
respect to z to be∫
γ,z

f(z) dz =

∫ b

a

f(z(t))z′(t) dt =

∫ b

a

Re(f(z(t))z′(t)) dt+ i

∫ b

a

Im(f(z(t))z′(t)) dt

As Proposition 1.33 shows, this value is independent of the choice of z. Thus, we
take this common value to be the contour integral of f along γ.

Proposition 1.33

If γ is a smooth curve, f : γ → C is continuous, and z1, z2 are two parameterizations
of γ, then ∫

γ,z1

f(z) dz =

∫
γ,z2

f(z) dz

Proof. Since z1, z2 are equivalent, we write z1(s) = z2(t(s)). Then∫
γ,z1

f(z) dz =

∫ b

a

f(z1(s))z
′
1(s) ds =

∫ b

a

f(z2(t(s)))z
′
2(t(s))t

′(s) ds

=

∫ t(b)

t(a)

f(z2(t))z
′
2(t) dt =

∫ d

c

f(z2(t))z
′
2(t) dt =

∫
γ,z2

f(z) dz

The above proof shows that we may define contour integrals with respect to a curve,
without referring to a specific parameterization.

If γ is only piecewise smooth, and some parameterization z : [a, b] → C is smooth on
[ak, ak+1] for a = a0 < a1 < . . . < an = b, then we define the integral to be∫

γ

f(z) dz =

n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt

Similar work as above shows that this is also independent of the parameterization.
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Definition 1.38

Let γ ⊆ C be a curve parameterized by z : [a, b] → C. Then the length of γ is

length(γ) =

∫ b

a

|z′(t)|dt

The following example will be extremely instructive for later applications.

Example 1.7

Let γ = ∂D. Let f : γ → C be continuous. Let z be the parameterization

z(θ) = eiθ

Then
z′(θ) = ieiθ

So ∫
γ

f(z) dz =

∫ 2π

0

f(eiθ)ieiθ dθ

For instance, take

f(z) =
1

z

Then we have ∫
γ

1

z
dz =

∫ 2π

0

ieiθ

eiθ
dθ =

∫ 2π

0

i dθ = 2πi

The length of γ is ∫ 2π

0

∣∣ieiθ∣∣dθ = ∫ 2π

0

dθ = 2π

as we expect.

Let us briefly cover some properties of the contour integral.

Proposition 1.34

Let γ ⊆ C be a curve, f, g : γ → C be continuous, and α, β ∈ C. Then

1.
∫
γ
is linear: ∫

γ

(αf + βg) dz = α

∫
γ

f dz + β

∫
γ

g dz

2.
∫
γ
is reversed by orientation:∫

γ

f dz = −
∫
−γ

f dz
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3. The following inequality holds analogous to the triangle inequality:∣∣∣∣∫
γ

f dz

∣∣∣∣ ≤ (sup
z∈γ

|f(z)|
)
length(γ)

Proof. 1. Follows from properties of the Riemann integral.

2. Homework (follows from reparameterizing).

3. First, we show the following:

Claim

Let h : [a, b] → C be continuous. Then∣∣∣∣∣
∫ b

a

h(t) dt

∣∣∣∣∣ ≤
∫ b

a

|h(t)|dt

Proof. Write
∫ b
a
h(t) dt = reiθ for appropriate r, θ. Then

r =

∣∣∣∣∣
∫ b

a

h(t) dt

∣∣∣∣∣ = e−iθ
∫ b

a

h(t) dt

=

∫ b

a

e−iθh(t) dt = Re

(∫ b

a

e−iθh(t) dt

)

=

∫ b

a

Re(e−iθh(t)) dt ≤
∫ b

a

|h(t)|dt ■

Now, suppose that z : [a, b] → C is piecewise smooth with a = a0 < . . . < an = b.
Then by definition,∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt

∣∣∣∣∣ ≤
n−1∑
k=0

∣∣∣∣∫ ak+1

ak

f(z(t))z′(t) dt

∣∣∣∣
≤
n−1∑
k=0

∫ ak+1

ak

|f(z(t))| · |z′(t)|dt ≤
n−1∑
k=0

∫ ak+1

ak

(
sup
z∈γ

|f(z(t))|
)
|z′(t)|dt

=

(
sup
z∈γ

|f(z(t))|
) n−1∑
k=0

∫ ak+1

ak

|z′(t)|dt =
(
sup
z∈γ

|f(z(t))|
)
length(γ)

In vector calculus, the fundamental theorem of line integrals shows that calculation of
line integrals can often be reduced to evaluating an antiderivative at its endpoints. The
same is true in C.
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Definition 1.39

Let Ω ⊆ C be open. Let f : Ω → C. Then we say that F : Ω → C is a primitive of
f on Ω if F is holomorphic on Ω and

F ′(z) = f(z)

for all z ∈ Ω.

Theorem 1.35

Let Ω ⊆ C be open. Let f : Ω → C be continuous and suppose F : Ω → C is a
primitive of f . Then for any curve γ ⊆ Ω joining z1, z2, we have∫

γ

f(z) dz = F (z2)− F (z1)

Proof. This is effectively the Fundamental Theorem of Calculus. Take a piecewise smooth
parameterization z : [a, b] → C of γ and pick a = a0 < . . . < an = b so that z is smooth on
each subinterval. Then∫

γ

f(z) dz =

n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt =

n−1∑
k=0

∫ ak+1

ak

F (z(t))′ dt

=

n−1∑
k=0

(F (z(ak+1))− F (z(ak))) = F (z(an))− F (z(a0)) = F (z2)− F (z1)

Corollary 1.36

Let Ω ⊆ C be open, f : Ω → C continuous, and F a primitive for f on Ω. Then for
any closed curve γ ⊆ Ω, ∫

γ

f(z) dz = 0

Although the above theorem is powerful, its assumptions sometimes fail to be satisfied
in subtle ways.

Example 1.8

Let Ω = C \ {0}. Let f : Ω → C be f(z) = 1
z . We showed that∫

∂D

1

z
dz = 2πi ̸= 0

This shows that 1
z does not have a primitive on Ω. This is an interesting contrast to

the real case, where lnx is a primitive for 1
x on R \ {0}. (This is due to the fact that

0 is a branch point for the logarithm in C.)
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Corollary 1.37

Let Ω ⊆ C be a region. Let f : Ω → C be holomorphic on Ω and f ′(z) = 0 for all
z ∈ Ω. Then f is constant.

Proof. Pick z1, z2 ∈ Ω. Ω is path connected since it is a region, so let γ ⊆ C be a curve from
z1 to z2. f is a primitive for f ′, so

f(z2)− f(z1) =

∫
γ

f ′(z) dz =

∫
γ

0 dz = 0

and thus f(z2) = f(z1). So f is constant.
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Chapter 2

Cauchy’s Theorem and
Applications

Up until this point, the results we have shown about contour integrals have been analogous
to line integrals in Rn. In this chapter, we will see that integrating in the complex setting
results in unique results. The main theorem we will prove is as follows:

Theorem: Cauchy’s Theorem for a Disk

Let f : D → C be holomorphic on D. Then for any closed curve γ ⊆ D,∫
γ

f(z) dz = 0

In order to prove that, we will first prove some intermediate results.

2.1 Goursat’s Theorem

We will first prove a version of Cauchy’s Theorem for a specific type of curve.

Definition 2.1

A triangle T is a subset of C which consists of three line segments and the region
between them. The boundary of T is the line segments between them, which by
convention is taken with the counterclockwise parameterization.

33



Theorem 2.1: Cauchy-Goursat

Let Ω ⊆ C be open. Let f : Ω → C be holomorphic on Ω, and let T ⊆ Ω be a
triangle. Then ∫

∂T

f(z) dz = 0

Proof. Let us bisect the line segments of the triangle and draw a triangle between them.
This creates four subtriangles, which we denote S1, S2, S3, S4.

S1

S2

S3

S4

Figure 2.1: Subdivision of T

Each triangle made this way is similar to the original. Then consider the sum∫
∂S1

f(z) dz +

∫
∂S2

f(z) dz +

∫
∂S3

f(z) dz +

∫
∂S4

f(z) dz

Since we maintain the counterclockwise orientation, the edges of S3 will be integrated along
in both directions, which cancels out. Thus the above expression is equal to∫

∂T

f(z) dz

Thus ∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ ≤ 4max

{∣∣∣∣∫
∂Si

f(z) dz

∣∣∣∣}
Suppose that the largest integral occurs over Sj . Then set T1 = Sj and subdivide again.

S2

S3
S4

Figure 2.2: Continued subdivisions
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Thus we get a nested sequence of triangles satisfying

T = T0 ⊇ T1 ⊇ . . .∣∣∣∣∫
∂Tn

f(z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
∂Tn+1

f(z) dz

∣∣∣∣∣
diam(Tn+1) =

1
2 diam(Tn)

length(∂Tn+1) =
1
2 length(∂Tn)

It follows that 
∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f(z) dz

∣∣∣∣
diam(Tn) =

1
2n diam(T )

length(∂Tn) =
1
2n length(∂T )

Since the diameters go to 0 and each Ti is compact, there exists a unique point ω in each of
the Ti. Since f is holomorphic at ω, we can write

f(z) = f(ω) + f ′(ω)(z − ω) + ψ(z)(z − ω)

where limz→ω ψ(z) = 0. So for any n,∫
∂Tn

f(z) dz =

∫
∂Tn

(f(ω) + f ′(ω)(z − ω)) dz +

∫
∂Tn

ψ(z)(z − ω) dz

But notice that (
f(ω)z +

1

2
f ′(ω)(z − ω)2

)′

= f(ω) + f ′(ω)(z − ω)

so we have a primitive, and it follows that∫
∂Tn

(f(ω) + f ′(ω)(z − ω)) dz = 0

Now, ∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

f(z) dz

∣∣∣∣
= 4n

∣∣∣∣∫
∂Tn

ψ(z)(z − ω) dz

∣∣∣∣
≤ 4n

(
sup
z∈∂Tn

[ψ(z)(z − ω)]

)
length(∂Tn)

= 2n length(∂T )

(
diam(Tn) sup

z∈∂Tn

ψ(z)

)
= length(∂T ) diam(T ) sup

z∈∂Tn

ψ(z)
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Since
lim
z→ω

ψ(z) = 0

we can make supz∈∂Tn
ψ(z) arbitrarily small by considering large enough n. It follows that

lim
n→∞

sup
z∈∂Tn

ψ(z) = 0

and thus ∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ = 0

We will now show that holomorphic functions locally have primitives. We will adopt the
notation that for z, ω ∈ C, [z, ω] represents the line segment joining z and ω. Specifically,
it can be parameterized by

t 7→ (1− t)z + tω, t ∈ [0, 1]

Theorem 2.2

Let z0 ∈ C, r > 0, and f : Dr(z0) → C be holomorphic on Dr(z0). Then f has a
primitive on Dr(z0).

Proof. Take some z ∈ Dr(z0). Define

F (z) =

∫
[z0,z]

f(ω) dω

We claim that F is holomorphic on Dr(z0) and that it is a primitive for f . Let h be small
and consider the triangle Th between z0, z, z + h.

z0

z

z + h

Dr(z0)

r

Figure 2.3: Auxiliary triangle construction

By Cauchy-Goursat,

0 =

∫
∂Th

f(ω) dω =

∫
[z0,z]

f(ω) dω +

∫
[z,z+h]

f(ω) dω −
∫
[z0,z+h]

f(ω) dω
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Thus

F (z + h)− F (z) = F (z + h)− F (z) +

∫
∂Th

f(ω) dω =

∫
[z,z+h]

f(ω) dω

= h

∫ 1

0

f((1− t)z + t(z + h)) dt

and
F (z + h)− F (z)

h
− f(z) =

∫ 1

0

(f((1 + t)z + t(z + h))− f(z) dt)

Since f is continuous at z, for every ε > 0 there exists δ > 0 such that if |ω − z| < δ, then
|f(ω)− f(z)| < ε. So if |h| < δ, then∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ ≤ ∫ 1

0

|f((1− t)z + t(z + h))− f(z)|dt < ε

Thus F ′ = f and f has a primitive.

Later, we will see that holomorphic functions can all be represented by power series,
which makes the above trivial by integrating term-by-term.

We now have the tools necessary to prove Cauchy’s Theorem on a disk.

Corollary 2.3: Cauchy’s Theorem on a Disk

If f : Dr(z0) → C is holomorphic than for any closed curve γ ⊆ Dr(z0),∫
γ

f(z) dz = 0

Proof. By Theorem 2.2, f has a primitive, so the integral is zero.

Corollary 2.4

If Ω ⊆ C is open and contains Dr(z0), if f : Ω → C is holomorphic, then∫
∂Dr(z0)

f(z) dz = 0

Proof. It suffices to pick r′ such that Dr′(z0) ⊇ Dr(z0). To show that such an r′ exists,
suppose that it does not. Then for any n ∈ N there exists zn ∈ Dr+ 1

n
(z0) such that

zn ∈ C \ Ω. So {zn} has a convergent subsequence {znk
}, which converges to a limit z /∈ Ω

since C\Ω is closed. But |zn−z0| < r+ 1
n , which means that |z−z0| ≤ r. Thus z ∈ Dr(z0),

contradiction.
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2.2 Homotopies and Simply Connected Domains

We will now take a short detour into some topology in order to investigate which other sets
Cauchy’s Theorem applies to. For some intuition, consider an open set Ω and two curves in
it which share endpoints. Then if Ω is particularly nice, we should be able to continuously
deform one curve into the other.

γ1

γ0

Figure 2.4: Continuous deformation of curves

We formalize this notion by considering a continuous family of curves which deform γ0 into
γ1.

Definition 2.2

Let Ω ⊆ C be open, α, β ∈ Ω, and γ0, γ1 : [a, b] → Ω be two curves with the same
endpoints, such that γ1(a) = γ2(a) = α and γ1(b) = γ2(b) = β. We say that γ1, γ2
are homotopic in Ω if for every s ∈ [0, 1] there is a curve γs : [a, b] → Ω with
γs(a) = α, γs(b) = β such that the function H : [0, 1]× [a, b] → Ω defined by

H(s, t) = γs(t)

is continuous as a function of two variables.

Theorem 2.5

Let Ω ⊆ C be open, and let f : Ω → C be holomorphic on Ω. If γ0, γ1 : [a, b] → Ω
are curves with the same endpoints that are homotopic in Ω, then∫

γ0

f(z) dz =

∫
γ1

f(z) dz

Proof. We claim that there exists ε > 0 such that for any s ∈ [0, 1] and t ∈ [a, b], then

D2ε(γs(t)) ⊆ Ω

38



Suppose not. Then for every n ∈ N, there are sn ∈ [0, 1] and tn ∈ [a, b] and ωn ∈ C \Ω such
that

ωn ∈ D2/n(γsn(tn))

Now, the sequence (sn, tn) ∈ [0, 1] × [a, b] is a sequence in a compact set, so there is a
subsequence {(snk

, tnk
)} tending to (s, t). But then∣∣∣ωnk

− γsnk
(tnk

)
∣∣∣ < 2

nk

which tends to 0. Since C \ Ω is closed, limωnk
∈ C \ Ω. But ωnk

→ γs(k) is the limit of
H(snk

, tnk
), which is continuous, and thus γs(t) ∈ Ω, contradiction. So the claim is proved

and such an ε exists.
Now, note thatH(s, t) is continuous on the compact set [0, 1]×[a, b], so it is also uniformly

continuous. So for ε > 0 which is produced by the claim, there exists δ > 0 such that if
|s1 − s2| < δ and |t1 − t2| < δ, then

|γs1(t1)− γs2(t2)| < ε

Then subdivide [0, 1] × [a, b] using 0 = s0 < s1 < . . . < sn = 1 and a = t0 < . . . < tn = b
such that |sj+1 − sj | < δ and |tj+1 − tj | < δ for all j. We claim that∫

γsj

f(z) dz =

∫
γsj+1

f(z) dz

for all j. Clearly this suffices to prove the theorem. Consider some pair of points (sj , tk) and
(sj+1, tk+1). Draw a circle of radius 2ε around γsj (tk). Note that this circle also contains
γsj+1(tk), γsj+1(tk+1), γsj (tk+1).

γsj(tk)

γsj(tk+1)

γsj+1
(tk)

γsj+1
(tk+1)

D2ε(γsj(tk))

γsj+1

γsj

α

β

By Cauchy’s Theorem∫
γsj ([tk,tk+1])

f +

∫
[γsj (tk+1),γsj+1

(tk+1)]

f −
∫
γsj+1

([tk,tk+1])

f −
∫
[γsj (tk),γsj+1

(tk)]

f = 0

Thus∫
γsj ([tk,tk+1])

f =

∫
γsj+1

([tk,tk+1])

f +

(∫
[γsj (tk),γsj+1

(tk)]

f −
∫
[γsj (tk+1),γsj+1

(tk+1)]

f

)
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Let us write

ak =

∫
γsj (tk),γsj+1(tk)

f

Then summing over all k, we see that∫
γsj

f =

∫
γsj+1

f + a0 − an

But γsj , γsj+1
have the same endpoints so a0 = an = 0. Thus the theorem is proved.

Definition 2.3

An open connected set Ω ⊆ C is called simply connected if any curves γ0, γ1 :
[a, b] → Ω which share endpoints are homotopic in Ω.

Example 2.1

Any convex set, which is a set such that the line between two points in the set is
contained in the set, such as the disk, is simply connected.

Example 2.2

A ”star-shaped” set, which is a set with a center point such that any two points can
be joined by a curve passing through the center, is simply connected.

Example 2.3

C \ {0} is not simply connected. Consider the upper and lower halves of ∂D. Intu-
itively, we see that one cannot be transformed to the other without passing through
the origin. We will prove this later.

Theorem 2.6

Let Ω ⊆ C be simply connected and f : Ω → C be holomorphic. Then f has a
primitive on Ω.

Proof. Let Ω be simply connected and pick a point z0 ∈ Ω. For any z ∈ Ω, choose some
curve γz ⊆ Ω connecting z0 to z. For consistency, let us demand that γz0 is a constant
curve. Then define

F (z) :=

∫
γz

f(ω) dω

Now, let h be small and let φ be the line segment connecting z to z + h. Then the curve
γz + φ (where + means concatenation) shares endpoints with γz+h, so they are homotopic.
By Theorem 2.5, integrating over either gives the same value, so∫

γz+h

f(ω) dω =

∫
γz

f(ω) dω +

∫
φ

f(ω) dω
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We can then write

F (z + h) = F (z) +

∫
φ

f(ω) dω

so

F (z + h)− F (z) = h

∫ ∞

0

f((1− t)z + t(z + h)) dt

From here, we conclude identically to the proof of local existence of primitives.

A corollary to this is a more general form of Cauchy’s Theorem.

Corollary 2.7: Cauchy’s Theorem

If Ω is simply connected and f : Ω → C is holomorphic, then∫
γ

f(z) dz = 0

for every closed curve γ ⊆ Ω.

Proof. f has a primitive, so the integral is zero.

Corollary 2.8

C \ {0} is not simply connected.

Proof. We showed that
∫
∂D

1
z dz = 2πi ̸= 0.

In fact, there are stronger versions of this theorem. We will not formally prove them
here, but we will give an intuitive explanation.

Definition 2.4

A curve γ is simple if, given some parameterization z : [a, b] → C, z(s) = z(t) =⇒
s = t. A simple closed curve is the same, except that z(a) = z(b).

Note that a simple closed curve is not technically simple, but the intuitive idea is the
same.

Theorem: Jordan Curve Theorem

Let γ ⊆ C be a simple closed curve. Then C \ γ = Ω ∪ U , where Ω, U are open,
connected, and disjoint. Moreover, Ω is bounded and simply connected, and U is
unbounded and connected. In this case, Ω is called the interior of γ (denoted int γ),
and U is called the exterior (denoted ext γ.)

Proof. The proof of this theorem is omitted. Note that it is true in the piecewise smooth
case (see Stein & Shakarchi appendix), but it also true for continuous curves.
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Theorem: General Cauchy’s Theorem

Let Ω ⊆ C be open and let f : Ω → C be holomorphic on Ω. Let γ ⊆ C be a simple
closed curve in Ω such that int γ ⊆ Ω. Then∫

γ

f(z) dz = 0

Proof. Draw a curve inside of int γ which is a slight pertubation of γ and is homotopic to
γ. Then this follows since int γ is simply connected. See Stein & Shakarchi appendix for a
complete proof.

2.3 Consequences of Cauchy’s Theorem

Aside from being a powerful theorem about complex integrals, Cauchy’s Theorem also allows
us to solve many difficult real integrals using complex integrals.

Example 2.4

Consider the integral ∫ ∞

0

1− cosx

x2
dx

Note that this is integrable since

lim
x→∞

∣∣∣∣1− cosx

x2

∣∣∣∣ ≤ lim
x→∞

2

x2

and near 0, this behaves like 0. So the integral is indeed a real number.

Now, consider the function f : C \ {0} → C defined by

f(z) =
1− eiz

z2

which is holomorphic. For each R > 0, ε > 0, consider the integral of f(z) over ΓR,ε,
which is defined below as γR + [−R,−ε] + γε + [ε,R]:

ΓR,ε
γR

γε

ε R

Figure 2.5: Indented semicircle
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This function is holomorphic on the star-shaped domain C \ {it : t ≤ 0} (which is
simply connected), so

0 =

∫
ΓR,ε

f(z) dz

=

∫ −ε

−R

1− e−ix

x2
dx︸ ︷︷ ︸

I

+

∫
γε

1− eiz

z2
dz︸ ︷︷ ︸

II

+

∫ R

ε

1− eix

x2
dx︸ ︷︷ ︸

III

+

∫
γR

1− eiz

z2
dz︸ ︷︷ ︸

IV

Now,

I + III =

∫ R

ε

2− (eix + e−ix)

x2
dx = 2

∫ R

ε

1− cosx

x2
dx

So the problem reduces to calculating II and IV. We claim that

lim
ε→0

∫
γ−
ε

1− eiz

z2
dz − π = 0

To see this, parameterize γ−ε as t 7→ εeit for t ∈ [0, π]. Then∫
γ−
ε

1− eiz

z2
dz − π =

∫ π

0

1− eiεe
it

ε2e2it
(εieit) dt− π

=
i

ε

∫ π

0

(
1− eiεe

it

eit
+ iε

)
dt

=
i

ε

∫ π

0

1− eiεe
it

+ iεeit

eit
dt

We may write

eiεe
it

=

∞∑
n=0

(
iεeit

)n
n!

so ∣∣∣eiεeit − (1 + iεeit)
∣∣∣ ≤ ∞∑

n=2

∣∣iεeit∣∣n
n!

=

∞∑
n=2

εn

n!
≤ 10ε2

(10 is an overbound here). Returning to the original integral,∣∣∣∣∣ iε
∫ π

0

1− eiεe
it

+ iεeit

eit
dt

∣∣∣∣∣ ≤ 1

ε
π10ε2 = 10πε

which tends to 0 as ε→ 0.

Lastly, let us compute IV. We parameterize γR by t 7→ Reit on [0, π], and see that∣∣∣∣∫
γR

1− eiz

z2
dz

∣∣∣∣ =
∣∣∣∣∣
∫ π

0

1− eiRe
it

R2e2it

∣∣∣∣∣iReit dt
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Observe that ∣∣∣1− eiRe
it
∣∣∣ = ∣∣∣1− eiR(cos t+i sin t)

∣∣∣
=
∣∣1− eiR cos te−R sin t

∣∣
≤ 1 + eR sin t

≤ 2

where the last inequality follows since sin t > 0 on [0, π]. Returning to IV,∣∣∣∣∣
∫ π

0

1− eiRe
it

R2e2it

∣∣∣∣∣iReit dt ≤ 1

R
2π

which tends to 0 as R→ ∞. Then∫ ∞

0

1− cosx

x2
dx =

1

2
(II + IV) =

π

2

The following theorem is an important formula which is a powerful example of the local-
global properties present in complex analysis.

Theorem 2.9: Cauchy’s Integral Formula

Let Ω ⊆ C be open, DR(z0) ⊆ Ω, and let f : Ω → C be holomorphic on Ω. Then for
z ∈ DR(z0),

f(z) =
1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z
dζ

Proof. Define

F (ζ) =
f(ζ)

ζ − z

Define the curve γtop as shown in the diagram below:
Define γbottom similarly, using the counterclockwise orientation so that the integrals over

the line segment cancel. Both are holomorphic on star-shaped regions, so their integrals are
zero and

0 =
1

2πi

(∫
γtop

F (ζ) dζ +

∫
γbottom

F (ζ) dζ

)

=
1

2πi

(∫
∂DR(z0)

f(ζ)

ζ − z
dζ −

∫
∂Dε(z)

f(ζ)

ζ − z
dζ

)
so

1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Dε(z)

f(ζ)

ζ − z
dζ
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z0 z

γtop

We want to show that the right side quantity is equal to f(z). Calculating,

1

2πi

∫
∂Dε(z)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Dε(z)

(
f(z)

ζ − z
+
f(ζ)− f(z)

ζ − z

)
dζ

Notice that the first term of the integral is the integral of 1
z on a circle around 0, but

translated and multiplied by f(z). So this becomes

f(z) +
1

2πi

∫
∂Dε(z)

f(ζ)− f(z)

ζ − z
dζ

The integrand is bounded since f is holomorphic, so it vanishes as ε→ 0. Thus

f(z) =
1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z
dζ

We now arrive at perhaps the most important theorem in all of complex analysis. This
theorem shows that holomorphic functions are also analytic. We showed that analytic
functions are holomorphic; we now see that they are the same. Moreover, we see that all
holomorphic functions are infinitely differentiable.

Theorem 2.10

Let Ω ⊆ C be open, and suppose DR(z0) ⊆ Ω. Suppose f : Ω → C is holomorphic
on Ω. Then for every z ∈ DR(z0),

f(z) =

∞∑
n=0

an(z − z0)
n

where

an =
1

2πi

∫
∂DR(z0)

f(ζ)

(ζ − z0)n+1
dζ

In particular, the radius of convergence is at least R.
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Proof. By the Cauchy Integral formula, when |z − z0| < R we have

f(z) =
1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z
dz =

1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

dζ

Now, if |z − z0| = r < R, then
∣∣∣ z−z0ζ−z0

∣∣∣ = r
R (since ζ is on the boundary of DR(z0)). So we

may write this as the sum of a geometric series:

1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z0
· 1

1− z−z0
ζ−z0

dζ =
1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z0

∞∑
n=0

(
z − z0
ζ − z0

)n
dζ

=
1

2πi

∫
∂DR(z0)

( ∞∑
n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ

Thus the proof reduces to justifying the interchange of the sum and integral above. To prove
this, for N ∈ N we have

1

2πi


∫
∂DR(z0)

( ∞∑
n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ −

∫
∂DR(z0)

(
N∑
n=0

f(ζ)

(ζ − z)n+1
(z − z0)

n

)
dζ︸ ︷︷ ︸

=0


=

1

2πi

∫
∂DR(z0)

( ∞∑
n=N+1

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ

So ∣∣∣∣∣f(z)−
N∑
n=0

an(z − z0)
n

∣∣∣∣∣ =
∣∣∣∣∣ 1

2πi

∫
∂DR(z0)

( ∞∑
n=N+1

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ

∣∣∣∣∣
≤ 1

2π
2πR

∞∑
n=N+1

rn

Rn+1
sup

ζ∈∂DR(z0)

|f(ζ)| ≤

(
sup

ζ∈∂DR(z0)

|f(ζ)|

) ∞∑
n=N+1

( r
R

)n
=

(
sup

ζ∈∂DR(z0)

|f(ζ)|

)
·
( r
R

)N+1 1

1− r
R

N→∞−→ 0

We can use this to extend Cauchy’s integral formula to higher order derivatives, still
exhibiting local-global behavior:

Theorem 2.11: Cauchy integral formulas

Let Ω ⊆ C be open, and let f : Ω → C be holomorphic on Ω. Let DR(z0) ⊆ Ω. Then
f has n complex derivatives for every n ≥ 0 and for z ∈ DR(z0),

f (n)(z) =
n!

2πi

∫
∂DR(z0)

f(ζ)

(ζ − z)n+1
dζ

Note that this is equivalent to Theorem 2.9 for n = 0.
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Proof. From Theorem 2.10, we can represent f as a power series

f(z) =

∞∑
n=0

an(z − z0)
n

moreover, we know that we may differentiate the series term by term to see that

f (n)(z) =

∞∑
k=n

n!

(n− k)!
ak(z − z0)

k−n

Evaluating at z0, all the terms cancel out except k = n, so

f (n)(z0) =
n!

2πi

∫
∂DR(z0)

f(ζ)

(ζ − z0)n+1
dζ

Now, we use the same contours γtop, γbottom as in the original Cauchy Integral formula proof:

z0 z

γtop

Defining F (ζ) = f(ζ)
(ζ−z)n+1 , which is holomorphic on the simply connected domains con-

taining γtop and γbottom, we have

1

2πi

∫
∂DR(z0)

f(ζ)

(ζ − z)n+1
dζ =

1

2πi

∫
∂Dε(z)

f(ζ)

(ζ − z)n+1
dζ =

f (n)(z)

n!

The last equality follows by our above work, since z is the center of Dε(z).

As an easy corollary we have:

Corollary 2.12: Cauchy Inequality

Let Ω ⊆ C be open, f : Ω → C holomorphic on Ω, and DR(z0) ⊆ Ω. Then∣∣∣f (n)(z0)∣∣∣ ≤ n!

Rn
sup

ζ∈∂DR(z0)

|f(ζ)|
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Proof. By the previous theorem,∣∣∣f (n)(z0)∣∣∣ =
∣∣∣∣∣ n!2πi

∫
∂DR(z0)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣∣∣ ≤ n!

2πi
2πR · 1

Rn+1
sup

ζ∈∂DR(z0)

|f(ζ)|

Theorem 2.13: Liouville’s Theorem

If f : C → C is entire and bounded, then f is constant.

Proof. Let z0 ∈ C. Let |f(ζ)| ≤M for all ζ ∈ C. Then as R→ ∞ we have

|f ′(z0)| ≤
1

R
M → 0

so f ′ ≡ 0 and f is constant.

As a corollary to this we may prove the Fundamental Theorem of Algebra:

Corollary 2.14: Fundamental Theorem of Algebra

Let p ∈ C[x] be non-constant. Then p has a zero in C.

Proof. Suppose p has no root. Then 1
p is entire. We write∣∣∣∣ 1

p(z)

∣∣∣∣ = 1

|zn|
· 1∣∣an + an−1

z + . . .+ a0
zn

∣∣
(we may assume a0 ̸= 0 and n ≥ 1). We bound the denominator from below for large z by∣∣∣an +

an−1

z
+ . . .+

a0
zn

∣∣∣ ≥ |an| −
|an−1|
|z|

− . . .− |a0|
|z|n

so ∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 1

|z|n
· 1

|an| − |an−1|
|z| − . . .− |a0|

|z|n

|z|→∞−→ 0

Thus we pick R > 0 such that 1
|p(z)| ≤ 1 when |z| > R. On DR(z0), 1

p(z) is continuous and

thus bounded. So 1
p is bounded everywhere and thus constant by Liouville’s Theorem. But

we supposed p was not constant, so p must have a root.

We now provide a proof of the method known as analytic continuation.

Definition 2.5

Let Ω ⊆ C be open and let Ω′ ⊆ Ω be open. Let f : Ω′ → C and F : Ω → C be
holomorphic, with F |Ω′ = f . Then we call F an analytic continuation of f .

The key result is that, under minor restrictions, this choice of F is actually unique; that
is, the value of f on a small set completely determine its extension to Ω.
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Theorem 2.15: Uniqueness of Analytic Continuation

Let Ω ⊆ C be open and connected, and consider some collection of distinct points
{ωn}∞n=1 ⊆ Ω such that limωn = ω ∈ Ω exists. Suppose that f : Ω → C is
holomorphic and the ωi are zeroes of f . Then f ≡ 0 on Ω.

Proof. Let A = {z ∈ Ω : f(z) = 0}. Let U = intA. I claim the following:

Claim 1: U is nonempty.

Claim 2: U is closed in Ω.

The theorem follows from the above, as if they are true, we have Ω = U ∪ (Ω\U). By Claim
2, these are disjoint open sets, so one must be nonempty. By Claim 1, it must be Ω \ U so
U = Ω.

To prove these claims, we show the following:

Claim

If {ζn} ⊆ A are distinct and ζn → ζ0 ∈ Ω, then there is R > 0 such that f vanishes
on DR(ζ0).

Proof. Ω is open and ζ0 ∈ Ω, so there exists R > 0 such that DR(ζ0) ⊆ Ω. Since f
is holomorphic, it is analytic, so we may write

f(ζ) =

∞∑
n=0

an(ζ − ζ0)
n

on DR(ζ0). For large enough n, ζn ∈ DR(ζ0), and thus

f(ζ0) = lim f(ζn) = 0

so a0 = 0. If all the ai are zero, then we are done. Suppose not. Then let m ≥ 1 be
the smallest index such that am ̸= 0. Then

f(ζ) = am(ζ − ζ0)
m

1 +
am+1

am
(ζ − ζ0) +

am+2

am
(ζ − ζ0)

2 + . . .︸ ︷︷ ︸
=g(ζ)


Now, g(ζ) is analytic on DR(z0) as it is a power series, and g(ζ0) = 0. For large
enough n we then have

f(ζn) = am(ζn − ζ0)
m(1 + g(ζn))

By assumption, f(ζn) = 0. But am ̸= 0 by assumption. (ζn − ζ0) is only zero for at
most one ζn, so we conclude that 1 + g(ζn) = 0 for all large enough n. As n → ∞
g(ζn) → 0, so 1 = 0, contradiction. Thus no am is nonzero and f is identically
zero. ■

49



Now we apply the above to our {ωn} and arrive at Claim 1. For Claim 2, if there is
some sequence of points in U , then the Claim also shows that their limit is in U . So we are
done.

Corollary 2.16

Let f : Ω′ → C be holomorphic with Ω′ ⊆ Ω ⊆ C both open. If Ω is connected, then
there is at most one analytic continuation F : Ω → C of f .

Proof. Suppose F1, F2 : Ω → C are analytic continuations of f . Then F1 − F2 is zero on Ω′

open, and we immediately conclude that F1 − F2 ≡ 0 on Ω. So F1 = F2.

We now prove a converse to Goursat’s Theorem.

Theorem 2.17: Morera’s Theorem

Let f : DR(z0) → C is continuous and for any triangle T ⊆ DR(z0) we have∫
∂T

f(z) dz = 0

then f is holomorphic on DR(z0).

Proof. We imitate the proof that holomorphic functions locally have primitives, which only
assumed Goursat’s Theorem. In this case we do not know that f is holomorphic but we as-
sume the conclusion of Goursat’s Theorem. Thus f has a primitive F . So F is holomorphic,
and thus infinitely differentiable. In particular, f = F ′ is holomorphic.

2.4 Sequences of Functions

In this section we develop the theory of the convergence of sequences of functions, in par-
ticular holomorphic ones. This is analogous to the discussion of sequences of functions in
real variables.

Definition 2.6

Let Ω ⊆ C. Let {fn : Ω → C} be a sequence of functions and f : Ω → C. We say
that {fn} converges uniformly to f (denoted fn ⇒ f) on a subset A ⊆ Ω if for
every ε > 0 there exists N ∈ N such that for all n ≥ n, z ∈ A, |fn(z)− f(z)| < ε. We
say that {fn} converges uniformly on compact subsetes if for every K ⊆ Ω compact,
fn ⇒ f on K.

Equivalently, fn ⇒ f on compact subsets if and only if for allK, supz∈K |fn(z)− f(z)| →
0 uniformly.

As in the real case, uniform convergence is distinguished from pointswise convergence since
our N must work for all z ∈ A. Convergence on compact subsets is particularly important
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for us, so we should note that the N may depend on the choice of K; that is, fn need not
converge uniformly on all of Ω.

Theorem 2.18

Let Ω ⊆ C be open. Let fn : Ω → C be holomorphic and fn ⇒ f on compact subsets.
Then f is holomorphic on Ω.

Note that this theorem is false in the real case, if holomorphicity is replaced by, say,
continuous differentiability. For instance, let fn : R → R be equal to the absolute value
function outside of [− 1

n ,
1
n ] and be some smooth interpolating function between them. This

is continuously differentiable and the convergence is uniform, but the limit is the absolute
value function which is not even differentiable.

Proof. We prove this using Morera’s theorem. Fix z0 ∈ Ω and let Dr(z0) ⊆ Ω. Recall
from real analysis that the uniform limit of continuous function is continuous. Applying
this to the real and imaginary parts of f , f is also continuous. By Morera’s theorem, it is
enough to show that for any triangle T ⊆ Dr(z0), the integral of f along ∂T vanishes. fn is
holomorphic, so ∣∣∣∣∫

∂T

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂T

f(z) dz −
∫
∂T

fn(z) dz

∣∣∣∣
≤ length(∂T ) sup

z∈∂T
|f(z)− fn(z)|

As n→ ∞, supz∈∂T |f(z)− fn(z)| → 0 and length(∂T ) is constant, so∫
∂T

f(z) dz = 0

and by Morera’s f is holomorphic.

We use the above result to prove a related result which essentially says that we may
interchange the derivative and limit operators:

Theorem 2.19

Let Ω ⊆ C be open and let fn : Ω → C be holomorphic with fn ⇒ f on compact
subsets. Then f ′n ⇒ f ′ on compact subsets.

Proof. To show that f ′n ⇒ f ′ on compact subsets, let K ⊆ Ω be compact.

Claim 1: There exists δ > 0 such that for all z ∈ K, Dδ(z) ⊆ Ω.

To see this, suppose there exists sequences zn ⊆ K and wn /∈ Ω such that wn ∈ D 1
n
(zn).

Take a convergent subsequence znk
which converges to some limit z ∈ K. But then wnk

→ z
so there is no open disk around z contained in Ω, contradicting the fact that Ω is open.
Thus such a δ exists.
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Let
Kδ =

⋃
z∈K

Dδ(z) ⊆ Ω

Claim 2: Kδ is compact.

Clearly Kδ is bounded since K is. To show closure, take a sequence zn ⊆ Kδ such that
zn → z ∈ C. For each n, there exists wn ∈ K such that |zn − wn| ≤ δ. Pick a subsequence
{wnk

} which converges to w ∈ K. Then |z − w| = lim|znk
− wnk

| ≤ δ so z ∈ Kδ.

Let z ∈ K. Then by Cauchy’s Integral formula for derivatives,

|f ′n(z)− f ′(z)| =

∣∣∣∣∣ 1

2πi

∫
∂Dδ(z0)

fn(ζ)− f(ζ)

(ζ − z)2
dζ

∣∣∣∣∣
≤ 1

2π
2πδ

1

(δ − |z − z0|)2
sup
ζ∈Kδ

|fn(ζ)− f(ζ)|

As n→ ∞, the above tends to 0 uniformly since Kδ is compact, so f ′n ⇒ f ′ on K.

The above theorems allow us to produce important holomorphic functions.

Example 2.5

Consider the Riemann zeta function ζ : {z ∈ C : Re(z) > 1} → C defined by

ζ(z) =

∞∑
n=1

1

nz

To show that this is holomorphic, we write

ζN (z) =

N∑
n=1

1

nz
=

N∑
n=1

e−z lnn

So each ζN is holomorphic. We want to show that ζN ⇒ ζ on compact subsets. Let
K ⊆ {z ∈ C : Re(z) > 1} be compact.

Since K is compact there exists a δ > 0 such that K ⊆ {z ∈ C : Re(z) > 1 + δ}.
Then

|ζN (z)− ζ(z)| =

∣∣∣∣∣
∞∑

n=N+1

1

nz

∣∣∣∣∣ ≤
∞∑

n=N+1

∣∣e−z lnn∣∣ = ∞∑
n=N+1

∣∣∣e−Re(z) lnn
∣∣∣

=

∞∑
n=N+1

1

nRe(z)
≤

∞∑
n=N+1

1

n1+δ

Since 1 + δ > 1 this is a convergent series and therefore tends to 0. Moreover it
does so independent of z so ζN ⇒ ζ on compact subsets and ζ is holomorphic on the
indicated half plane.
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We now develop analogous results for integration.

Theorem 2.20

Let Ω ⊆ C be open and F : Ω× [0, 1] → C be such that

1. For fixed s ∈ [0, 1], Fs(z) = F (z, s) is holomorphic on Ω.

2. F is continuous.

Define

f(z) =

∫ 1

0

F (z, s) ds

Then f is holomorphic on Ω.

Proof. Define

fN (z) =
1

N

N∑
n=1

F
(
z,
n

N

)
This is a finite Riemann sum approximation of f obtained by uniformly partitioning [0, 1]
intoN subintervals. fN is holomorphic, so we want to show that fn ⇒ f on compact subsets.
Now, take some K ⊆ Ω compact, and note K × [0, 1] is compact. Then f is uniformly
continuous on K × [0, 1]. So for ε > 0 pick δ > 0 such that for z1, z2 ∈ K, s1, s2 ∈ [0, 1] with
|z1 − z2| < δ, |s1 − s2| < δ, then |F (z1, s1)− F (z2, s2)| < ε.

Now, take N large enough that N > 1
δ . Then

|f(z)− fn(z)| =

∣∣∣∣∣
∫ 1

0

F (z, s) ds− 1

N

N∑
n=1

F
(
z,
n

N

)∣∣∣∣∣
=

N∑
n=1

∫ n
N

n−1
N

∣∣∣(F (z, s)− F
(
z,
n

N

))∣∣∣ ds
<

N∑
n=1

ε
1

N

= ε

so fn ⇒ f on compact subsets and thus f is holomorphic on Ω.

Next, we discuss the Schwarz reflection principle, which is another technique for con-
structing holomorphic functions.

Definition 2.7

A set Ω ⊆ C is symmetric about the real axis if

z ∈ Ω ⇐⇒ z ∈ Ω
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In this case, we write the following:

Ω+ := Ω ∩ {z ∈ C : Im(z) > 0}
Ω− := Ω ∩ {z ∈ C : Im(z) < 0}

I := Ω ∩ R

Ω+

Ω−

I

Figure 2.6: Symmetric Sets

Theorem 2.21: Symmetry Principle

Let Ω ⊆ C be open and symmetric about the real axis. Suppose that f+ : Ω+∪I → C
is continuous on Ω+ ∪ I and holomorphic on Ω+, and that f− is the same (with Ω+

replaced by Ω−). Moreover, suppose that f+ = f− on I. Define f : Ω → C by

f(z) =


f+(z), z ∈ Ω+

f+(z) = f−(z), z ∈ I

f−(z), z ∈ Ω−

Then f is holomorphic on Ω.

Again, observe that this is false in the real case: consider the absolute value function on
R, or similar linear functions on Rn.

Proof. Let z ∈ Ω. Clearly f is holomorphic at points in Ω+,Ω− so we only consider z ∈ I.
Now, Ω is open so we let Dr(z) ⊆ Ω. We want to use Morera’s. Consider any triangle
T ∈ Dr(z0). If T is entirely on one side of the line then we are done. Otherwise, there are
threee possible cases:

I II III
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Case 1: Consider the triangle Tε which is T , except translated upward by ε.

ε

Tε

T

Figure 2.7: Lifting of Case 1 triangle

By Cauchy-Goursat the integral around ∂Tε is zero, and in particular the only parts
which do not cancel are the baselines. So∫

∂T

f(z) dz −
∫
∂Tε

f(z) dz =

∣∣∣∣∣
∫ b

a

[f(t)− f(t+ iε)] dt

∣∣∣∣∣ ≤ (b− a) sup
t∈[a,b]

|f(t)− f(t+ iε)|

This tends to 0 uniformly as ε→ 0 since f is continuous.

Case 2: Similar to Case 1. EXERCISE: prove this.

Case 3: We split T into three triangles, two of which satisfy Case 1 and one of which
satisfies Case 2:

T1

T2

T3

Figure 2.8: Subdivision of Case 3 triangle into Case 1 and Case 2 triangles

Choosing the right orientation shows that the integral around ∂T is zero.

So f is holomorphic on Ω.

Theorem 2.22: Schwarz Reflection Principle

Let Ω ⊆ C be open and symmetric, with Ω ∩ R ̸= ∅, and let f+ : Ω ∪ I → C be
continuous on Ω+ ∪ I and holomorphic on Ω+. Also, suppose f+(z) ∈ R for z ∈ I.
Then there exists a unique f : Ω → C holomorphic on Ω which coincides with f+ on
Ω+ ∪ I.

We could alternately demand that Ω be connected rather than Ω∩R ̸= ∅, this just gives
us uniqueness.
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Proof. For uniqueness, this is immediate by analytic continuation.

For z ∈ Ω−, define
f(z) = f+(z)

We want to show that this is holomorphic, and we will do this using the Symmetry principle.
Because f+ is real on I, f coincides with f+ on I. Now we just need to show f− is
holomorphic. Let z0 ∈ Ω−. Then there exists r > 0 such that

f+(z) =

∞∑
n=0

an(z − z0)
n

in some disk Dr(z0) ⊆ Ω+. Now take z ∈ Dr(z0). Then we have

f+(z) =

∞∑
n=0

an(z − z0)
n =

∞∑
n=0

an(z − z0)n

so f−(z) = f+(z) is holomorphic at z0 and thus on Ω−. Now conclude by the symmetry
principle.
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Chapter 3

Meromorphic Functions and
Poles

In this chapter we study those functions which are holomorphic except possibly at some iso-
lated points. Together, understanding these functions together with holomorphic functions
will allow us to understand a wide variety of functions for practical use.

3.1 Classification of Singularities

In this section, it is of interest to understand the different ways that a function might fail
to be holomorphic at a certain point. One way that this may happen is if a function is the
ratio of two functions, and the denominator vanishes at a point. Thus, we briefly consider
the zeroes of certain functions.

Definition 3.1

If f : Ω → C and z0 ∈ Ω, then z0 is called a zero of f if f(z0) = 0. It is called an
isolated zero if there is r > 0 such that

f((Dr(z0) \ {z0}) ∩ Ω) ⊆ C \ {0}

that is, if f is nonzero around z0.

Theorem 3.1

Let Ω ⊆ C be a region and let f : Ω → C be holomorphic and nonconstant. Let
z0 ∈ Ω be a zero of f . Then there exists δ > 0 such that Dδ(z0) ⊆ Ω and n ∈ N and
g : Dδ(z0) → C \ {0} holomorphic such that f(z) = (z − z0)

ng(z) for all z ∈ Dδ(z0).
Moreover, n, g are unique.

In other words, this theorem says that a function which vanishes at a point may be
locally factored as a product of (z − z0)

n and a nonzero function.
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Proof. Pick r > 0 such that Dr(z0) ⊆ Ω. Since f is holomorphic on the disk we expand it
as a power series

f(z) =

∞∑
k=0

ak(z − z0)
k

on Dr(z0). We know f(z0) = a0 = 0. f cannot be zero on the disk because then it would be
zero (and thus constant) overwhere by analytic continuation. Let n be the smallest integer
such that an ̸= 0. Then

f(z) = an(z − z0)
n + . . . = (z − z0)

n (an + an+1(z − z0) + . . .)

Define

g(z) =

∞∑
k=0

an+kz
k

This is nonzero at z0 so by continuity there is some δ > 0 such that g is nonzero on Dδ(z0).
Thus we have shown existence.

For uniqueness, suppose that

f(z) = (z − z0)
n1g1(z) = (z − z0)

n2g2(z)

Suppose that n1 ̸= n2 and without loss of generality suppose n1 < n2. Then

g2(z) = (z − z0)
n1−n2g1(z)

which is zero at z0, contradiction. Thus n1 = n2. It follows by division that g1 = g2 except
possibly at z0, and since g1, g2 are holomorphic they are equal there as well.

Definition 3.2

Suppose f : Ω → C is holomorphic and nonconstant with Ω a region, and suppose
z0 ∈ Ω is a zero of f . Then the unique n referred to Theorem 3.1 is called the order
or multiplicity of the zero of f at z0. If n = 1 then z0 is called a simple zero of f .

Definition 3.3

Let Ω ⊆ C be open and suppose z0 ∈ Ω. Then if f : Ω \ {z0} → C is holomorphic on
Ω \ {z0} we say that f has a pole at z0 if

1. There is δ > 0 such that Dδ(z0) ⊆ Ω and f does not vanish on Dδ(z0) \ {z0};

2. If we define

g(z) =

{
1

f(z) , z ∈ Dδ(z0) \ {z0}
0, z = z0

then g is holomorphic.

Intuitively, a pole is a point at which the denominator vanishes and f tends to infinity.
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Theorem 3.2

Let Ω ⊆ C be open, z0 ∈ Ω, and f : Ω\{z0} → C holomorphic on Ω\{z0}. Moreover,
suppose f has a pole at z0. Then there exists r > 0 such that for all z ∈ Dr(z0)\{z0},

f(z) =
h(z)

(z − z0)n

where h : Dr(z0) → C \ {0} is holomorphic and nonvanishing, n ∈ N, and n, h are
unique.

Proof. By Theorem 3.1, there exists ψ such that

g(z) = (z − z0)
nψ(z)

where ψ : Dδ(z0) → C \ {0} is holomorphic and nonvanishing. Now, for z ∈ Dδ(z0) \ {z0},

f(z) =
1

g(z)
=

1
ψ(z)

(z − z0)n

Now let h(z) = 1
ψ(z) . EXERCISE: prove uniqueness.

Definition 3.4

In the setting of Theorem 3.2 f is said to have a pole of order (or multiplicity) n
at z0, and if n = 1 then z0 is called a simple pole.

Theorem 3.3

If Ω ⊆ C is open and f has a pole of order n at z0 ∈ Ω, then there exists δ > 0 such
that for z ∈ Dδ(z0) we may write

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ . . .+

a−1

z − z0
+G(z)

where a−n, . . . , a−1 ∈ C and G is holomorphic on Dδ(z0).

Proof. Let δ be as in Theorem 3.2, and write

f(z) =
h(z)

(z − z0)n

h is holomorphic on Dδ(z0), so we expand it as a power series:

h(z)

(z − z0)n
=
A0 +A1(z − z0) + . . .

(z − z0)n
=

A0

(z − z0)n
+ . . .+

An−1

(z − z0)
+An +An+1(z − z0) + . . .

Then relabel this by letting A0, . . . , An−1 be a−n, . . . , a−1 respectively, and An, . . . be a0, . . ..
Letting G(z) be the right side, we are done.
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Definition 3.5

The term
a−n

(z − z0)n
+ . . .+

a−1

(z − z0)

in Theorem 3.3 is known as the principal part of f .

Moreover, the number a−1 is known as the residue of f at the pole z0, denoted
resz0(f).

The residue term ends up being the most important piece of data about f at a pole.
This is because if we integrate on a circle around the pole, all the terms integrate to zero
except the a−1 term.

Theorem 3.4

If f has a pole of order n at z0, then

resz0(f) = lim
z→z0

1

(n− 1)!
((z − z0)

nf(z))
(n−1)

In particular, if the pole is simple then

resz0(f) = lim
z→z0

(z − z0)f(z)

Proof. We write

(z − z0)
nf(z) = a−n + (z − z0)an+1 + . . .+ (z − z0)

n−1a−1 + (z − z0)
nG(z)

Differentiate n − 1 times and take the limit as z → z0. Then every term of the principal
part vanishes, and G is holomorphic multiplied by an nth power so the (n− 1)th derivative
will also be zero. Thus (

(z − z0)
n−1f(z)

)(n−1)
∣∣∣∣
z→z0

= (n− 1)!a−1

This work leads us to the residue theorem, which is a powerful theorem that expands on
Cauchy’s Theorem for non-holomorphic functions.

Theorem 3.5: Residue Theorem

Let Ω ⊆ C be simply connected and suppose U ⊆ Ω is open such that U ⊆ Ω and
γ = ∂U is a simple closed curve. Suppose there exist a finite number of points
z1, . . . , zN ∈ U (see Figure 3.1). Suppose f : Ω \ {z1, . . . , zN} → C is holomorphic
with poles at z1, . . . , zN . Then∫

γ

f(z) dz = 2πi

N∑
k=1

reszk(f)
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Ω

γ

U

z1
z2

z3

Figure 3.1: Setting for the Residue Theorem

Proof. We induct on N . For N = 0 this is true by Cauchy’s Theorem for simply connected
domains.

For N = 1, apply Theorem 3.2 and suppose the pole at z1 has order n. Then for some small
ε > 0 we have∫

Dε(z1)

f(z) dz =

∫
Dε(z1)

(
a−n

(z − z1)n
+ . . .+

a−1

z − z1
+G(z)

)
dz

By Cauchy’s Theorem, the G(z) part drops out. Now, by Cauchy’s integral formula for
derivatives,

1

2πi

∫
∂Dε(z1)

a−k
(z − z1)k−1+1

=
1

(k − 1)!
(a−k)

(k−1) =

{
0, k ≥ 2

a−1, k = 1

So the entire integral becomes 2πi resz1(f). Now, similar to the proof of Cauchy’s integral
formula, we set up the following:

Ω

γ
U

z1

∂Dε(z0)

so ∫
γ

f(z) dz =

∫
Dε(z1)

f(z) dz = 2πi resz1(f)

For the inductive step, for any N we draw a line through U which passes through none
of the zi, but so that not all the points are on the same side (this is possible since N is
finite). Let γ1 be the boundary of one of the subdomains created and γ2 the other.
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Ω

γ

U

z1
z2 z3

γ1

γ2

We see that ∫
γ1

f(z) dz +

∫
γ2

f(z) dz =

∫
γ

f(z) dz

Each of γ1, γ2 contain fewer than N of the zi, and in particular contain all of them except
zN , so by the inductive hypothesis∫

γ1

f(z) dz +

∫
γ2

f(z) dz = 2πi

N∑
k=1

reszk(f)

The residue theorem allows us to compute many integrals easily, including those of
rational real functions:

Example 3.1

∫ ∞

−∞

cosx

x4 + x2 + 1
dx =

π

e
√

3
2

(
cos
(
1
2

)
√
3

+ sin

(
1

2

))
To see why this is, consider the function

f(z) =
eiz

z4 + z2 + 1

and note that since sin is odd,∫ ∞

−∞

cosx

x4 + x2 + 1
dx =

∫ ∞

−∞
f(x) dx

We integrate this along the upper semicircle of radius R. Denote the arc section of
its boundary by γR. Notice that the poles are the zeroes of the denominator, which
cocur precisely when

z =
1

2
±

√
3

2
i = a±

z = −1

2
±

√
3

2
i = b±

all of which have order 1 since the denominator is a polynomial of degree 4. We only
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care about a+, b+ since those are the only poles in our curve. Thus∫ R

−R
f(z) dz +

∫
γR

f(z) dz = 2πi
(
resa+(f) + resb+(f)

)
We want to show that the integral over γR tends to zero. Parameterize this by
t 7→ Reit for t ∈ [0, π]. So

|f(z)| =
∣∣∣∣ei(R cos θ+i sin θ)

z4 + z2 + 1

∣∣∣∣ ≤ e−R sin θ

R4 −R2 − 1
≤ 1

R4 −R2 − 1

so ∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ ≤ πR

R4 −R2 − 1

which tends to 0 as R→ ∞. So∫ ∞

−∞

cosx

x4 + x2 + 1
dx = 2πi

(
resa+(f) + resb+(f)

)
To calculate the residues (noting they are simple poles), we have

resa+(f) = lim
z→a+

(z − a+)
eiz

(z − a+)(z − a−)(z − b+)(z − b−)

=
eia+

(a+ − a−)(a+ − b+)(a+ − b−)

and similarly for resb+(f). Explicitly calculating these gives the result.

Although poles are the most important kind of singularity, we now briefly consider other
kinds of singularities.

Definition 3.6

Let Ω ⊆ C be open and z0 ∈ ω. Let f : Ω \ {z0} → C be holomorphic. We say
that f has a removable singularity at z0 if there is f̃ : Ω → C holomorphic with
f̃(z) = f(z) for all z ∈ Ω \ {z0}.

Theorem 3.6: Riemann’s Theorem on Removable Singularities

Let Ω ⊆ C be open and z0 ∈ Ω. Then f : Ω \ {z0} → C has a removable singularity
at z0 if f is bounded on Ω.
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Proof. There exists r > 0 such that Dr(z0) ⊆ Ω. Then for z ∈ Dr(z0) define

f̃(z) =
1

2πi

∫
∂Dr(z0)

f(ω)

ω − z
dω

Observe that

f̃(z) =
1

2πi

∫ 2π

0

f(z0 + reit)

z0 + reit − z
rieit dt

The denominator is never zero since z is in the interior of Dr(z0), so by Theorem 2.20, f̃ is
holomorphic. So we need to show that f agrees to f̃ on Dr(z0) \ {z0}.

Draw a line segment through Dr(z0) such that z is separated from z0. Let γ1, γ2 be the
curves created this way.

z0

z

γ2 γ1

Dr(z0)

Then

f̃(z) =
1

2πi

∫
γ1

f(ω)

ω − z
dω +

1

2πi

∫
γ2

f(ω)

ω − z
dω

Now, by the Cauchy Integral Formula

1

2πi

∫
γ1

f(ω)

ω − z
dω = f(z)

Now, divide γ2 into γ2top, γ2bottom to avoid z0.

z0

z

γ2top γ1

Dr(z0)

γ2bottom
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Then

0 =

∫
γ2top

f(ω)

ω − z
dω +

∫
γ2bottom

f(ω)

ω − z
dω =

∫
γ2

f(ω)

ω − z
dω −

∫
∂Dε(z0)

f(ω)

ω − z
dω

Then we have∣∣∣f̃(z)− f(z)
∣∣∣ ≤ ∣∣∣∣ 1

2πi

∫
γ2

f(ω)

ω − z
dω

∣∣∣∣ = 1

2π

∣∣∣∣∣
∫
∂Dε(z0)

f(ω)

ω − z
dω

∣∣∣∣∣ ≤ 1

2π
2πε

M

|z − z0| − ε

where M is a bound for f . Then as ε→ 0, this quantity goes to zero and thus f = f̃ . So f
has a removable singularity.

Note that this statement becomes an if and only if statement if we change the conclusion
to “f is bounded on a neighborhood of z0.” In fact, there is a more powerful statement,
which is that the following conditions are all equivalent:

• f has a removable singularity at z0.

• f is bounded on a neighborhood of z0.

• f is continuously extendable at z0.

Though it is perhaps surprising that being continuously extendable is equivalent to be
holomorphically extendable, this can be proved by using a fourth equivalent characterization,
which is the condition that limz→z0(z−z0)f(z) = 0. As a corollary to this, we can formalize
the intuition that a pole is a point where f is becomes unbounded.

Corollary 3.7

Let f : Ω \ {z0} → C be holomorphic. Then f has a pole at z0 if and only if

lim
z→z0

|f(z)| = ∞

Proof. ( =⇒ ) If z0 is a pole, then by the local description of poles,

f(z) =
h(z)

(z − z0)n

near z0, where h is nonzero. But then

lim
z→z0

|f(z)| = lim
z→z0

|h(z)|
|z − z0|n

= lim
z→z0

|h(z0)|
0

= ∞

( ⇐= ) If limz→z0 |f(z)| = ∞ then

lim
z→z0

1

|f(z)|
= 0

so 1
|f(z)| is bounded near z0. Then by Riemann’s Theorem, there is g : Dr(z0) → C holo-

morphic such that g(z) = 1
f(z) for all z ∈ Dr(z0)\{z0}. In particular, by continuity we must

have g(z0) = 0. So f has a pole at z0.
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Thus we have classified two types of isolated singularities. We give a name to the other
kinds now:

Definition 3.7

Let f : Ω \ {z0} → C be holomorphic. Then the singularity of f at z0 is said to be a
essential singularity if it is neither a pole nor removable.

Example 3.2

Consider f : C \ {0} → C given by f(z) = e
1
z . Then 0 is an essential signularity. To

see this, first note that
lim
t→0+

f(t) = lim
t→0+

e
1
t = ∞

so the singularity is not bounded, and thus not a pole. But similarly,

lim
t→0−

f(t) = 0

so the singularity is not a pole either.

Moreover, if we consider z = it,

f(it) = cos

(
1

t

)
− i sin

(
1

t

)
so we see that the real and imaginary parts have oscillating discontinuities at 0.

The following theorem gives us some insight into the behavior of functions near essential
singularities.

Theorem 3.8: Casorati-Weierstrass Theorem

Let r > 0 and suppose f : Dr(z0) \ {z0} → C is holomorphic with an essential
singularity at z0. Then the image f(Dr(z0) \ {z0}) is dense in C.

Proof. Suppose for contradiction that there exists ω ∈ C and δ > 0 such that f(Dr(z0) \
{z0}) ∩ Dδ(ω) = ∅. Then

|f(z)− ω| ≥ δ

for all z ∈ Dr(z0) \ {z0}. Then
g(z) =

1

f(z)− ω

is well defined and holomorphic on Dr(z0) \ {z0}, and moreover

|g(z)| ≤ 1

δ

By Riemann’s Theorem, g can be defined at z0 so that g is holomorphic on all of Dr(z0).
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If g(z0) ̸= 0, then 1
g(z) is holomorphic near z0. But then since f(z) = 1

g(z)+ω, we may define

f at z0 so that f is holomorphic, and therefore z0 is a removable singularity, contradiction.

Otherwise, if g(z0) = 0, then

lim
z→z0

1

|g(z0)|
= ∞

so

lim
z→z0

|f(z)| =
∣∣∣∣ 1

g(z)
+ ω

∣∣∣∣ ≥ lim
z→z0

1

|g(z)|
− |ω| = ∞

so by Corollary 3.7 f has a pole, contradiction. Thus the image is dense in C.

We note here that a substantially stronger fact is true: the image of any punctured
neighborhood of z0 is not just dense, but is actually all of C, excluding at most one point.
This is known as Picard’s Great Theorem but we cannot prove it here.

3.2 Meromorphic Functions

Now that we have classified the types of (isolated) singularities that a function may have,
we generalize our study of holomorphic functions to those which have isolated singularities.

Definition 3.8

If Ω ⊆ C is open, then f is meromorphic on Ω if there is a collection of points
{z1, z2, . . .} ⊆ Ω (either infinite or finite) such that:

1. The restriction of f to Ω \ {z1, z2, . . .} is holomorphic;

2. f has a pole at each zi;

3. {z1, z2, . . .} does not have a limit point in Ω.

The last condition here ensures that each pole is isolated from the others.

Definition 3.9

We say that f is meromorphic at ∞ if there is some radius R > 0 such that
f : C \ DR → C is holomorphic and the function F : D 1

r
\ {0} → C defined by

F (z) = f

(
1

z

)
has a pole at 0. We can similarly define what it means for f to have a removable
singularity at ∞ or an essential singularity at ∞.
f is said to be meromorphic on the extended complex plane if it is meromor-
phic on C and at ∞

Note that if f is meromorphic on the extended complex plane, then it has only finitely
many poles (this follows by a compactness argument since the Riemann sphere is compact,
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and we assume the poles don’t have a limit point). Moreover, the following result allows us
to transfer our knowledge of holomorphic functions onto meromorphic functions:

Theorem 3.9

Any function that is meromorphic on the extended complex plane is a rational func-
tion

f(z) =
P (z)

Q(z)

where P,Q ∈ C[z].

Proof. If f is meromorphic on the extended complex plane then it has finitely many poles
z1, . . . , zn (not including the pole at ∞). By Theorem 3.3, for each k = 1, 2, . . . , n there
exists δk > 0 such that for z ∈ Dδk(z0),

f(z) = fk(z) + gk(z)

where f is the principal part (a polynomial in 1
z−zk ) and g is the holomorphic part. Since

f is meromorphic at ∞, there exists R > 0 such that f : C \ DR → C is characterized by

f

(
1

z

)
= f̃∞(z) + g̃∞(z)

Then define

f∞(z) = f̃∞

(
1

z

)
, g∞ = g̃∞

(
1

z

)
Then f∞ is a polynomial in z and g∞ is holomorphic.

Define
H = f − f1 − f2 − . . .− fn − f∞

Intuitively, we have removed all of the principal parts of f .

Claim: H is entire.

At any point other than the zi, f is holomorphic and each of the fi is holomorphic as well.
f∞ is a polynomial, so H is certainly holomorphic at every point that is not a pole. Consider
zk. Then on Dδk(zk) we have

H(z) = (f−fk)−f1−. . .−fk−1−fk+1−. . .−fn−f∞ = gk−f1−. . .−fk−1−fk+1−. . .−fn−f∞

The other fi are holomorphic at zk, and so is gk, so H is holomorphic at zk.

Now, we claim that H is bounded. To see this, recall that fk is a polynomial in 1
z−zk . So

lim
z→∞

|fk(z)| = 0

Moreover, for z ∈ D1/R,

f

(
1

z

)
= f̃∞ (z) + g̃∞(z)
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Now,
H = (f − f∞)− (f1 + . . .+ fn) = g∞ − (f1 + . . .+ fn)

g∞(z) = g̃∞
(
1
z

)
is bounded on D 1

R
, so g∞ is bounded on C \ DR, and therefore constant.

So
f = f1 + f2 + . . .+ fn + f∞ + c

is a rational function.

Note that the above theorem also holds when f has a removable singularity at ∞. It
only fails when f has an essential singularity at ∞ (consider ez). This is seen most easily
with the following alternate proof, that requires the uniqueness of Laurent series:

Alternate Proof. Claim: If f is entire and has a nonessential singularity at ∞ then it is a
polynomial.

To see this, if f has a removable singularity then it is bounded and therefore constant by
Liouville’s theorem.

If it has a pole, then let g(z) = f
(
1
z

)
. Then we can write

g(z) =

∞∑
n=−m

bnz
n

for appropriate bn. It follows that on C \ {0},

f(z) =

m∑
n=−∞

bnz
n

But if f is entire then it can be written as a power series starting at n = 0. By uniqueness
of Laurent series, these are the same, so

f(z) =

m∑
n=0

bnz
n ∈ C[z]

Now, let z1, . . . , zm be the poles (excluding the one at ∞), and suppose n1, . . . , nm are their
respective orders. Then

f(z)

m∏
k=1

(z − zk)
nk

has removable singularities at the poles and is holomorphic everywhere else. It has a
nonessential singularity at ∞ since f does. So by the claim it is a polynomial and thus
f is a rational function.
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Theorem 3.10: Argument Principle

Let Ω ⊆ C be simply connected. Suppose U ⊆ Ω is open and U ⊆ Ω, with ∂U a simple
closed curve γ. Suppose there exist p1, . . . , pM ∈ U such that f : Ω \ {p1, . . . , pM} →
C is holomorphic. Assume that the zeroes of f are z1, . . . , zN ∈ U and f has poles
at each pi. Moreover, suppose that nk denotes the order of the zero at zk, and that
mk denotes the order of the pole at pk. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = n1 + . . .+ nN − (m1 + . . .+mM )

Roughly speaking, the right side is the number of zeroes minus the number of poles,
with multiplicity.

Proof. Near each zk, we know that

f(z) = (z − zk)
nkg(z)

for g(z) holomorphic and nonvanishing near zk. So

f ′(z) = nk(z − zk)
nk−1g(z) + (z − zk)

nkg′(z)

so
f ′(z)

f(z)
=

nk
(z − zk)

+
g′(z)

g(z)

since g is nonvanshing, the function g′/g is holomorphic near zk. So

reszk

(
f ′

f

)
= nk

Similarly, near each pk we may write

f(z) =
h(z)

(z − zk)mk

Again we have

f ′(z) = −mk
h(z)

(z − zk)mk+1
+

h′(z)

(z − zk)mk

so
f ′(z)

f(z)
=

−mk

(z − zk)
+
h′(z)

h(z)

and

respk

(
f ′

f

)
= −mk

By the residue formula,∫
γ

f ′(z)

f(z)
dz = 2πi

[
N∑
k=1

reszk

(
f ′

f

)
+

M∑
k=1

respk

(
f ′

f

)]
= 2πi

∑
nk − 2πi

∑
mk
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The interpretation of
∫
γ
f ′(z)
f(z) dz is i times the total change in argument of f(z) over γ.

Using what we learn about logarithms later, we pick up winding numbers if we wind around
0, which is why we care about zeroes. It turns out that winding numbers from poles work
in the exact opposite direction, so they cancel out a zero.

In particular, note that the right hand side is an integer. This fact allows us to prove
equality between two functions in the form of the argument principle simply by estimating
their difference and bounding it below 1

2 . For instance, we can do the following:

Theorem 3.11: Rouche’s Theorem

Let Ω ⊆ C be simply connected, U ⊆ Ω open with U ⊆ Ω, and ∂U = γ a simple
closed curve. Let f, g : Ω → C be holomorphic such that

|f(z)| > |g(z)|

for every z ∈ γ. Then f and f + g have the same number of zeroes in U (counted
with multiplicity).

Intuitively, g is a small perturbation of f (small at the boundary), and we see that f
has the same number of zeroes.

Proof. For t ∈ [0, 1], define ft(z) = f(z) + tg(z). By our assumption, ft ̸= 0 on γ. Let nt
be the number of zeroes of ft in U . ft is holomorphic so it has no poles. Now, we apply the
argument principle, so that

nt =
1

2πi

∫
γ

f ′t(z)

ft(z)
dz =

1

2πi

∫
γ

f ′(z) + tg′(z)

f(z) + tg(z)
dz

This is jointly continuous in z, t, so by real variable analysis we know that nt is continuous
in t. But nt takes integer values so it must be constant. Thus n0 = n1.

Example 3.3

Consider the polynomial z5 + 3z3 + 7. We already know this has 5 roots in C. We
show that all of the zeroes lie in D2.

Let f(z) = z5 and g(z) = 3z3 + 7. If |z| = 2 then

|g(z)| =
∣∣3z3 + 7

∣∣ ≤ 3|z|3 + 7 = 31 < 32 = |z|5 = |f(z)|

So by Rouche’s theorem, f, f + g have the same number of zeroes in D2. f has five
zeroes in D2, so z

5 + 3z3 + 7 has five roots in D2.

Definition 3.10

Let Ω ⊆ C be open and f : Ω → C. f is an open mapping if it is the case that for
all U ⊆ Ω open, f(U) is also open.
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In other words, an open mapping is one that preserves open sets in the forward direction.
Recall that continuous functions, both real and complex, preserve open sets in the reverse
direction. However, in the real case we generally do not have open mappings, even for nice
functions (consider x 7→ x2). This is completely different in the case of complex variables:

Theorem 3.12: Open Mapping Theorem

Let Ω ⊆ C be open and connected. Let f : Ω → C be holomorphic on Ω and
nonconstant. Then f is an open mapping.

Proof. Let U ⊆ Ω. f(U) is open if and only if for all ω0 ∈ f(U) there exists Dε(ω0) ⊆ f(U).
This is the case if and only if for any ω ∈ Dε(ω0) there exists z ∈ U such that f(z) = ω.

Let ω0 ∈ f(U) and let z0 ∈ U such that f(z0) = ω0. Let Dδ(z0) ⊆ U . By uniqueness
of analytic continuation, we may pick r small enough so that f(z) ̸= f(z0) = ω0 for every
z ∈ Dr(z0)\{z0} (otherwise f would be identically ω0 on all of Ω). f(z)−f(z0) is continuous
on ∂Dr(z0), so it achieves a minimum which cannot be zero. Thus there exists ε > 0 such
that

|f(z)− f(z0)| ≥ ε

for all z ∈ ∂Dr(z0). For each ω ∈ Dε(ω0), define F (z) = f(z)− ω0 and G(z) = ω0 − ω. For
z ∈ ∂Dr(z0),

|G(z)| = |ω0 − ω| < ε ≤ |f(z)− ω0|

so we can apply Rouche’s Theorem to conclude that F and F + G = f(z) − ω have the
same number of zeroes. In particular, F (z0) = 0, so there exists z such that (F +G)(z) =
f(z)− ω = 0. Thus f(z) = ω. So ω ∈ f(U). Thus Dε(ω0) ⊆ f(U). So f(U) is open.

An easy but important result of of the Open Mapping Theorem is the following:

Theorem 3.13: Maximum Modulus Principle

Let Ω ⊆ C be open and connected, and let f : Ω → C be holomorphic and noncon-
stant. Then f does not attain its maximum on Ω.

Recall that we say f attains a maximum on Ω if there exists z0 ∈ Ω such that |f(z)| ≤
|f(z0)| for all z ∈ Ω.

Proof. Suppose not. Then there exists z0 ∈ Ω such that |f(z0)| ≥ |f(z)| for all z ∈ Ω. By
the open mapping theorem, f(U) is open, so there exists r > 0 such that Dr(f(z0)) ⊆ f(U).
So there exists z ∈ U such that f(z) =

(
1 + r

2

)
f(z0). Then

|f(z)| =
(
1 +

r

2

)
|f(z0)| > |f(z0)|

contradiction. So no such z0 exists.
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Corollary 3.14

Let Ω ⊆ C be open and bounded, and suppose f : Ω → C is continuous on Ω and
holomorphic on Ω. Then

max
z∈Ω

|f(z)| = max
z∈∂Ω

|f(z)|

That is, f attains its maximum on the boundary of Ω.

Proof. This is obvious if f is constant, so assume f is nonconstant. Ω is compact, so f
attains its maximum on Ω. But by the Maximum Modulus Principle it does not attain the
maximum on Ω, so it must be on ∂Ω.

3.3 Holomorphic Logarithms

The reader may have noted that although we have made extensive use of the complex
exponential to this point, we have not yet used or even defined a complex logarithm. To see
why this is the case, consider some complex number of the form

z = reiθ

with r > 0. If we were to define a logarithm, we would expect that log z = log r + iθ.
However, θ is only defined up to multiples of 2π. Thus, a naive definition of the logarithm
is a multivalued function. However, by carefully restricting the logarithm to subsets of
the complex plane, we can obtain sections of the logarithm (known as branches) which are
proper, single-valued, holomorphic functions.

Theorem 3.15

Let Ω ⊆ C be simply connected. Let f : Ω → C\{0} be a nonvanishing holomorphic
function. Moreover, suppose there exists z0 ∈ Ω and c0 ∈ C such that

f(z0) = ec0

Then there exists a unique holomorphic function g : Ω → C such that

eg(z) = f(z)

for all z ∈ Ω and
g(z0) = c0

Proof. For uniqueness, suppose that g1, g2 both satisfy the conclusion. Then

eg1 = eg2 = f

Differentiating the first equation, we have

g′1e
g1 = g′2e

g2
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so
g′1 = g′2

Thus g1 = g2 + c for some constant c, but g1(z0) = g2(z0) so g1 = g2.

Let z ∈ Ω. Fix some path γz joining z0 to z. Define

g(z) = c0 +

∫
γz

f ′(ω)

f(ω)
dω

(Note that this is well defined since f ̸= 0. The motivation for this choice of function is that
it should integrate to the logarithm based on what we know.) By Cauchy’s Theorem, this
does not depend on our choice of γz. Observe that g is a primitve for f ′/f by the proof for
local existence of primitives on simply connected regions. Thus g is holomorphic and

g′ =
f ′

f

Then
d

dz
fe−g = f ′e−g − fg′e−g = e−g (f ′ − fg′) = e−g

(
f ′ − f

f ′

f

)
= 0

Thus fe−g is constant and equals 1 at z0. So

eg = f

on all of Ω.

Definition 3.11

For a function f and the corresponding function g produced as in Theorem 3.15, we
write

g(z) = logΩ,z0,c0(f)

and say that g is the logarithm of f with respect to Ω, z0, c0.

This allows us to define a branch of the logarithm without respect to a certain function,
by picking a logarithm with respect to the identity z 7→ z.

Corollary 3.16

Let Ω ⊆ C be simply connected and suppose 0 /∈ Ω, 1 ∈ Ω. Let Dr(1) ⊆ Ω for some
0 < r < 1. Then there exists F : Ω → C holomorphic such that

eF (z) = z

for all z ∈ Ω and for 1− r < t < 1 + r, F (t) = log t.

The first conclusion says that F is a function which matches our intution for what the
logarithm should do, and the second says that it also coincides with the real version of the
logarithm.
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Proof. We take F = logΩ,1,0(f), where f(z) = z is the identity. Note that this coincides
with the real logarithm since for any 1− r < t < 1 + r, we have

F (t) =

∫ t

1

1

s
ds = log t

Definition 3.12

The function F produced in Corollary 3.16 is denoted F (z) = logΩ z.

Intuitively, Corollary 3.16 says we can define a logarithm so long as it is not possible to
wrap around the origin, so that the argument of a function is actually well-defined.

Definition 3.13

The principal branch of the logarithm is the function Log = logΩ where Ω =
C \ (−∞, 0] is the slit complex plane.

Example 3.4

Let us verify that Log satisfies the property

Log reiθ = log r + iθ

Let z = reiθ ∈ C \ (−∞, 0]. Then integrating first along the real axis and then along
an arc, we have

Log z =

∫ r

1

ds

s
+

∫ θ

0

1

eit
ieit dt = ln r + iθ

Thus the principal branch of the logarithm preserves some of the properties of the real
logarithm. However, it does not conserve all of these properties. For instance, let z1 = z2 =
e2πi/3. Then

Log z1 = Log z2 =
2πi

3

But z1z2 = e4πi/3 = e−2πi/3 so

Log z1z2 = −2πi

3
̸= Log z1 + Log z2

Definition 3.14

For α ∈ C, z /∈ (−∞, 0], we define

zα := eαLog z
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Chapter 4

Conformal Mappings

In this chapter, we investigate conformal mappings, which is a class of geometric maps. Our
study will lead us to the Riemann mapping theorem.

4.1 Conformal Equivalence

Definition 4.1

Let U, V ⊆ C be open. f : U → V is called a conformal equivalence of U, V
if f is bijective, holomorphic, and f−1 : V → U is holomorphic (meaning f is
biholomorphic). If such an f exists, then U, V are said to be conformally equivalent,
sometimes denoted U ∼= V .

The importance of conformal mappings is that we may treat conformally equivalent sub-
sets as being essentially equivalent in the realm of complex variables. That is, if there is some
holomorphic function h : U → C, then this corresponds uniquely to the holomorphic func-
tion h ◦ f−1 : V → C. This is similar to to the treatment of isomorphic algebraic structures
as equivalent. Although conformal equivalence is slightly weaker than these isomorphisms,
it turns out that many questions about open sets may be answered by understanding con-
formally equivalent sets.

Let us investigate which sets may be conformally equivalent. Suppose U, V are conformally
equivalent. Suppose that V is simply connected. Then let γ0, γ1 be curves in U which
share endpoints. Then f(γ0), f(γ1) are curves in V which share endpoints. So there exists a
homotopy H : [a, b]× [0, 1] → V between f(γ0), f(γ1). Then f

−1 ◦H is a homotopy between
γ0, γ1. So if V is simply connected, so is U , and vice versa. In other words, sets can only
be conformally equivalent if both are simply connected or neither is.

Example 4.1

D and D \ {0} are not conformally equivalent.
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Example 4.2

Suppose that U = C and V = D. Suppose there were some holomorphic function
f : C → D. Then f is entire, and it maps into D so it is bounded. Thus f is
constant and is not a conformal mapping. So C is not conformally equivalent to D.
In particular, C is not conformally equivalent to any bounded set.

Thus we have seen that the property of being simply connected is preserved under
conformal mappings, and that C is not conformally equivalent to bounded subsets. We
could continue trying to find more limitations; however, the Riemann mapping theorem
shows that these are in fact the only two important restrictions. We state it for now without
proof as motivation for the following work:

Theorem: Riemann Mapping Theorem

Let U, V ⊆ C be simply connected, with ∅ ̸= U, V ̸= C. Then U, V are conformally
equivalent.

The following theorem shows that every bijective holomorphic function is biholomorphic,
so the condition that f−1 is holomorphic may be dropped from the definition of conformal
equivalences.

Theorem 4.1

Let U, V ⊆ C be open. If f : U → V is holomorphic and injective, then f ′ ̸= 0 on U ,
and f−1 : f(U) → U is holomorphic.

We note that f(U) is open by the Open Mapping theorem.

The intuition is that by power series expansion, vanishing points of the derivative correspond
to double roots of f . These must be isolated by analytic continuation, so by perturbing
slightly, f − z0 − w must have distinct roots for w sufficiently small.

Proof. Suppose there exists z0 ∈ U such that f ′(z0) = 0. f is injective so it is nonconstant.
Then we can locally write

f(z) = f(z0) +

∞∑
n=m

an(z − z0)
n = f(z0) + (z − z0)

mam + (z − z0)
m+1h(z)

where m ≥ 2 and h is holomorphic. Suppose δ is small and w ∈ ∂Dδ/2. Let

F (z) = a(z − z0)
m − w

G(z) = (z − z0)
m+1h(z)

h is bounded on Dδ, say by M , so (again assuming δ is small) given z ∈ ∂Dδ we have

|F (z)| ≥ 1

2
δ − |am|δm = δm+1

(
1

2δm
− |am|

δ

)
|G(z)| ≤ δm+1M
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Thus for δ sufficiently small, we will have |F (z)| > |G(z)| on ∂Dδ. Applying Rouche’s
Theorem, F has m roots so

F +G = f − f(z0)− w

also has m roots in Dδ. But this means that f = f(z0) + w for m ≥ 2 points in U . This is
only up to multiplicity. However, f ′(z) = 0 wherever f has a double root, and f ′ cannot be
zero arbitrary close to z0 or else f would be constant by analytic continuation. So assuming
δ is small enough, f = f(z0) + w at at least two distinct points, contradicting injectivity.
So f ′ is nonvanishing.

Since f ′ ̸= 0, the inverse function theorem tells us f−1 is continuously differentiable in the
real sense. The Jacobian of f is a composition of rotations and dilations, so its inverse (the
Jacobian of f−1) is as well. Thus f−1 satisfies Cauchy-Riemann and is holomorphic. In
particular, (

f−1(ω)
)′

=
1

f ′(f−1(ω))

Example 4.3

Let H = {z ∈ C : Im(z) > 0} be the upper half plane. Define F : H → C by

F (z) =
i− z

i+ z

The denominator does not vanish since z ∈ H. The absolute value of the numerator
is the distance between z, i, and the absolute value of the numerator is the distance
between z,−i. So the denominator is larger in absolute value and thus |F (z)| ≤ 1.
Therefore F maps H into D. F is holomorphic since the denominator does not vanish.
Define G : D → H by

G(w) = i
1− w

1 + w

We have

Im (G(u+ iv)) =
1− u2 − v2

(1 + u)2 + v2
> 0

on D so G indeed maps into H. We then calculate that

F (G(w)) = w, G(F (z)) = z

so F is bijective. Therefore H,D are conformally equivalent.

The types of conformal mappings encountered in Example 4.3 are common conformal
mappings.

Definition 4.2

A function of the form

f(z) =
az + b

cz + d
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for a, b, c, d ∈ C is called a fractional linear transformation or a Mobius map-
ping.

Example 4.4

Let H be the upper half plane, and define the open strip V = {u + iv : u ∈ R, v ∈
(0, π)}. Let Ω := C \ i[0,−∞) be the complex plane slit on the negative imaginary
axis. Consider f(z) = logΩ z. Ω may be written as the sector {reiθ : r > 0,−π

2 <
θ < 3π

2 }. For z ∈ Ω,
log z = log r + iθ

For z ∈ H, 0 < θ < π, so the imaginary part is between 0 and π. Thus f(H) ⊆ V .
By construction, logΩ has an inverse given by the exponential map, so it is bijective.
Thus H, V are conformally equivalent.

One consequence of the Riemann mapping theorem is that a simply connected, nonempty
proper subset of C is conformally equivalent to D. Thus, we derive results about D, which
may be generalized to statements about other sets.

Theorem 4.2: Schwarz Lemma

Let f : D → D be holomorphic with f(0) = 0. Then:

1. |f(z)| ≤ |z| for all z ∈ D.

2. If |f(z0)| = |z0| for some nonzero z0 ∈ D, then f is a rotation x 7→ eiθx.

3. |f ′(0)| ≤ 1.

4. If |f ′(0)| = 1, then f is a rotation.

Proof. Expand f as a power series on D as

f(z) = a1z + a2z
2 + . . . = z(a1 + a2z + . . .) = zg(z)

where g is holomorphic and converges on D. Fix 0 < r < 1, and let z ∈ ∂Dr. Then

|g(z)| = |f(z)|
|z|

=
|f(z)|
r

<
1

r

By the Maximum Modulus principle, g(z) < 1
r for all z ∈ Dr. Therefore

|f(z)| ≤ 1

r
|z|

for z ∈ Dr. As r → 1 this becomes |f(z)| ≤ |z|. If we have equality, then g attains
a maximum at z0. By the strong form of the maximum modulus principle, g attains its
maximum on the interior of D so it is constant, say equal to c. At z0, |g(z0)| = 1 so
f(z) = cz for |c| = 1. Thus f is a rotation.
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We write the difference quotient:

f ′(0) = lim
z→0

f(z)− f(0)

z
= lim
z→0

g(z) ≤ 1

If we have equality, then |g(0)| = 1 so g attains its maximum and by the logic above, f is a
rotation.

Definition 4.3

Let Ω ⊆ C be open. A conformal equivalence from Ω to itself is called a conformal
automorphism of Ω. The set of all conformal automorphisms of Ω dentoed Aut(Ω).

Note that the automorphism groups (they are indeed groups under composition) for
conformally equivalent sets are isomorphic. Indeed, suppose U, V are conformally equivalent
adn F : U → V is a conformal equivalence. Then for ψ ∈ Aut(U), F ◦ ψ ◦ F−1 is an
automorphism of V , and similarly in the other direction.

As a result of the above fact and the Riemann mapping theorem, it will be of interest to us
to be able to compute Aut(D), which we will do now.

1. idD ∈ Aut(D), as the identity is in any automorphism group.

2. The rotations rθ : z 7→ eiθz for θ ∈ R form a one-parameter family of automorphisms.

3. We showed in homework that for α ∈ D, the Blaschke factor

ψα(z) =
α− z

1− αz

maps D into itself. It is also holomorphic and is its own inverse, so the Blaschke factors
form another family of automorphisms.

4. Of course, we may compose rotations and Blaschke factors at will.

It turns out that this is a complete classification of Aut(D).

Theorem 4.3

Let f ∈ Aut(D). Then there exists some θ ∈ R, α ∈ D such that

f(z) = eiθ
α− z

1− αz

Proof. Let f : D → D be an element of Aut(D). Then there exists α ∈ D such that f(α) = 0.
Define

g = f ◦ ψα ∈ Aut(D)

Then g(0) = 0. By the Schwarz Lemma,

|g(z)| ≤ |z|
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for all z ∈ D. Since g ∈ Aut(D), g−1(0) = 0 and another application shows that∣∣g−1(w)
∣∣ ≤ |w|

Then for w = g(z),
|z| ≤ |g(z)| ≤ |z|

So |g(z)| = |z| for all z ∈ D. By the Schwarz Lemma, g is a rotation z 7→ eiθz. Sp

f(z) = f(ψα(ψα(z))) = g(ψα(z)) = eiθ
α− z

1− αz

Corollary 4.4

The only automorphisms of D which preserve the origin are the rotations.

Proof. If the origin is preserved then α = 0 and the Blaschke factor drops out.

Remark 4.1

Aut(D) acts transitively on D, meaning that for any α, β ∈ D, there exists f ∈ Aut(D)
(for instance f = ψβ ◦ ψα) such that f(α) = β. In other words, if Oα = {f(α) : f ∈
Aut(D)} denotes the orbit of α under the action of Aut(D) on D, then Oα = D and
the group action is transitive. By extension, the Riemann mapping theorem Aut(Ω)
acts transitively on Ω for any simply connected Ω.

Example 4.5

Consider Aut(H), where H is the upper half plane H = {z : Im(z) > 0}. We showed
previously that

F (z) =
i− z

i+ z

is a conformal equivalence from H to D, and

F−1(w) = i
1− w

1 + w

So for any f ∈ Aut(H), F ◦ f ◦ F−1 ∈ Aut(D), and we may write

f(z) = F−1

(
eiθ

α− F (z)

1− αF (z)

)
for appropriate θ ∈ R, α ∈ D. As a result, every conformal automorphism of H is a
Mobius mapping of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ R and ad−bc = 1. If we associate this with a matrix of determinant
1

M =

[
a b
c d

]
⇐⇒ fM (z) =

az + b

cz + d
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then computation shows that

fM1
◦ fM2

= fM1M2

Thus Aut(H) is closely related to SL2(R), with the exception that fM = f−M , so we

need to quotient by this relation, and Aut(H) ∼= PSL2(R) := SL2(R)⧸{I,−I}. Since

Aut(D) ∼= Aut(H), we see that the automorphism group for any nontrivial simply
connected subset of C is isomorphic to PSL2(R).

4.2 The Riemann Mapping Theorem

Having now previewed some consequences of the Riemann mapping theorem, we now work
to prove the theorem. We first restate the theorem here:

Theorem: Riemann Mapping Theorem

Let Ω ⊆ C be simply connected with Ω ̸= C,∅. Let z0 ∈ Ω. Then there is a unique
conformal equivalence F : Ω → D such that F (z0) = 0, F ′(z0) ∈ (0,∞).

We first prove uniqueness before proceeding to the main part of the proof:

Proof of uniqueness. Suppose F,G : Ω → D are conformal equivalences with F (z0) =
G(z0) = 0 and F ′(z0), G

′(z0) ∈ (0,∞). Then let H = F ◦G−1 : D → D. We know

H(0) = 0

and H ∈ Aut(D). By Corollary 4.4, H is a rotation of the form

H(z) = eiθz

Thus

eiθ = H ′(z) =
F ′(G−1(z))

G′(G−1(z))

So by assumption,

eiθ = H ′(0) =
F ′(z0)

G′(z0)
> 0

which implies that eiθ = 1. So F = G.

Having proved uniqueness, we now proceed to showing existence. The proof proceeds as
follows:

1. Let F be the family of all injective holomorphic functions F : Ω → D satisfying
F (z0) = 0. We will show that F is nonempty.

2. We will then show that there exists F ∈ F for which |F ′(z0)| is maximal.

82



3. We will show that this choice of F is onto. From there, we can compose F with a
rotation rθ so that (rθ ◦ F )′ (z0) ∈ (0,∞).

We proceed by first assuming Step 1 and proving Step 2.

Definition 4.4

Let Ω ⊆ C be open and F a family of functions f : Ω → C. Then F is called a normal
family if for any sequence of functions {fn} ⊆ F , there exists a subsequence {fnk

}
which uniformly converges on compact subsets of Ω. Note that it is not required
that the limit function is in F .

Definition 4.5

Let Ω ⊆ C be open and F a family of functions f : Ω → C. Then F is said to be
uniformly bounded on compact subsets if for every K ⊆ Ω there exists M > 0
such that

|f(z)| ≤M

for every f ∈ F , z ∈ K.

In the case of real variables, a uniformly bounded family need not be normal. For
instance, consider F = {fn : n ∈ N}, where fn(x) = sinnx. Then F is uniformly bounded
on compact subsets of (0, 1), but there is no uniformly convergent subsequence (or even
convergent).

This kind of counterexample does not occur in the case of holomorphic functions. To prove
this, we will make use of the Arzela-Ascoli theorem, which is a theorem that is proved in
the general setting of compact metric spaces.

Definition 4.6

Let Ω ⊆ C be open and F a family of functions f : Ω → C. F is said to be
equicontinuous on compact subsets if for every K ⊆ Ω compact and every ε > 0
there exists δ > 0 such that if w, z ∈ K and |w − z| < δ then

|f(w)− f(z)| < ε

for all f ∈ F .

Theorem 4.5: Arzela-Ascoli Theorem

Let Ω ⊆ C be open. If F is a family of functions (not necessarily holomorphic) on
Ω which is equicontinuous on compact subsets and uniformly bounded on compact
subsets, then F is a normal family.

Proof. Let {fn} ⊆ F be a sequence of functions on Ω. Fix some dense subset {ωj}∞j=1 ⊆ Ω
(for instance, the set of points with rational coordinates in Ω). Consider the sequence

{fn(ω1)}∞n=1
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Since F is uniformly bounded on the compact singleton {ω1}, this sequence is bounded. So
there exists a convergent subsequence

{fnk
(ω1)}∞k=1 = {fn,1(ω1)}∞n=1

Now consider the sequence
{fn,1(ω2)}∞n=1

By the same logic, this sequence is bounded and has a convergent subsequence

{fn,2(ω2)}∞n=1

We continue this recursive refinement process, so that for each k ∈ N there exists a subse-
quence {fn,k}∞n=1 such that {fn,k(ωj)}∞n=1 converges for j ≤ k.

Now define gn : Ω → C by gn = fn,n. {gn} is a subsequence of {fn}, and for every j ∈ N,
{gn(ωj)} converges, say to g(ωj). Let K ⊆ Ω be compact. By compactness there exists
r > 0 such that

Kr =
⋃
z∈K

Dr(z) ⊆ Ω

is compact. Let ε > 0 {fn} is equicontinuous on compact subsets so {gn} is as well, so there
exists δ > 0 (let us assume δ < r) such that whenever z, z′ ∈ Kr and |z − z′| < δ, then for
all n ∈ N,

|gn(z)− gn(z
′)| < ε

3

Observe that {Dδ(ωj)}∞j=1 is an open cover for K since ωj is dense. Thus we can pick a

finite subcover {Dδ(ωj)}Jj=1. The sequences {gn(ω1)}, . . . , {gn(ωJ)} all converge, so we may
pick N large enough that for any m,n ≥ N and 1 ≤ j ≤ J ,

|gn(ωj)− gm(ωj)| <
ε

3

Take z ∈ K. Then z ∈ Dδ(ωj) for some 1 ≤ j ≤ J . For n,m ≥ N ,

|gn(z)− gm(z)| ≤ |gn(z)− gn(ωj)|+ |gn(ωj)− gm(ωj)|+ |gm(ωj)− gm(z)| < ε

Thus {gn} converges pointwise on K to some function g. Then taking the limit as m→ ∞,

|gn(z)− g(z)| ≤ |gn(z)− gm(z)| < ε

for all z ∈ K,n ≥ N . Thus gn ⇒ g on K.

Theorem 4.6: Montel’s Theorem

Let Ω ⊆ C be open. Then any family of holomorphic functions on Ω which is
uniformly bounded on compact subsets is a normal family.
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Proof. Let F be a family of holomorphic functions on Ω. By Arzela-Ascoli, we just need
to show that F is equicontinuous on compact subsets. Let K ⊆ Ω be compact. Then
d(K,C \ Ω) > 0 so we may pick δ > 0 such that D2δ(z) ⊆ Ω for all z ∈ K. It follows that

K2δ :=
⋃
z∈K

D2δ(z)

is compact. By assumption, there exists M > 0 such that

|f(z)| ≤M

for all z ∈ K2δ, f ∈ F . Let z, w ∈ K with |z − w| < δ
2 , so that z, w ∈ Dδ(z). By the Cauchy

integral formula,

f(z) =
1

2πi

∫
∂Dδ(z)

f(ζ)

ζ − z
dζ

and

f(w) =
1

2πi

∫
∂Dδ(z)

f(ζ)

ζ − w
dζ

Thus

|f(z)− f(w)| ≤ 1

2π

∣∣∣∣∣
∫
∂Dδ(z)

f(ζ)(w − z)

(ζ − z)(ζ − w)
dζ

∣∣∣∣∣
≤ 1

2π
2πδ

|w − z|M
δ · δ2

=
2M

δ
|w − z|

Recalling that δ is a constant here, we are done.

Theorem 4.7

Let Ω ⊆ C be open and connected, and {fn : Ω → C}∞n=1 a sequence of injective
holomorphic functions which converges uniformly to some f : Ω → C on compact
subsets. Then f is either injective or constant.

Proof. Suppose for contradiction that f is nonconstant and there exists z1, z2 ∈ Ω distinct
such that f(z1) = f(z2). Denote gn(z) = fn(z)−fn(z1) and g(z) = f(z)−f(z1). By design,
g(z1) = g(z2) = 0. Each fn is injective, so z1 is the only zero of gn.

We know gn ⇒ g on compact subsets. g(z2) = 0, so by uniqueness of analytic continuation
there exists r > 0 such that 0 /∈ g(Dr(z2) \ {z2}) (since f is nonconstant, it cannot be 0
everywhere). Let us assume that r < |z1 − z2|/2. By the argument principle,

1

2πi

∫
∂Dr(z2)

g′(ζ)

g(ζ)
dζ = k ≥ 1 (1)
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where k is the multiplicity of the zero of g at z2. However, also by the argument principle,

1

2πi

∫
∂Dr(z2)

g′n(ζ)

gn(ζ)
dζ = 0 (2)

Thus if we show that the sequence of integrals in (2) converges to the integral in (1), we will
arrive at a contradiction. To see this, calculate∣∣∣∣g′n(ζ)gn(ζ)

− g′(ζ)

g(ζ)

∣∣∣∣ = |g(ζ)g′n(ζ)− gn(ζ)g
′(ζ)|

|gn(ζ)||g(ζ)|

By continuity, g(ζ) ≥ ε > 0 for some ε > 0 and all ζ ∈ ∂Dr(z2). By uniform convergence,
we can also guarantee that |gn(ζ)| ≥ ε/2 for n ≥ N . Thus for large n, |gn(ζ)g(ζ)| ≥ ε2/2.
Since gn ⇒ g on compact subsets, g′n ⇒ g′ on compact subsets. Thus

|g(ζ)g′n(ζ)− gn(ζ)g
′(ζ)| ⇒ 0

on compact subsets. Uniform convergence of the integrand implies that the integrals con-
verge, so

0 =
1

2πi

∫
∂Dr(z2)

g′n(ζ)

gn(ζ)
dζ −→ 1

2πi

∫
∂Dr(z2)

g′(ζ)

g(ζ)
dζ ≥ 1

contradiction.

We now have all the tools necessary to prove the Riemann mapping theorem.

Theorem 4.8: Riemann Mapping Theorem

Let Ω ⊆ C be simply connected with Ω ̸= C,∅. Let z0 ∈ Ω. Then there is a unique
conformal equivalence F : Ω → D such that F (z0) = 0, F ′(z0) ∈ (0,∞).

Proof. Uniqueness was proved previously.

Step 1: We claim that Ω is conformally equivalent to some open subset of D containing 0.

Fix α ∈ C \ Ω. Write ψ(z) = z − α. ψ is holomorphic and nonvanishing on Ω. Ω is simply
connected, so by our work on logarithms, there exists a holomorphic function f : Ω → C
such that ef = ψ.

Claim 4.1

f is injective.

Proof. If f(z1) = f(z2) then

z1 − α = ef(z1) = ef(z2) = z2 − α

and z1 = z2. ■

Ω is nonempty so fix some ω ∈ Ω.
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Claim 4.2

There exists r > 0 such that

Dr(f(ω) + 2πi) ∩ f(Ω) = ∅

Proof. If not, then for each n ∈ N there exists zn ∈ f(Ω) such that

|f(zn)− (f(ω) + 2πi)| < 1

n

so
lim
n→∞

f(zn) = f(ω) + 2πi

so by continuity,

lim
n→∞

zn − α = lim
n→∞

ef(zn) = ef(ω+2πi) = ef(ω) = ω − α

and
f(ω) + 2πi = lim

n→∞
f(zn) = f(ω)

contradiction. ■

Denote

F (z) =
1

f(z)− (f(ω) + 2πi)

F is injective since f is. It is also bounded by 1
r . Shift F once again and normalize, giving

G(z) =
1

2
r +

1
2π

(F (z)− F (ω)) =
1

2
r +

1
2π

(
F (z)− i

2π

)
G is still holomorphic and injective. By construction, G(ω) = 0 so 0 ∈ G(Ω). Also,

|G(z)| < 1
2
r +

1
2π

(
2

r
+

1

2π

)
= 1

so G(Ω) ⊆ D. Thus Ω is conformally equivalent to the open set G(Ω) ⊆ D which contains
0.

This proves Step 1. From this point, we will assume that Ω ⊆ D and 0 ∈ Ω.

Step 2: Let F be the set of all functions f : Ω → D which are holomorphic, injective, and
satisfy f(0) = 0. By Step 1 F is nonempty. Let

s = sup
f∈F

|f ′(0)|
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Claim 4.3

s is finite and is attained.

Proof. First observe that F is uniformly bounded on D, since every function maps
into D and thus a uniform bound of M = 1 suffices. Moreover, s ≥ 1 since id ∈ F .

To show that s <∞, 0 ∈ Ω so we may pick Dε ⊆ Ω. By Cauchy’s Inequality, for any
f ∈ F ,

|f ′(0)| ≤ 1

ε
sup
ζ∈∂Dε

|f(ζ)| ≤ 1

ε

Thus s is finite. Then we may pick {fn} ⊆ F such that |f ′n(0)| tends to s. Since F is
uniformly bounded, by Montel’s Theorem, F is normal so there exists a subsequence
{fnk

} which converges to some f uniformly on compact subsets.

We want to show that f ∈ F . f is holomorphic since it is the uniform limit of
holomorphic funcitons. Also,

f(0) = lim
k→∞

fnk
(0) = 0

Notice that since this is a uniform limit, we have

|f ′(0)| = lim
k→∞

∣∣f ′nk
(0)
∣∣ = s ̸= 0

Thus f is nonconstant.

By Theorem 4.7, f is nonconstant and the uniform limit of injective holomorphic
functions, so f is injective. Also, f maps Ω into D, since for each z ∈ Ω,

|f(z)| = lim
k→∞

|fnk
(z)| ≤ 1

So f certainly maps Ω into D. f is nonconstant, so by the maximum modulus
principle, f does not attain a maximum on Ω, so this inequality is actually strict and
f takes Ω into D.

So f ∈ F and therefore s is attained. ■

Step 3: Consider the function f from above. We want to show that f(Ω) = D. Suppose
for contradiction that there exists α ∈ D \ f(Ω). Define the Blaschke factor

ψα(z) =
α− z

1− αz

Then let U = ψα ◦ f(Ω). Then α /∈ f(Ω) so 0 /∈ U , and U is simply connected since it is
conformally equivalent to Ω. Thus we may define a holomorphic logarithm logU . Let

g(ω) = e
1
2 logU (ω)
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Then g is holomorphic and
g(ω)2 = elogU (ω) = ω

So g takes U into D. Define F : Ω → D by

F = ψg(α) ◦ g ◦ ψα ◦ f

We have
F (0) = ψg(α) ◦ g(ψα ◦ f(0)) = ψg(α)(g(α)) = 0

Clearly F is holomorphic. If g(ω1) = g(ω2), then

ω1 = g(ω1)
2 = g(ω2)

2 = ω2

so F is the composition of injective functions and thus injective. Thus F ∈ F . Denote
h : D → D defined by h(z) = z2, so that h ◦ g = id. Define Φ : D → D by

Φ = ψα ◦ h ◦ ψg(α)

Then

Φ ◦ F = ψα ◦ h ◦ ψg(α) ◦ ψg(α) ◦ g ◦ ψα ◦ f
= ψα ◦ h ◦ g ◦ ψα ◦ f
= ψα ◦ ψα ◦ f
= f

We have
Φ(z) = ψα([ψg(α)]

2)

By the Schwarz Lemma, |Φ′(0)| ≤ 1, and if |Φ′(0)| = 1 then Φ is a rotation. But Φ is not
one to one since

Φ

(
ψg(α)

(
1

2

))
= ψα

(
1

4

)
= ψα

((
−1

2

)2
)

= Φ

(
ψg(α)

(
−1

2

))
ψg(α) is injective so we conclude that ψg(α)

(
1
2

)
̸= ψg(α)

(
− 1

2

)
. Thus Φ is not injective and

in particular it is not a rotation. Thus |Φ′(0)| < 1. By the chain rule,

|f ′(0)| = |Φ′(F (0))||F ′(0)| = |Φ′(0)||F ′(0)| < |F ′(0)|

But F ∈ F , so this contradicts the maximality of |f ′(0)|. Thus our choice of α was invalid,
and f(Ω) = D. Thus f is a conformal mapping between Ω and D. Then if f ′(0) = eiθr, we
have (

e−iθf
)′
(0) = r ∈ (0,∞)

so e−iθf is our desired conformal mapping and we are done.
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Chapter 5

Entire Functions

As Liouville’s Theorem showed us previously, functions defined everywhere on Cmust satisfy
relatively strict conditions in order to be holomorphic everywhere. This is in large part
due to the local-global nature of holomorphicity. Thus we will investigate the possible
behaviors of entire functions; namely, where they can vanish, their behavior at infinity, and
the factorization of entire functions in terms of their zeroes.

5.1 Jensen’s Formula

We first briefly prove a lemma that makes the following proof a bit more concise:

Lemma 5.1: Mean Value Property

If f is holomorphic on DR(z0) and 0 < r < R, then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ

Proof. By Cauchy’s integral formula,

f(z0) =
1

2πi

∫
∂Dr

f(z)

z
dz =

1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
rieiθ dθ =

1

2π

∫ 2π

0

f(reiθ) dθ

The first important result in our study of entire function is Jensen’s formula, which
(roughly speaking) says that the average logarithmic value of a function over a circle is
related to the number of zeroes in the circle.
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Theorem 5.2: Jensen’s Formula

Let R > 0. Let Ω ⊆ C be open with DR ⊆ Ω. Let f : Ω → C be holomorphic with
f(0) ̸= 0, and suppose f does not vanish on ∂DR and the zeroes of f in DR (with
multiplicity) are z1, . . . , zN . Then

1

2π

∫ 2π

0

ln
∣∣f(Reiθ)∣∣dθ = ln|f(0)|+

N∑
k=1

ln

(
R

|zk|

)

We remark that by appropriately scaling f , the constant term drops out. In this form,
Jensen’s formula says that the size of f on ∂DR is completely determined by the location of
the zeroes in DR.

Proof. Define g : Ω \ {z1, . . . , zN} → C by

g(z) =
f(z)

(z − z1) · · · (z − zN )

g has removable singularities at z1, . . . , zN , and it is holomorphic on the rest of Ω. Thus we
may extend g to all of Ω so that it is still holomorphic. Also, g has no zeroes in DR, and it
is continuous, so there exists R′ > R such that DR′ ⊆ Ω and g has no zeroes on DR′ . DR′ is
simply connected and g does not vanish, so there exists a logarithm h : DR′ → C such that

eh(z) = g(z)

so
|g(z)| =

∣∣∣eh(z)∣∣∣ = eRe(h(z)) =⇒ Re(h(z)) = log|g(z)|

Taking real parts of the mean value property,

log|g(z)| = Re(h(0)) =
1

2π

∫ 2π

0

Re
(
h(Reiθ)

)
dθ =

1

2π

∫ 2π

0

log
∣∣g(reiθ)∣∣ dθ (∗)

We calculate that

|g(0)| = |f(0)|
|−z1| · · · |−zN |

=
|f(0)|

|z1| · · · |zN |
so

log|g(0)| = log|f(0)| −
N∑
k=1

log|zk|

By our integral formula, this gives

log|f(0)| −
N∑
k=1

log|zk| =
1

2π

∫ 2π

0

log

( ∣∣f(Reiθ)∣∣
|Reiθ − z1| · · · |Reiθ − zN |

)
dθ

=
1

2π

∫ 2π

0

(
log
∣∣f(Reiθ)∣∣) dθ − N∑

k=1

1

2π

∫ 2π

0

log
∣∣Reiθ − zk

∣∣dθ
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So

1

2π

∫ 2π

0

log
∣∣f(Reiθ)∣∣dθ = log|f(0)|+

N∑
k=1

1

2π

∫ 2π

0

log

∣∣Reiθ − zk
∣∣

|zk|
dθ

Then we just need to show that for each k,

1

2π

∫ 2π

0

log
∣∣Reiθ − zk

∣∣dθ = logR

This can be shown by direct computation; we will instead show this in a roundabout way.
Define ψk : D → C by

ψk(z) = 1− zk
R
z

ψk has no zeroes in D. Notice that the formula (∗) holds for any function with no zeroes in
DR. So we can apply it to ψk on D to get

0 = log|ψk(0)| =
1

2π

∫ 2π

0

log
∣∣ψk(eiθ)∣∣dθ

=
1

2π

∫ 2π

0

log
∣∣∣1− zk

R
eiθ
∣∣∣dθ = 1

2π

∫ 2π

0

log

∣∣Re−iθ − zk
∣∣

|Re−iθ|
dθ

so

logR =
1

2π

∫ 2π

0

log
∣∣Re−iθ − zk

∣∣dθ = 1

2π

∫ 2π

0

log
∣∣Reiθ − zk

∣∣dθ
and we are done.

Definition 5.1

Let Ω ⊆ C open with DR ⊆ Ω, and f : Ω → C holomorphic on Ω with a finite number
of zeroes in DR. For 0 < r < R we denote by nf (r) the number of zeroes of f in Dr.

The below lemma shows that the value of the sum in Jensen’s formula is simply a result
of the magnitudes of each zero of f .

Lemma

In the setting of Jensen’s formula,

N∑
k=1

ln

(
R

|zk|

)
=

∫ R

0

nf (r)

r
dr

Proof. For k = 1, . . . , N , define

ηk(r) =

{
1, r > |zk|
0, r ≤ |zk|
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Then

nf (r) =

N∑
k=1

ηk(r)

So ∫ R

0

nf (r)

r
=

N∑
k=1

∫ R

0

ηk(r)

r
dr =

N∑
k=1

∫ R

|zk|

1

r
dr =

N∑
k=1

ln

(
R

|zk|

)
We can use this lemma to rewrite Jensen’s formula:

Corollary 5.3

In the setting of Jensen’s formula,

1

2π

∫ 2π

0

ln
∣∣f(Reiθ)∣∣ dθ = ln|f(0)|+

∫ R

0

nf (r)

r
dr

Definition 5.2

Let f : C → C be entire. We say that f has order of growth at most ρ ≥ 0 if there
are A,B > 0 such that

|f(z)| ≤ AeB|z|ρ

for all z ∈ C. We define the growth rate of f to be

ρf := inf{ρ ≥ 0 : f has order of growth at most ρ}

Example 5.1

Let f(z) = ez
2

. Then

|f(z)| =

∣∣∣∣∣
∞∑
n=0

z2n

n!

∣∣∣∣∣ ≤
∞∑
n=0

|z|2n

n!
= e|z|

2

So f has order of growth at most ρ. By substituting x ∈ R>0 we see that this is also
the infimum, so ρf = 2.

Example 5.2

Consider

f(z) =

∞∑
n=0

(−1)n
zn

(2n)!

(Intuitively we may think of f as cos(z
1
2 ), although this is not strictly meaningful).
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Then

|f(z)| ≤
∞∑
n=0

|z|n

(2n)!
=

∞∑
n=0

√
|z|

2n

(2n)!
≤

∞∑
n=0

√
|z|

n

n!
= e

√
|z|

So ρf ≤ 1
2 . We can check that this is sharp by substituting some z = −a for a > 0,

from which it follows that
f(z) = e

√
a

Remark 5.1

If f has order of growth at most ρ, then zmf(z) has order of growth at most ρ for
any m ∈ N. To see this, we have

|z|m|f(z)| ≤ A|z|meB|z|ρ ≤ A′e(B+1)|zρ|

Theorem 5.4

Let f : C → C be entire and not identically zero. Suppose f has order of growth at
most ρ. Then:

1. There exists c > 0 such that nf (r) ≤ crρ for all r ≥ 1.

2. If z1, z2, . . . are the zeroes of f in C\{0} with multiplicity. Then for any s > ρ,

∞∑
n=1

1

|zn|s
<∞

We remark that since f is not identically zero, there are at most countably many zeroes
of f . Moreover, if there are a countably infinite number of zeroes, then we must have
|zn| → ∞ since we cannot have a bounded sequence of zeroes.

Proof. We just need to prove the theorem when f(0) ̸= 0. If f(0) = 0, then by local
description of zeroes, f(z) = zmg(z) with g entire, and g(0) ̸= 0. By the remark, f, g have
the same order of growth. Also, the zeroes of g are precisely z1, z2, . . ., and nf (r) = ng(r)+m,
so the conclusion holds for f if it holds for g.

Thus assume f(0) ̸= 0, and we can normalize it so that f(0) = 1. Fix r ≥ 1. Then by
Jensen’s formula for R = 2r,

1

2π

∫ 2π

0

ln
∣∣f(2reiθ)∣∣dθ = ∫ 2r

0

nf (t)

t
dt ≥

∫ 2r

r

nf (t)

t
dt ≥

∫ 2r

r

nf (r)

t
dt = nf (r) ln 2
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Since f has growth rate at most ρ, pick A,B > 0 such that |f(z)| ≤ AeB|z|ρ . Then

nf (r) ≤
1

2π ln 2

∫ 2π

0

ln
∣∣f(2reiθ)∣∣ dθ

≤ 1

2π ln 2

∫ 2π

0

ln
(
AeB(2r)ρ

)
dθ

≤ 1

ln 2
(lnA+B2ρrρ) ≤ Crρ

where

C =
lnA+B2ρ

ln 2

For part 2, we have
∞∑
n=1

1

|zn|s
=

∑
n:|zn|<1

1

|zn|s
+

∑
n:|zn|≥1

1

|zn|2

The first sum has at most finitely many terms, so we only care about the second sum. This
is ∑

n:|zn|≥1

1

|zn|s
=

∞∑
j=0

∑
n:2j≤|zn|<2j+1

1

|zn|s
≤

∞∑
j=0

∑
n:2j≤|zn|<2j+1

1

2js
≤

∞∑
j=0

nf (2
j+1)

2js

By part 1,
∞∑
j=0

nf (2
j+1)

2js
≤

∞∑
j=0

C(2j+1)ρ

2js
≤

∞∑
j=0

C2ρ
1

(2s−ρ)
j

which converges since s > ρ so 2s−ρ > 1.

Example 5.3

Let

f(z) =

∞∑
n=0

(−1)n
zn

(2n)!

Suppose f(z) = 0. If z = reiθ, then write w =
√
rei

θ
2 . Then z = w2 and 0 = f(w2) =

cosw. Thus z is a zero of f only if w is a zero of cos. Thus the zeroes are

zn =

(
π

(
n+

1

2

))2

and each has multiplicity 1. Then |zn| ∼ n2 so

∞∑
n=1

1

|zn|s
∼

∞∑
n=1

1

n2s

which converges for s > 1
2 = ρf .
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5.2 The Weierstrass Product Formula

As we remarked above, if f is entire and not identically zero, with z1, z2, . . . the zeroes of f ,
then |zn| → ∞. We want to show the converse, which is that if |zn| → ∞ for some sequence
{zn}, then there exists an entire function which vanishes at z1, z2, . . . and nowhere else. To
do this, we first need to study infinite products.

Proposition 5.5

Let Ω ⊆ C be an open set and let {Fn : Ω → C} be a sequence of holomorphic
functions. Suppose {cn} ⊆ (0,∞) is a sequence of real numbers such that

∑∞
n=1 cn

converges. Suppose that
|Fn(z)− 1| ≤ cn

for all z ∈ Ω. Then:

1. The sequence of products

{GN (z)} =

{
N∏
n=1

Fn(z)

}

converges uniformly on Ω to some F . We define

∞∏
n=1

Fn(z) = F (z)

2. If Fn(z) ̸= 0 for every z ∈ Ω and n ∈ N then F does not vanish on Ω. Also,

F ′(z)

F (z)
=

∞∑
n=1

F ′
n(z)

Fn(z)

for all z.

Proof. Denote an(z) = Fn(z)− 1, so that |an(z)| ≤ cn for all z. By assumption,

∞∑
n=1

cn <∞

so lim cn = 0. Pick N0 ∈ N such that for n ≥ N0, cn <
1
2 . Let N > N0. Then

N∏
n=1

(Fn(z)) =

N∏
n=1

(1 + an(z)) =

(
N0∏
n=1

(1 + an(z))

)
N∏

n=N0+1

(1 + an(z))

The factors in the second product are all nonzero by our choice of N0. Thus(
N0∏
n=1

(1 + an(z))

)
N∏

n=N0+1

(1 + an(z)) =

(
N0∏
n=1

(1 + an(z))

)
exp

(
N∑

n=N0+1

bn(z)

)
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where bn(z) = log(1 + an(z)). Note that log is the principal branch, which is obtained by
the fact that 1 + an(z) does not vanish in the second product. We know that

bn(z) = log(1 + an(z)) =

∞∑
k=1

(−1)k
(an(z))

k

k

so

|bn(z)| ≤
∞∑
k=1

|an(z)|k

k
≤

∞∑
k=1

ckn
k

= cn

∞∑
k=1

ck−1
n

k
≤ cn

∞∑
k=1

cn ≤ ck−1
n

∞∑
k=1

(
1

2

)k−1

= 2cn

So

b(z) =

∞∑
n=N0+1

bn(z)

converges uniformly and thus b is holomorphic. So

F (z) = lim
N→∞

N∏
n=1

Fn(z) =

(
N0∏
n=1

Fn(z)

)
eb(z)

From here, part 2 follows since the exponential never vanishes, and thus if none of the Fn
vanishes, F cannot vanish either. Lastly, define

GN (z) =

N∏
n=1

Fn(z)

Since G⇒ F on C, it converges uniformly on compact subsets, and thus

G′
N (z) → F ′(z)

Also, since Fn does not vanish, then for any K ⊆ C compact there exists δ > 0 such that
|F (z)| ≥ δ. Thus

G′
N

GN
⇒

F ′

F

on compact subsets. But we have

G′
N

GN
=

N∑
n=1

F ′
n

Fn

whic converges uniformly to the infinite sum.

Theorem 5.6: Weierstrass Product Formula

Let {zn} ⊆ C be such that |zn| → ∞. Then there exists an entire function f which
vanishes at {zn} and nowhere else, with the multiplicities of the zk. Moreover, if
f1, f2 are two functions which satisfy the conclusion, then there exists an entire
function g such that

f2 = egf1
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Proof. For uniqueness, let f1, f2 be two functions which satisfy the conclusion. Then f2
f1

:

C \ {a1, a2, . . .} → C. The singularities are all removable since f1, f2 have identical order
zeroes. So we may extend this holomorphically to all of C. This function also does not
vanish. Thus we may take an entire logarithm g : C → C such that

f2
f1

= eg

We want to form an infinite product of the type
∏
n

(
1− z

an

)
; however, convergence is not

guaranteed in this form. Instead, we adjust this product using the following factors:

Definition 5.3

For each k ∈ N, we define the Weierstrass canonical factor of degree k to be

Ek(z) = (1− z)ez+
z2

2 +...+ zk

k

with
E0(z) = (1− z)

Notice that a Weierstrass canonical factor is zero if and only if z = 1. Also, for |z| < 1,
for the principal branch of the logarithm,

Log(1− z) =

∞∑
n=1

(−1)n−1 (−z)n

n
= −

∞∑
n=1

zn

n

So on D,

Ek(z) = e
Log(1−z)+

(
z+...+ zk

k

)
= exp

(
−

∞∑
n=k+1

zn

n

)
Lemma

There exists c > 0 such that for all k and all |z| ≤ 1
2 , |1− Ek(z)| ≤ c|z|k+1

.

Proof. We choose c = 2e. From above, we have

Ek(z) = ew

where

w = −
∞∑

n=k+1

zn

n

Then

|w| ≤
∞∑

n=k+1

|z|n

n
= |z|k+1

∞∑
n=k+1

|z|n−k−1

n
≤ |z|k+1

∞∑
n=k+1

(
1

2

)n−k−1

= 2|z|k+1
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so

|1− Ek(z)| = |1− ew| =

∣∣∣∣∣1−
∞∑
n=0

wn

n!

∣∣∣∣∣ =
∣∣∣∣∣−

∞∑
n=1

wn

n!

∣∣∣∣∣ ≤
∞∑
n=1

|w|n

n!
≤ |w|

∞∑
n=1

|w|n−1

n!

≤ 2|z|k+1
∞∑
n=1

1

n!
≤ 2e|z|k+1

= c|z|k+1 ■

Suppose we want f to vanish of order ℓ at 0 and a1, a2,∈ C \ {0} are the other zeroes.
We will check that

f(z) = zℓ
∞∏
n=1

En

(
z

an

)
works. At 0 as well as the various an, f vanishes and has the prescribed orders, since

En

(
z
an

)
= 0 if and only if z = an. It also does not vanish anywhere else (assuming we

actually have convergence).

To show convergence, pick R > 0 and fix z ∈ DR. Then

N∏
n=1

En

(
z

an

)
=

 ∏
n≤N :|an|≤2R

En

(
z

an

) ∏
n≤N :|an|>2R

En

(
z

an

)
For any R, the left product has a bounded number of factors as N → ∞. Thus it is a finite

product and we can ignore it. If |an| ≥ 2R, then
∣∣∣ zan ∣∣∣ ≤ 1

2 . So we can apply our lemma to

see that ∣∣∣∣1− En

(
z

an

)∣∣∣∣ ≤ 2e

∣∣∣∣ zan
∣∣∣∣n+1

≤ e

2n

So from Proposition 5.5, ∏
n:|an|>2R

En

(
z

an

)
converges uniformly on D, and therefore the infinite product is nonvanishing and holomor-
phic on DR. R was arbitrary, so f is entire and we are done.

5.3 Hadamard’s Factorization Theorem

Having proved the Weierstrass product theorem, we continue to a refinement of the factor-
ization, due to Hadamard, concerning functions with restricted order of growth.
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Theorem: Hadamard Factorization Theorem

Let f : C → C be entire with order of growth ρ0. Let k = ⌊ρ0⌋. If f has a zero of
order ℓ at 0 and its zeroes on C \ {0} are a1, a2, . . ., then

f(z) = ep(z)zℓ
∞∏
n=1

Ek

(
z

an

)
where p is a polynomial of degree ≤ k. Notice that Ek is fixed and does not grow
with n.

Before proving the theorem, we first demonstrate an example.

Example 5.4

Let f(z) = sin z = eiz−e−iz

2 . We can calculate that it has growth rate ρ = 1.
Moreover, the zeroes of sin are {πn : n ∈ Z}, each of order 1. So by Hadamard’s
theorem, we know

sin z = zeaz+b
∞∏

n∈Z,n̸=0

E1

( z

πn

)
= zeaz+b

∞∏
n=1

E1

( z

πn

)
E1

(
z

−πn

)

= zeaz+b
∞∏
n=1

((
1− z

πn

)
e

z
πn

(
1 +

z

πn

)
e−

z
πn

)
= zeaz+b

∞∏
n=1

(
1− z2

π2n2

)
To solve for a, b, we know that

sin z

z

z→0−→ 1

But this is equal to

eaz+b
∞∏
n=1

(
1− z2

π2n2

)
z→0−→ eb

so b = 0. Also, by symmetry we know that for z ̸= 0,

e−az
∞∏
n=1

(
1− z2

π2n2

)
=

sin(−z)
(−z)

=
sin z

z
= eaz

∞∏
n=1

(
1− z2

π2n2

)
so e−az = eaz for all z ̸= 0. Thus a = 0. So

sin z = z

∞∏
n=1

(
1− z2

π2n2

)
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In particular, letting f = sin, F0(z) = z, and Fn = 1− z2

π2n2 , we know from Proposi-
tion 5.5 that

cot z =
F ′(z)

F (z)
=
F ′
0(z)

z
+

∞∑
n=1

F ′
n(z)

Fn(z)
=

1

z
+

∞∑
n=1

−2z
π2n2

1− z2

π2n2

=
1

z
− 2z

∞∑
n=1

1

π2n2 − z2

In the following, we denote:

E(z) = zℓ
∞∏
n=1

Ek

(
z

an

)

Lemma 5.7

E is entire.

Proof. For z ∈ DR,

N∏
n=1

Ek

(
z

an

)
=

 ∏
n≤N :|an|≤2R

Ek

(
z

an

) ∏
n≤N :|an|>2R

Ek

(
z

an

)
As before, the first product has a bounded number of terms as N → ∞, so we ignore it.

For the second product, if |an| > 2R then
∣∣∣ zan ∣∣∣ < 1

2 so

∣∣∣∣1− Ek

(
z

an

)∣∣∣∣ ≤ 2e
|z|k+1

|an|k+1
≤
(
2eRk+1

) 1

|an|k+1

Since k = ⌊ρ⌋, k + 1 > r, and by Theorem 5.4,

∞∑
n=1

1

|an|k+1
<∞

Thus by Proposition 5.5, E converges and is holomorphic on DR arbitrary, so it is entire.

Observe that E has the same zeroes as f with multiplicity. So as before, f
E has only

removable singularities and is nonzero, and thus we can take a logarithm. Thus f
E = eg for

some entire g. Thus the only claim that we need to prove is that g is a polynomial with
degree at most k.

Lemma 5.8

Fix some ρ0 < s < k+1. Then there are radii 0 < r1 < r2 < . . . with limm→∞ rm =
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∞ and a constant C > 0 such that∣∣∣∣∣
∞∏
n=1

Ek

(
z

an

)∣∣∣∣∣ ≥ e−C|z|s

for all m and z ∈ ∂Drm .

Intuitively, the above says that we can find certain sets where we can bound the product
from below. We cannot hope to achieve a global bound since the product is zero at ak, so
we instead pick radii in such a way that z is bounded away from the zeroes.

Proof. We make three key claims in the proof.

Claim 1: If |z| ≤ 1
2 then

|Ek(z)| ≥ e−2|z|k+1

To see this, we are in the radius of convergence of the principal branch of the logarithm:

Log(1− z) =

∞∑
n=1

(−1)n−1 (−z)n

n
= −

∞∑
n=1

zn

n

so

Ek(z) = (1− z)ez+
z2

2 +...+ zk

k = ew

where

w = −
∞∑

n=k+1

zn

n

Now,

|w| ≤
∞∑

n=k+1

|z|n

n
≤ |z|k+1

∞∑
n=k+1

|z|n−k−1 ≤ |z|k+1
∞∑

n=k+1

(
1

2

)n−k−1

= 2|z|k+1

so
Ek(z) = |ew| = eRe(w) ≥ e−|w| ≥ e−2|z|k+1

Claim 2: If |z| ≥ 1
2 then

|Ek(z)| ≥ |1− z|e−2k|z|k

To prove this claim, we have

|Ek(z)| = |1− z|
∣∣∣ez+ z2

2 +...+ zk

k

∣∣∣ ≥ |1− z|e−
∣∣∣z+ z2

2 +...+ zk

k

∣∣∣

≥ |1− z|e
−
(
|z|+ |z|2

2 +...+
|z|k
k

)
≥ |1− z|e−(|z|+|z|2+...+|z|k) = |1− z|e−|z|k

(
1

|z|k−1 + 1

|z|k−2 +...+1
)

≥ |1− z|e−|z|k(2k−1+2k−2+...+1) ≥ |1− z|e−2k|z|k
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Claim 3: There exists C > 0 such that if |z| ≥ 1 and

z ∈ C \

( ∞⋃
n=1

D 1

|an|k+1 (an)

)

then ∣∣∣∣∣
∞∏
n=1

Ek

(
z

an

)∣∣∣∣∣ ≥ e−C|z|s

In other words, we bound the product away from some disks around the zeroes. Also, the
centers of the disks tend to infinity and their radii tend to zero.

Take some such z. Then

∞∏
n=1

∣∣∣∣Ek ( z

an

)∣∣∣∣ = ∏
n:|an|<2|z|

∣∣∣∣Ek ( z

an

)∣∣∣∣ ∏
n:|an|≥2|z|

∣∣∣∣Ek ( z

an

)∣∣∣∣
For the second factor,

∣∣∣ zan ∣∣∣ < 1
2 so by Claim 1,

∏
n:|an|≥2|z|

∣∣∣∣Ek ( z

an

)∣∣∣∣ ≥ ∏
n:|an|≥2|z|

e
−2

|z|k+1

|an|k+1 = exp

−2|z|k+1
∑

n:|an|≥2|z|

1

|an|k+1


= exp

−2|z|k+1
∑

n:|an|≥2|z|

1

|an|s|an|k+1−s

 ≥ exp

−2|z|k+1
∑

n:|an|≥2|z|

1

|an|s (2|z|)k+1−s


= exp

−2s−k
∑

|an|≥2|z|

1

|an|s
|z|s
 ≥ exp

(
−

(
2s−k

∞∑
n=1

1

|an|s

)
|z|s
)

We know from Theorem 5.4 that
∑

1
|an|s converges. So we let

0 < C1 = 2s−k
∞∑
n=1

1

|an|s
<∞

so ∏
n:|an|≥2|z|

∣∣∣∣Ek ( z

an

)∣∣∣∣ ≥ e−C1|z|s

For the first factor, since an → ∞, the product and sum are always finite. We apply Claim
2 to get ∏

n:|an|<2|z|

∣∣∣∣Ek ( z

an

)∣∣∣∣ ≥ ∏
n:|an|<2|z|

∣∣∣∣1− z

an

∣∣∣∣e−2k
|z|k

|an|k

=

 ∏
n:|an|<2|z|

∣∣∣∣1− z

an

∣∣∣∣
 exp

−2k|z|k
∑

n:|an|<2|z|

1

|an|k


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We will proceed by bounding these two factors separately. For the second,

exp

−2k|z|k
∑

n:|an|<2|z|

1

|an|k

 = exp

−2k|z|k
∑

n:|an|<2|z|

|an|s−k

|an|s


≥ exp

−2k|z|k
∑

n:|an|<2|z|

(2|z|)s−k

|an|s

 ≥ exp

(
−2s|z|s

∞∑
n=1

1

|an|s

)
= e−C2|z|s

where

C2 = 2s
∞∑
n=1

1

|an|s

For the final factor, we use the assumption on z to get∏
n:|an|<2|z|

∣∣∣∣1− z

an

∣∣∣∣ = ∏
n:|an|<2|z|

∣∣∣∣z − an
an

∣∣∣∣ ≥ ∏
n:|an|<2|z|

1

|an|k+2

≥
∏

n:|an|<2|z|

1

(2|z|)k+2
=

(
1

(2|z|)k+2

)nf (2|z|)−ℓ

where nf (r) is the number of zeroes of f in Dr as we previously defined, and ℓ is the order
of the zero at 0. Fix some ρ such that ρ0 < ρ < s. Then Theorem 5.4 showed that there
exists c > 0 such that nf (r) ≤ crρ when r ≥ 1. So since |z| ≥ 1

2 ,(
1

(2|z|)k+2

)nf (2|z|)−ℓ

≥ 1

2|z|

(k+2)c(2|z|)ρ

= e−c(k+2)2ρ|z|ρ ln(2|z|) ≥ e−C3|z|s

where C3 is some constant that we get since s > ρ so |z|ρ ln(2|z|) is O(|z|s). Let C =
C1 + C2 + C3 and we have proved Claim 3.

At this point we have bounded our function away from some disks. Thus all that remains is
to show that there exist radii tending to infinity that do not intersect the disks. By Theorem
5.4,

∞∑
n=1

1

|an|k+1
<∞

so we may choose N ∈ N such that

∞∑
n=N

1

|an|k+1
<

1

2

Fix

m > 2max

{
1, |a1|, . . . , |aN |, 1

|a1|k+1
, . . . ,

1

|aN |k+1

}
We want to show that there is m ≤ r ≤ m+ 1 such that

∂Dr ∩

( ∞⋃
n=1

D 1

|an|k+1
(an)

)
= ∅
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This will immediately imply the theorem as we can continue picking r as m increases.

We show this by contradiction. If no such r exists, then for all r ∈ [m,m+ 1], then there is
zr ∈ ∂Dr such that

zr ∈ D 1

|an|k+1
(an)

for some n ∈ N. This means that

|zr − an| <
1

|an|k+1
(∗)

Observe that we must have n ≥ N , because otherwise n appears in the list of numbers that
m is greater than. Rearranging (∗), we get

m

2
> |an| ≥ |z| − 1

|an|k+1
= r − 1

|a|k+1
> r − m

2

which would imply m > r. So n ≥ N . We also know from (∗) that

|an| −
1

|an|k+1
< |z| = r < |an|+

1

|an|k+1

Since this works for all r, we get

[m,m+ 1] ⊆
∞⋃

n=N+1

(
|an| −

1

|an|k+1
, |an|+

1

|an|k+1

)

We are essentially done by measure theory as the length on the right is strictly less than
1 by our assumption on N . To prove this without measure theory, we proceed as follows.
Since [m.m+ 1] is compact, a finite union suffices as a cover, so we get

[m,m+ 1] ⊆
M⋃

n=N=1

(
|an| −

1

|an|k+1
, |an|+

1

|an|k+1

)

Using the indicator function 1A, we could rewrite this as

1[m,m+1] ≤
M∑

n=N+1

1(|an|− 1

|an|k+1 ,|an|+
1

|an|k+1

)

So

1 =

∫ ∞

0

1[m,m+1](t) dt ≤
∫ ∞

0

M∑
n=N+1

1(|an|− 1

|an|k+1 ,|an|+
1

|an|k+1

)(t) dt ≤ ∞∑
n=N=1

2

|an|k+1
< 1

So we get a contradiction and such an r exists.

Now, we continue with some basic estimates. We have∣∣∣∣ f(z)E(z)

∣∣∣∣ = ∣∣∣eg(z)∣∣∣ = eRe g(z)
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Recall also that by our definition of growth rate, for any ρ0 < ρ < s < k + 1 we have

|f(z)| ≤ AeB|z|ρ

for constants A,B > 0. Thus when z lies in one of the radii, we have

Re(g(z)) = ln

(∣∣∣∣ f(z)E(z)

∣∣∣∣) ≤ ln

(
AeB|z|ρ

e−c|z|
s

)
= ln

(
AeB|z|ρ+c|z|s

)
≤ C ′|z|s

for some C ′ > 0.

Lemma 5.9

If g is entire and
Re(g(z)) ≤ Crsm

for C > 0, |z| = rm and rm → ∞, then g is a polynomial with degree at most s.

The idea is basically to employ a similar argument as Liouville’s theorem; however, there
are a few tricks in order to bound the coefficients properly.

Proof. Write g as a power series about the origin:

g(z) =

∞∑
n=0

bnz
n

Fix r to be one of the rm. Notice that

1

2π

∫ 2π

0

g(reiθ)e−inθ dθ =

{
bnr

n, n ≥ 0

0, n < 0

This is true by the Cauchy integral formula, since if n ≥ 0 then

bn =
1

2πi

∫
∂Dr

g(z)

zn+1
dz =

1

2πi

∫ 2π

0

g(reiθ)

rn+1ei(n+1)θ
rieiθ dθ =

1

rn2π

∫ 2π

0

g(reiθ)e−inθ dθ

If n < 0 then the integral is zero since it is a closed curve. Also, for n > 0,

1

2π

∫ 2π

0

g(reiθ)e−inθ =
1

2π

∫ 2π

0

g(reiθ)einθ dθ = 0

Adding these two results, we have

bnr
n =

1

π

∫ 2π

0

Re(g(reiθ))e−inθ dθ

we can add or subtract a constant in the integrand since this amounts to adding a function
with a primitive, so

bn =
1

πrn

∫ 2π

0

(
Re(g(reiθ)− Crs)e−inθ

)
dθ
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We can now directly integrate, using the mean value property for one of the terms to
conclude that

|bn| ≤
1

πrn

∫ 2π

0

∣∣Re(g(reiθ)− Crs)
∣∣dθ

=
1

πrn

∫ 2π

0

(
Crs − Re(g(reiθ))

)
dθ

=
2C

rn−s
− 2Re(b0)

rn

Then if n > s, we have

|bn| ≤
2C

rn−s
− 2Re(b0)

rn
rm→∞−→ 0

This concludes the proof.
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Chapter 6

Special Functions

Having developed the general theory of complex functions, we will now apply our results to
specific functions which arise in both complex analysis and other fields.

6.1 The Gamma Function

The Gamma function serves as an analytic generalization of the factorial function. Although
it is not the only analytic function which agrees with the factorial function (analytic continu-
ation does not apply as the factorial is defined on N, which has no limit point), it nevertheless
posses many important properties which cause it to appear in many applications.

Definition 6.1

Denote the gamma function Γ : {s ∈ C : Re(s) > 0} → C by

Γ(s) =

∫ ∞

0

e−tts−1 dt

In particular, notice that when Re(s) = σ > 0,∣∣e−tts−1
∣∣ = e−ttσ−1

so the integral converges absolutely.

Proposition 6.1

Γ is holomorphic on {s ∈ C : Re(s) > 0}.

Proof. For n ∈ N, define

Fn(s) =

∫ n

1
n

e−tts−1 dt

The integrand is continuous and holomorphic in s, so Fn is holomorphic (in fact, it is entire).
It is enough, then, to prove that Fn ⇒ Γ on compact subsets of the right half plane.
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Every compact subset K of the right half plane is contained in a strip Re(K) ⊆ [δ,M ] for
some 0 < δ < M <∞. So we just need to show uniform convergence on every strip.

For s ∈ K, denote σ = Re(s). Then

|Γ(s)− Fn(s)| =

∣∣∣∣∣
∫ 1

n

0

ts−1e−t dt+

∫ ∞

n

ts−1e−t dt

∣∣∣∣∣
≤
∫ 1

n

0

∣∣ts−1
∣∣ ∣∣e−t∣∣︸ ︷︷ ︸

≤1

dt+

∫ ∞

n

∣∣ts−1
∣∣∣∣e−t∣∣dt

≤
∫ 1

n

0

tσ−1 dt+

∫ ∞

n

tσ−1e−t dt

≤
∫ 1

n

0

tδ−1 dt+

∫ ∞

n

tM−1e−t dt

The first integral evaluates directly to 1
δnδ . For the second integral we have∫ ∞

n

tM−1e−t dt =

∫ ∞

n

(
tM−1e−

t
2

)
e−

t
2 dt ≤ sup{tM−1e−

t
2 : t ≥ 1}

∫ ∞

n

e−
t
2 dt

This supremum is some constant C(M), and so this evaluates to

C(M)2e−
n
2

So

|Γ(s)− Fn(s)| ≤
1

δnδ
+

2C(M)

e
n
2

⇒ 0

Remark 6.1

The above proof shows that ∫ ∞

1

ts−1e−t dt

is an entire function in s, since the only part where Re(s) > 0 was required was in

the
∫ 1

n

0
term, which does not exist when integrating from 1 (or any δ > 0).

Now that we have shown that Γ is holomorphic on the right half plane, it is of interest to
us to extend Γ to as much of the entire plane as possible. This becomes a theme throughout
all of our study of these special functions, since analytic continuation guarantees we do not
lose any generality when performing this extension.

Lemma 6.2

If Re(s) > 0, then Γ(s+ 1) = sΓ(s).
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Proof. Notice that by analytic continuation, it suffices to check this for s ∈ (0,∞). (This is
because Γ(s+1)− sΓ(s) will be zero on the real axis, which implies it is zero everywhere).

Since tse−t → 0 as t→ 0 and t→ ∞, we integrate by parts and get

sΓ(s) =

∫ ∞

0

e−tts−1sdt =
[
e−tts

]t=∞
t=0

+

∫ ∞

0

e−tts dt = 0 + Γ(s+ 1)

In particular, since Γ(1) = 1, we see that Γ(n+ 1) = n! for n ∈ N.

Theorem 6.3

There exists a unique holomorphic function, which we still denote by Γ, on C \
{0,−1,−2, . . .} that coincides with our original definition of Γ on {Re(s) > 0}.
Moreover, this function has simple poles at {0,−1,−2, . . .} and its residues are given
by

res−n(Γ) =
(−1)n

n!

Proof. For each m ∈ N we define Fm : {s ∈ C : Re(s) > −m} → C by

Fm(s) =
Γ(s+m)

(s+m− 1)(s+m− 2) · · · s

Observe that Fm is holomorphic on {Re(s) > −m} \ {0, . . . ,−m+ 1}. Also notice that we
have simple poles at s = −n for n ∈ {0, . . . ,m− 1}, and

res−n(Fm) = lim
s→−n

(s+ n)Fm(s) = lim
s→−n

(s+ n)
Γ(s+m)

(s+m− 1) · · · s

=
Γ(m− n)

(m− n− 1) · · · 1 · (−1) · (−2) · · · (−n)
=

(m− n− 1)!

(m− n− 1)! · (−1)n · n!
=

(−1)n

n!

Lastly, if Re(s) > −m, then Fm+1(s) = Fm(s). This is because

Fm+1(s) =
Γ(s+m+ 1)

(s+m)(s+m− 1) · · · s
=

(s+m)Γ(s+m)

(s+m) · s
=

Γ(s+m)

(s+m− 1) · · · s
= Fm(s)

This for s ∈ C \ {0,−1,−2, . . .}, we simply define Γ(s) = Fm(s) for any m ∈ N such that
Re(s) > −m, which will thus be independent of our choice of m.

We also present a nonalgebraic proof which will be instructive in our proofs of extending
other functions.

Alternate Proof. When Re(s) > 0, we know that

Γ(s) =

∫ 1

0

ts−1e−t dt+

∫ ∞

1

ts−1e−t dt
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We remarked earlier that the second integral is entire. So we just need to show that the
first integral may be extended to the whole plane, minus the poles. Still assuming that
Re(s) > 0, we have ∫ 1

0

ts−1e−t dt =

∫ 1

0

ts−1

( ∞∑
n=0

(−1)ntn

n!

)
dt

This is an integral on a bounded interval of an absolutely convergent series, so we may
perform the interchange:∫ 1

0

ts−1

( ∞∑
n=0

(−1)ntn

n!

)
dt =

∞∑
n=0

(−1)n

n!

∫ 1

0

tn+s−1 dt =

∞∑
n=0

(−1)n

n!(n+ s)

So we have shown that for Re(s) > 0, we may alternatively write

Γ(s) =

∞∑
n=0

(−1)n

n!(n+ s)
+

∫ ∞

1

ts−1e−t dt

From here, the extension is clear: we simply allow s to be any complex number, save the
nonpositive integers, which will cause one of the denominators in the series to vanish. This
also makes the residue calculation trivial. To check that this extension converges, fix R > 0,
N > 2R, and take s ∈ DR \ {0,−1,−2, . . .}. Then

∞∑
n=0

(−1)n

n!(n+ s)
=

N∑
n=0

(−1)n

n!(n+ s)
+

∞∑
n=N+1

(−1)n

n!(n+ s)

We just need to check the infinite sum. We have

∞∑
n=N+1

(−1)n

n!(n+ s)
= lim
M→∞

M∑
n=N+1

(−1)n

n!(n+ s)

The finite sum is holomorphic on DR \ {0,−1,−2, . . .}, so we just need to show that the
convergence is uniform there. In particular, we will demonstrate absolute convergence. We
have ∣∣∣∣ (−1)n

n!(n+ s)

∣∣∣∣ ≤ 1

n!(n− |s|)
≤ 1

n!(2R−R)
≤ 1

n!R

and the bound is uniform, so we are done. Thus Γ may be extended to C\{0,−1,−2, . . .}.

Having shown the existence of the gamma function, we now work to derive identities
that will be useful to us, and also will be applied in our study of later functions.

Theorem 6.4: Euler’s Reflection Formula

For all s ∈ C \ Z,
Γ(s)Γ(1− s) =

π

sin(πs)
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Proof. By analytic continuation, it is enough to prove this for any set with a limit point, in
particular the real interval (0, 1). So using our integral formula, for s ∈ (0, 1) we have

Γ(s)Γ(1− s) =

∫ ∞

0

ts−1e−tΓ(1− s) dt =

∫ ∞

0

ts−1e−t
(∫ ∞

0

u−se−u du

)
dt

For fixed t, we write u = vt and make the substitution:∫ ∞

0

ts−1e−t
(∫ ∞

0

u−se−u du

)
dt =

∫ ∞

0

ts−1e−t
(∫ ∞

0

e−vt(vt)−stdv

)
dt

=

∫ ∞

0

(∫ ∞

0

e−t(v+1)v−s dv

)
dt

The integrand is positive and decays exponentially, so the integral converges absolutely and
by Fubini’s Theorem we may interchange the integrals. Then∫ ∞

0

(∫ ∞

0

e−t(v+1)v−s dv

)
dt =

∫ ∞

0

(∫ ∞

0

e−(v+1)t dt

)
v−s dv =

∫ ∞

0

v−s

v + 1
dv

Claim: For 0 < a < 1, ∫ ∞

0

va−1

1 + v
dv =

π

sin(πa)

We apply a change of variables:∫ ∞

0

va−1

1 + v
dv =

∫ ∞

−∞

eax

1 + ex
dx

Now, taking f(z) = eaz

1+ez , we evaluate this integral over the contour:

R

2πiγR

πi

Then we observe that the only pole lies at πi, and the residue may be evaluated by
L’Hopital’s rule:

resπi(f) = lim
z→πi

(z − πi)
eaz

1 + ez
= eaπi · 1

eiπ
= −eaπi

so ∫
γR

f(z) dz = 2πi resπi(f) = −2πieaπi

To show that the vertical sides go to zero, we have∣∣∣∣i ∫ 2π

0

ea(R+it)

1 + eR+it
dt

∣∣∣∣ ≤ 2π
eaR

eR − 1
⇒ 0
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For the bottom side, we have ∫ R

−R
f(z) dz

R→∞−→ I

and for the top ∫ R

−R
f(t+ 2πi) dt =

∫ R

−R

ea(t+2πi)

1 + et+2πi
dt

R→∞−→ e2πaiI

so
I − e2πaiI = −2πieaπi

which recovers
I =

π

sin(πa)

From here, we see that

Γ(s)Γ(1− s) =

∫ ∞

0

v−s

v + 1
dv =

π

sin(π(1− s))
=

π

sinπs

Note also that this gives

Γ

(
1

2

)
=

√
π

Theorem 6.5

The function 1
Γ(s) is an entire function with simple zeroes at {0,−1,−2, . . .} and∣∣∣∣ 1

Γ(s)

∣∣∣∣ ≤ C1e
C2|s| ln(1+|s|)

where C1, C2 > 0, so that the order of growth is at most 1.

Proof. By the reflection formula, for s /∈ Z, Γ is not zero, and

1

Γ(s)
= Γ(1− s)

sin(πs)

π

At s ∈ N, Γ(1 − s) has a simple pole, and sin(πs) has a simple zero. So they cancel and
thus the singularities at s ∈ N are removable. Also, at the poles of Γ(s), 1

Γ(s) has a zero. So

it has simple zeroes at {0,−1,−2, . . .} and nowhere else. We plug in the identity

Γ(s) =

∞∑
n=0

(−1)n

n!(n+ s)
+

∫ ∞

1

ts−1e−t dt

to get

1

Γ(s)
= Γ(1− s)

sinπs

π
=

( ∞∑
n=0

(−1)n

n!(n+ 1− s)

)
sinπs

π
+

(∫ ∞

1

e−tt−s dt

)
sinπs

π
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By considering sinπs = eiπs−e−iπs

2 , we get∣∣∣∣ sinπsπ

∣∣∣∣ ≤ eπ|s|

Let σ = Re(s). Then ∣∣∣∣∫ ∞

1

e−tt−s dt

∣∣∣∣ ≤ ∫ ∞

1

e−tt−σ dt ≤
∫ ∞

1

e−tt|s| dt

Pick n such that |s| ≤ n ≤ |s|+ 1. Then∫ ∞

1

e−tt|s| dt ≤
∫ ∞

0

e−ttn dt ≤ Γ(n+ 1) = n! ≤ nn = en lnn ≤ e(|s|+1) ln(|s|+1)

To bound the sum, consider separately the cases when s is close to a nonnegative integer,
and when it is not. If |n+ 1− s| ≥ 1

2 for all n ∈ N ∪ {0}, then∣∣∣∣∣
∞∑
n=0

(−1)n

n!(n+ 1− s)

∣∣∣∣∣ ≤
∞∑
n=0

2

n!
= 2e <∞

Otherwise, if there is k ∈ N ∪ {0} such that |k + 1− s| < 1
2 , then only one such integer

exists. So we can pull out this term and∣∣∣∣∣∣∣
∞∑
n=0
n ̸=k

(−1)n

n!(n+ 1− s)

∣∣∣∣∣∣∣ < 2e <∞

The last term can be handled by multiplying with the sin factor. Since sin has a zero and
the sum term has a pole, they cancel out and the product is bounded:∣∣∣∣ (−1)k

k!(k + 1− s)

sinπs

π

∣∣∣∣ ≤ C

for some C > 0. Thus we have shown the bound.

The following theorem is a well-known result called the product formula for 1
Γ , and

in fact can be used as the definition of Γ, from which our integral formulation may be
recovered. It involves the Euler-Mascheroni constant γ ≈ 0.57721, which appears in
many applications but is not well understood.

Theorem 6.6

1

Γ(s)
= eγss

∞∏
n=1

(
1 +

s

n

)
e−

s
n

where

γ = lim
N→∞

((
N∑
n=1

1

n

)
− ln(N + 1)

)
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Proof. Since the nonzero zeroes of 1
Γ are −N, and all the zeroes are simple, Hadamard’s

factorization theorem tells us that

1

Γ(s)
= eps

∞∏
n=1

E1

(
s

−n

)
where p is a polynomial of degree no more than the growth rate of 1

Γ . But we just showed
that the growth rate is at most 1, so we may write p = as+ b. Then expanding E1, we have

eps

∞∏
n=1

E1

(
s

−n

)
= eas+bs

∞∏
n=1

(
1 +

s

n

)
e−

s
n

By our identities for Γ,

1

Γ(s+ 1)
=

1

sΓ(s)
= eas+b

∞∏
n=1

(
1 +

s

n

)
e−

s
n

As s→ 0, the RHS approaches eb, and the LHS is Γ(1) = 1, so eb = 1. Plugging in s = 1,

e−a =

∞∏
n=1

(
1 +

1

n

)
e−

1
n = lim

N→∞

N∏
n=1

n+ 1

n
e−

1
n

= lim
N→∞

(N + 1)e−
∑N

n=1
1
n = elimN→∞(ln(N+1))−

∑N
n=1

1
n

This proves that a = γ and that the limit for γ exists.

6.2 The Θ Function

In order to prove the prime number theorem, we briefly introduce the Θ function and prove
a functional equation. The function we study is part of a far more general class of functions,
given by a two-parameter function known as the Jacobi theta function.

Definition 6.2

For t > 0, we define the theta function by

Θ(t) =

∞∑
n=−∞

e−πn
2t = 1 + 2

∞∑
=1

e−πn
2t

In the following theorem, we derive a functional equation satisfied by Θ. This equation
is perhaps best interpreted as a consequence of the Poisson summation formula in Fourier
analysis. In particular, Θ(t) =

∑
n∈Z f(n) for f(z) = e−πtz

2

. Importantly, the function

e−πz
2

is its own Fourier transform, which allows us to recover Θ on both sides of the
equation.
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Theorem 6.7

For t > 0,

Θ

(
1

t

)
=

√
tΘ(t)

Proof. Fix t > 0. Define the entire function

f(z) = e−πtz
2

so that Θ(t) is the sum of the values of f(n) for n ∈ Z. Denote

g(z) =
f(z)

e2πiz − 1

g is holomorphic on C\Z and has simple poles at the integers. We can calculate the residues
using L’Hopital’s rule:

resn(g) = lim
z→n

(z − n)g(z) =
f(n)

2πi

So

Θ(t) =

∞∑
n=−∞

f(n) =

∞∑
n=−∞

2πi resn(g) = lim
N→∞

∫
γN

g(z) dz

where γN is some closed curve containg the integers in [−N,N ]. Explicitly, consider

N + 1
2

i

−i

−N − 1
2

γN

We want to show the vertical segments vanish as N → ∞. For the right hand side, which
we denote as γN,R this is∣∣∣∣∣

∫
γN,R

g(z) dz

∣∣∣∣∣ ≤
∫ 1

−1

∣∣∣∣g(N +
1

2
+ is

)∣∣∣∣ds ≤ ∫ 1

−1

∣∣∣e−πt(N+ 1
2+is)

2
∣∣∣∣∣∣e2πi(N+ 1

2+is) − 1
∣∣∣ ds

=

∫ 1

−1

e−πt(N+ 1
2 )

2
+πts2

e−2πs + 1
ds ≤ 2eπte−πt(N+ 1

2 )
2 N→∞−→ 0

The left side contour is similar. For the top and bottom contours, they will approach∫ ∞

−∞
g(s− i) ds−

∫ ∞

−∞
g(s+ i) ds
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This limit exists since f exhibits quadratic decay. Then we have∫ ∞

−∞
g(s− i) ds =

∫ ∞

−∞

e−πt(s−i)
2

e2πi(s−i) − 1
ds

=

∫ ∞

−∞

e−πt(s−i)
2

1− e−2πi(s−i) · e
−2πi(s−i) ds =

∫ ∞

−∞
e−πt(s−i)

2

( ∞∑
n=1

e−2πi(s−i)n

)
ds

Notice that the ratio of the geometric series has absolute value e−2π < 1. So we may
interchange the sum and integral:

∞∑
n=1

∫ ∞

−∞
e−πt(s−i)

2−2πi(s−i)n ds =

∞∑
n=1

e−π
n2

t

∫ ∞

−∞
e−πt(s−i+

n
t i)

2

ds

=

∞∑
n=1

e−
πn2

t

∫
L

e−πtz
2

dz

where L is the infinite horizontal line segment which intersects the y axis at
(
−1 + n

t

)
. Then

we can find this by looking at the contour:

R

(
−1 + n

t

)
Re

Im

L

−R

As R→ ∞, the vertical line segments again cancel out, and the function we integrate is
entire, so the horizontal segments are equal. Thus

∞∑
n=1

e−
πn2

t

∫
L

e−πtz
2

dz = 2

∞∑
n=1

e−
πn2

t

∫ ∞

0

e−πtx
2

dx

Making the change of variables x =
√
y√
πt
, this becomes

2

∞∑
n=1

e−
πn2

t

∫ ∞

0

e−y
1

2
√
y
√
πt

dy =

∞∑
n=1

e−
πn2

t
1√
πt

Γ

(
1

2

)
︸ ︷︷ ︸
=
√
π

=
1√
t

∞∑
n=1

e−
πn2

t

One shows by the same computation that

−
∫ ∞

−∞
g(s+ i) ds =

1√
t

0∑
n=−∞

e−
πn2

t

so

Θ(t) =
1√
t

∞∑
n=−∞

e−
πn2

t =
1√
t
Θ

(
1

t

)
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6.3 The Riemann Zeta Function

Definition 6.3

For s ∈ C such that Re(s) > 1, we define the zeta function

ζ(s) =

∞∑
n=1

1

ns

We previously proved that ζ is holomorphic on {s ∈ C : Re(s) > 1}.

Theorem 6.8

If Re(s) > 1, then

π− s
2Γ
(s
2

)
ζ(s) =

∫ ∞

0

u
s
2−1Θ(u)− 1

2
du

Proof. We first verify that the integral actually converges. Recall that we wrote

Θ(u) = 1 + 2

∞∑
n=1

e−πn
2u

so for u ≥ 1,

Θ(u)− 1

2
=

∞∑
n=1

e−πn
2u ≤

∞∑
n=1

e−πnu =
e−πu

1− e−πu
≤ e−πu

1− e−π

This decays faster than u
s
2 at infinity. For u ≤ 1, we use the functional equation and observe

that Θ(u) is decreasing in u, so that Θ
(
1
u

)
≤ C for some C for all u ≥ 1. Then

Θ(u) =
1√
u
Θ

(
1

u

)
≤ C√

u

and ∣∣u s
2−1
∣∣ = u

Re(s)
2 −1

so near 0, the exponent of the integrand is strictly greater than −1, so the integral absolutely
converges. Now, we compute the right hand side:∫ ∞

0

u
s
2−1Θ(u)− 1

2
du =

∫ ∞

0

(
u

s
2−1

∞∑
n=1

e−πn
2u

)
du

As before, we have absolute convergence of the sum, so∫ ∞

0

(
u

s
2−1

∞∑
n=1

e−πn
2u

)
du =

∞∑
n=1

∫ ∞

0

u
s
2−1e−πn

2u du
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For each integral in the sum, apply the change of variables t = πn2u. Then this becomes

∞∑
n=1

∫ ∞

0

(
t

πn2

) s
2−1

e−t
1

πn2
dt = π− s

2

∞∑
n=1

1

ns

∫ ∞

0

t
s
2−1e−t dt = π− s

2 ζ(s)Γ
(s
2

)
For convenience, we denote the left hand side of the above identity by the following

shorthand:

Definition 6.4

The xi function is defined for Re(s) > 1 by

ξ(s) = π− s
2Γ
(s
2

)
ζ(s)

Theorem 6.9

ξ is holomorphic on {s ∈ C : Re(s) > 1} and admits an analytic continuation to
C \ {0, 1} which has simple poles at 0, 1, and satisfies the identity

ξ(s) = ξ(1− s)

In other words, ξ is symmetric about the axis Re(z) = 1
2 , which will be an important

axis in the study of the zeta function.

Proof. For u > 0, denote

Ψ(u) =
Θ(u)− 1

2
From Theorem 6.8

ξ(s) =

∫ ∞

0

u
s
2−1Ψ(u) du

We also know

Θ(u) =
1√
u
Θ

(
1

u

)
So

Ψ(u) =

1√
u
Θ
(
1
u

)
− 1

2
=

1√
u
Ψ

(
1

u

)
+

1

2
√
u
− 1

2

As in the previous proof, we break the integral into two parts:

ξ(s) =

∫ 1

0

u
s
2−1Ψ(u) du+

∫ ∞

1

u
s
2−1Ψ(u) du

As before, the second integral is entire. Then we apply the substitution u 7→ 1
x to write the

first integral as ∫ 1

0

u
s
2−1Ψ(u) du =

∫ 1

0

u
s
2−1

(
1√
u
Ψ

(
1

u

)
+

1

2
√
u
− 1

2

)
du

=
1

s− 1
− 1

s
+

∫ ∞

1

(
1

x

) s
2−1 √

xΨ(x)
1

x2
dx
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Combining our two integrals, we have

ξ(s) =
1

s− 1
− 1

s
+

∫ ∞

1

(
1

x

) s
2−1 √

xΨ(x)
1

x2
dx+

∫ ∞

1

u
s
2−1Ψ(u) du

=
1

s− 1
+

1

s
+

∫ ∞

1

(
x−

s
2−

1
2 + x

s
2−1
)
Ψ(x) dx

The integral converges everywhere because of the rapid decay of Ψ, so this formula holds
not only on {Re(s) > 1} but also on all of C, except for 0, 1. It is also clear from this
equation that the poles are 0, 1, and that replacing s with 1 − s gives the same value, so
that ξ(s) = ξ(1− s).

This allows us to prove the existence of the analytic continuation of the zeta function.

Corollary 6.10

ζ has an analytic continuation to C \ {1} with a simple pole at 1, and it satisfies the
identity

ζ(s) = πs−
1
2
Γ
(
1−s
2

)
Γ
(
s
2

) ζ(1− s)

Proof. From the definition of ξ,

ζ(s) = π
s
2
ξ(s)

Γ
(
s
2

)
ξ can be extended everywhere except 0, 1. Also, 1

Γ is entire, so ζ is certainly holomorphic
on C \ {0, 1}. But we also know 1

Γ has a simple zero at the nonpositive integers, so it has a
simple zero at zero which cancels with the simple zero of ξ at 0. This means that ζ may be
continued to 0 as well. The identity follows from the identity

ξ(s) = ξ(1− s)

We now prove the existence of a sequence of functions which will aid us in proving the
prime number theorem.

Proposition 6.11

There exists a sequence of entire functions δn : C → C such that

|δn(s)| ≤
|s|

nRe(s)+1

and

|δn(s)| ≤
2

nRe(s)

such that
N−1∑
n=1

1

ns
−
∫ N

1

1

xs
ds =

N−1∑
n=1

δn(s)
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Proof. Define

δn(s) =

∫ n+1

n

(
1

ns
− 1

xs

)
dx

Then summing δn(s) gives the identity desired. To show the bounds, we have

|δn(s)| ≤
∣∣∣∣∫ n+1

n

(
1

ns
− 1

xs
dx

)∣∣∣∣ ≤ ∫ n+1

n

(
1

nRe(s)
+

1

xRe(s)

)
dx ≤ 2

nRe(s)

To demonstrate the first bound, we apply the mean value theorem to each x ∈ [n, n+ 1] to
produce y ∈ [n, x] such that

1

ns
− 1

xs
= −s(n− x)

ys+1
≤ s

ys

which gives ∣∣∣∣ 1ns − 1

xs

∣∣∣∣ = |s|
yRe(s)+1

≤ |s|
nRe(s)+1

This allows us to bound the analytic continuation on a subset of C.

Corollary 6.12

ζ(s)− 1
s−1 has an analytic continuation to {s ∈ C : Re(s) > 0} \ {1}.

Proof. Suppose Re(s) > 1. Then for all N ,

N−1∑
n=1

1

ns
− 1

s− 1

(
1− 1

Ns−1

)
=

N−1∑
n=1

δn(s)

As N → ∞, this tends to the equation

ζ(s)− 1

s− 1
=

∞∑
n=1

δn(s)

To check that this converges, we use the bound

|δn(s)| ≤
2

nRe(s)

together with the fact that Re(s) > 1 to conclude convergence. We now denote

H(s) =

∞∑
n=1

δn(s)

so that

ζ(s) =
1

s− 1
+H(s)
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Using the bound

|δn(s)| ≤
|s|

nRe(s)+1

we have uniform convergence on compact subsets, so H is holomorphic on {s ∈ C : Re(s) >
0}. Then this is an analytic continuation of ζ to {s ∈ C : Re(s) > 0} \ {1}.

We take a brief moment to prove the following technical lemma, to be used later.

Lemma 6.13

For 0 < ε < 1
2 and ε ≤ σ0 ≤ 1, there exists C = Cε,σ0

> 0 such that

1. |ζ(σ + it)| ≤ C|t|1−σ0+ε when σ ≥ σ0 and |t| ≥ 1
2 .

2. |ζ ′(σ + it)| ≤ C|t|2ε for σ ≥ 1, |t| ≥ 1.

Proof. From the previous proof, we have

ζ(s) =
1

s− 1
+H(s)

so for s = σ + it, with |t| ≥ 1
2 and σ > 0,

|ζ(s)| ≤ 1√
(σ − 1)2 + t2

+

∞∑
n=1

|δn(s)|

For any η ∈ (0, 1), we know

|δn(s)| = |δn(s)|η|δn(s)|1−η ≤
(

|s|
nσ+1

)η (
2

nσ

)1−η

=
21−η|s|η

nη+σ
≤ 2|s|η

nσ0+η

Choosing η = 1− σ0 + ε, we get

|δn(s)| ≤
2|s|1−σ0+ε

n1+ε

so

|ζ(s)| ≤ 1√
(σ − 1)2 + t2

+

∞∑
n=1

|δn(s)| ≤ 2 + 2|s|1−σ0+ε
∞∑
n=1

1

n1+ε︸ ︷︷ ︸
=Cε

When σ ≤ 3|t|, this gives us what we want. Otherwise, σ > 3|t| > 3
2 , so we are in the region

of convergence fo the series, so

|ζ(s)| ≤
∞∑
n=1

1

nσ
≤

∞∑
n=1

1

n
3
2

which converges.
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The second inequality follows from the first by Cauchy’s integral formula. If |t| ≥ 1, then
we can draw a circle of radius ε around s. Then

ζ ′(s) =
1

2πi

∫
∂Dε(s)

ζ(w)

(w − s)2
dw ≤ 1

2πiε2

∫ 2π

0

∣∣ζ(s+ εeiθ)
∣∣∣∣(εieiθ)∣∣ dθ

On the boundary of the disk, we apply the first inequality for σ0 = 1− ε:

1

2πiε

∫ 2π

0

∣∣ζ(s+ εeiθ)
∣∣dθ ≤ 1

2πε

∫ 2π

0

|ζ (σ + ε cos θ + i (t+ ε sin θ))|dθ

≤ C ′|t+ ε sin θ|2ε ≤ C ′|2t|2ε

6.4 The Prime Number Theorem

Having studied the gamma, theta, and zeta functions, and established functional equations
and bounds for them, we now progerss to proving the prime number theorem. This theorem
was proved independently by Hadamard and de la Vallee Poussin in 1896. The theorem
concerns the prime counting function π. Denoting the set of primes as P, for x > 0 we
define

π(x) = |{p ∈ P : p ≤ x}|

The theorem asserts that π satisfies the asymptotic relation

π(x) ∼ x

lnx

The proof of the theorem involves a connection between prime numbers and the zeta func-
tion, given by the following identity:

Theorem 6.14: Euler’s Product Formula

For Re(s) > 1,

ζ(s) =
∏
p∈P

1

1− p−s

Proof. Observe that ∑
p∈P

p−s

converges absolutely and uniformly on compact subsets of {Re(s) > 1}, since it is dominated
by n−s. Therefore, we know from our study of infinite products that∏

p∈P
(1− p−s)

is defined, holomorphic, and nonvanishing on {Re(s) > 1}. Thus

1∏
p∈P(1− p−s)

=
∏
p∈P

1

1− p−s
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is also holomorphic on {Re(s) > 1}. So by analytic continuation, we just need to show that
this product is equal to ζ on some set with a limit point. We will take the real axis s > 1.

Observe that
N∑
n=1

1

ns
≤
∏
p≤N

(
1 +

1

ps
+ . . .+

1

psN

)
To see this, since the terms are nonnegative and greater than 1, we just need to show that
each term in the sum appears in the expanded form of the product. By prime factorization,
for each n ≤ N , we can write n = pk11 · · · pkℓℓ where each pj ≤ N . Thus

1

ns
=

1

psk11

· · · 1

pskℓℓ

This appears in the expansion of the product, so the inequality holds. We can weaken this
bound to

N∑
n=1

1

ns
≤
∏
p≤N

(
1 +

1

ps
+ . . .+

1

psN

)
≤
∏
p≤N

∞∑
k=0

1

pks
=
∏
p≤N

1

1− p−s

As N → ∞, we get

ζ(s) ≤
∏
p∈P

1

1− p−s

To show the reverse inequality, let N,M be integers. We claim that

∏
p≤N

(
1 +

1

ps
+ . . .+

1

psM

)
≤

∞∑
n=1

1

ns
= ζ(s)

The expansion of the product gives many terms of the form 1
ns for some n. By uniqueness

of prime factorization, none show up in the sum more than once, so the inequality holds.
Then as M → ∞, we get ∏

p≤N

1

1− p−s
≤ ζ(s)

Taking N → ∞, we recover the correct inequality and therefore the product formula.

Corollary 6.15

If Re(s) > 1, then ζ(s) ̸= 0.

Proof. None of the terms in the infinite product are zero, and it converges uniformly, so
ζ(s) ̸= 0.

Now, we develop estimates for ζ which will allow us to prove the prime number theorem.
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Definition 6.5

The von Mangoldt function Λ : N → R is defined by

Λ(n) =

{
ln p, n = pm for m ∈ N, p ∈ P
0

Lemma 6.16

For σ > 1 and s = σ + it, then

Log ζ(s) =

∞∑
n=1

Λ(n)

ns lnn
=

∞∑
n=2

Λ(n)

ns lnn

so

−ζ
′(s)

ζ(s)
=

∞∑
n=2

Λ(n)

ns

Proof. First note that the logarithm is the principal branch of the logarithm, which is
well defined and holomorphic here since ζ does not vanish on the simply connected region
Re(s) > 1. Also note that

∞∑
n=2

Λ(n)

ns lnn
≤

∞∑
n=2

1

ns
= ζ(s)− 1

and ζ converges absolutely, so the series is holomorphic. So by analytic continuation we just
need to prove the identity for s real. By the product formula for ζ, we have

Log ζ(s) = lim
N→∞

Log
∏
p≤N

1

1− p−s
= lim
N→∞

∑
p≤N

− ln(1− p−s) = lim
N→∞

∑
p≤N

∞∑
m=1

1

psmm

= lim
N→∞

∑
n=pm:
p≤N
m∈N

ln p

ns lnn
=

∞∑
n=1

Λ(n)

ns lnn
=

∞∑
n=2

Λ(n)

ns lnn

Since we have absolute convegence, the value ζ′(s)
ζ(s) may be found by differentiating the series

term-by-term, which recovers the second formula.

Lemma 6.17

If σ > 1 and t is real, then

log
∣∣ζ3(σ)ζ4(σ + it)ζ(σ + 2it)

∣∣ ≥ 0
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Proof. We have (note that the branch cut doesn’t matter since the real part of the logarithm
is the same for all branches)

log
∣∣ζ3(σ)ζ4(σ + it)ζ(σ + 2it)

∣∣ = 3 log|ζ(σ)|+ 4 log|ζ(σ + it)|+ log|ζ(σ + 2it)|
= 3Re log ζ(σ) + 4Re log ζ(σ + it) + Re log(ζ(σ + 2it))

By the previous lemma, this becomes

∞∑
n=1

cnn
−σ(3 + 4 cos θn + cos 2θn)

Observe that

0 ≤ 2(1 + cos θ)2 = 2(1 + 2 cos θ + cos2 θ) = 3 + 4 cos θ + 2 cos2 θ − 1

= 3 + 4 cos θ + cos2 θ − (1− cos2 θ) = 3 + 4 cos θ + cos2 θ − sin2 θ = 3 + 4 cos θ + cos 2θ

which proves the lemma.

Corollary 6.18

For s = σ + it, ∣∣ζ3(σ)ζ4(s)ζ(σ + 2it)
∣∣ ≥ 1

Theorem 6.19

For ε > 0, there exists cε > 0 such that for any s = σ + it, with σ ≥ 1, |t| ≥ 1,

1

|ζ(s)|
≤ cε|t|ε

Proof. Referring to Lemma 6.13, for small ε and σ0 = 1, there exists Cε such that

|ζ(s)| ≤ Cε|t|1−σ0+ε

|ζ ′(s)| ≤ Cε|t|ε

By Corollary 6.12, we have

ζ(s) =
1

1− s
+H(s)

where

H(s) =

∞∑
n=1

δn(s)

and H(s) ≥ 0 when s ≥ 0.

By Corollary 6.18, we have

|ζ(s)| ≥ |ζ(σ)|−
3
4 |ζ(σ + 2it)|−

1
4 ≥ Cε|ζ(σ)|−

3
4 |t|−

ε
4 ≥ Cε(σ − 1)

3
4 |t|−

ε
4

From here, we have two cases, which will depend on a constant A which we pick later:
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• If σ − 1 ≥ A|t|−5ε
, then

|ζ(s)| ≥ CεA
3
4 |t|−4ε

• If σ − 1 < A|t|−5ε
, then choose σ′ > σ such that

σ′ − 1 = A|t|−5ε

Then applying the first case to σ′, and applying the mean value theorem to the bound
on ζ ′,

|ζ(σ + it)| ≥ |ζ(σ′ + it)| − |ζ(σ′ + it)− |ζ(σ + it)||

≥ CεA
3
4 |t|−4ε − (σ′ − σ)|ζ ′(σ′′ + it)| ≥ CεA

3
4 |t|−4ε − C ′(σ′ − 1)|t|ε

= Cεa
3
4 |t|−4ε

C ′(σ′ − 1)A|t|−4ε
= |t|−4ε

(
CεA

3
4 − C ′A

)
where σ < σ′′ < σ′, and C ′ is a constant produced by applying Lemma 6.13 again.
By picking

A =

(
Cε
2C ′

)4

we conclude.

Theorem 6.20

The only zeroes of the ζ function in C \ {s ∈ C : 0 ≤ Re(s) < 1} are the simple
zeroes at −2,−4,−6, . . ..

The zeroes at −2,−4,−6, . . . are called the trivial zeroes and the set {s ∈ C : 0 ≤
Re(s) < 1} is called the critical strip.

Proof. We have already proved that ζ does not vanish on {Re(s) > 1}. When Re(s) < 0,
we have the following functional equation:

ζ(s) = πs−
1
2Γ
(
1− s

2

)
Γ
(s
2

)
ζ(1− s)

1
Γ is entire, so Γ does not vanish. πs−

1
2 is an exponential so it never vanishes. ζ(1− s) ̸= 0

since Re(1 − s) > 1. Then 1
Γ has simple zeroes at the negative integers, and thus ζ(s) = 0

only at −2,−4,−6, . . ..

Thus we just need to show that ζ is nonzero when Re(s) = 1. Suppose that ζ(1 + it) = 0
for some t ∈ R \ {0}. We can draw a small disk around this point of radius ε > 0. Then ζ
will be holomorphic and thus bounded, so for every 1 < σ < 1 + ε,

|ζ(σ + it)| ≤ A(σ − 1)

At 1, ζ has a simple pole so

|ζ(σ)| ≤ B

σ − 1
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We also have

|ζ(σ + 2it)| ≤ C

Then we can plug this into Corollary 6.18 to get

1 ≥
(

B

σ − 1

)3

(A(σ − 1))
4
C = B3A4C(σ − 1)

As σ → 1 the RHS tends to zero, contradiction. So no zero exists.

We introduce the following auxiliary function to ease our proof of the prime number
theorem.

Definition 6.6

The Chebyshev ψ-function is defined for x > 0 as

ψ(x) =
∑
n≤x

Λ(n)

Notice that some summand Λ(n) is nonzero if and only if n = pm ≤ x for m ∈ N, p ∈ P.
Then we have

m ≤ lnx

ln p
= logp x ⇐⇒ m ≤

⌊
lnx

ln p

⌋
so we can reindex the nonzero terms by the prime that they are a power of. For each p ≤ x,

there will be
⌊
ln x
ln p

⌋
powers less than x, and Λ(pm) = ln p for each, so

ψ(x) =
∑
p≤x

⌊
lnx

ln p

⌋
ln p

The next lemma shows that it suffices to prove an asymptotic relation for ψ rather than π
directly.

Lemma 6.21

If ψ(x) ∼ x as x→ ∞, then π(x) ∼ x
ln x as x→ ∞.

(Note that the converse is true as well, but we do not prove this as it is not needed here.)

Proof. We write

ψ(x) =
∑
p≤x

⌊
lnx

ln p

⌋
ln p ≤

∑
p≤x

lnx = π(x) lnx

For any 0 < α < 1,

ψ(x) =
∑
p≤x

⌊
lnx

ln p

⌋
ln p ≥

∑
p≤x

ln p ≥
∑

xα<p≤x

ln p ≥
∑

xα<p≤x

α lnx

≥ α lnx(π(x)− π(xα)) ≥ α lnx(π(x)− xα)
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We rearrange terms and combine our inequalities to get

ψ(x)

x
≤ π(x)

lnx

x
≤ 1

α

ψ(x)

x
+

lnx

x1−α

Thus, using the assumption ψ(x) ∼ x,

1 ≤ lim inf
x→∞

ψ(x) ≤ lim inf
x→∞

(
π(x)

lnx

x

)
≤ lim sup

x→∞

(
π(x)

lnx

x

)
≤ 1

α

Then taking α→ 1 shows that

lim
x→∞

π(x)
lnx

x
= 1

Definition 6.7

For x > 1, we define the smoothing function ψ1 to be

ψ1(x) =

∫ x

1

ψ(u) du

Using our definition of ψ, this is equal to∫ x

1

∑
n≤u

Λ(n)

 du =

∫ x

1

(
x∑
n=1

Λ(n)fn(u)

)
du

where

fn(u) =

{
1, u ≥ n

0

Then we can rearrange this as∑
n≤x

Λ(n)

∫ x

1

fn(u) du =
∑
n≤x

Λ(n)(x− n)

We again reduce to a simpler asymptotic with the following theorem:

Lemma 6.22

If ψ1(x) ∼ 1
2x

2 as x→ ∞, then ψ(x) ∼ x as x→ ∞.

Proof. Suppose ψ1(x) ∼ 1
2x

2. Then for any 0 < α < 1 < β, we use the fact that ψ is
nondecreasing to write the following averages:

1

(1− α)x

∫ x

αx

ψ(u) du ≤ ψ(x) ≤ 1

(β − 1)x

∫ βx

x

ψ(u) du

The first term is
ψ1(x)− ψ1(αx)

(1− α)x
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and the second is
ψ1(βx)− ψ − 1(x)

(β − 1)x

Then
ψ1(x)− ψ1(αx)

(1− α)x2
≤ ψ(x)

x
≤ ψ1(βx)− ψ1(x)

(β − 1)x2

So
1

1− α

[
ψ1(x)
1
2x

2

1

2
− ψ1(αx)

1
2 (αx)

2

α2

2

]
ψ(x)

x
≤ 1

β − 1

[
ψ1(βx)
1
2 (βx)

2

β2

2
− ψ1(x)

1
2x

2

1

2

]
Using the asymptotic assumption, we have

lim sup
x→∞

ψ(x)

x
=

β2 − 1

2(β − 1)
=
β + 1

2

and similarly

lim inf
x→∞

ψ(x)

x
≥ α+ 1

2

Letting α, β → 1, ψ(x) ∼ x.

Thus our reduction work has simplified the problem to showing that the smoothing
function obeys the asymptotic relation ψ1(x) ∼ 1

2x
2. This will require the use of complex

analysis tools.

We denote by Re(s) = c the following infinite curve, oriented so that the imaginary part
ranges from −∞ to ∞:

Re(s) = c

Lemma 6.23

For a > 0, c > 1

1

2πi

∫
Re(s)=c

as

s(s+ 1)
ds =

{
1− 1

a , a > 1

0, 0 < a ≤ 1

Proof. If a > 1, then denote f(s) = as

s(s+1) and let T > 1. Then consider the curve γT given

by:
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c + iT

c− iT

γT

The poles of f are 0,−1, which lie in the interior of γT for sufficiently large T . Then by
the residue theorem,

1

2πi

∫
γT

f(s) ds = res0(f) + res1(f) = 1− 1

a

Then it suffices to show that the integral along the semicircular arc vanishes as T → ∞.
Denote this arc by C. Then for s ∈ C,

|f(s)| = aRe(s)

|s||s+ 1|

For s ∈ C we have |s| ≥ |s− c| − c = T − c. Similarly |s| ≥ T − c− 1.

|f(s)| ≤ aRe(s)

(T − c)(T − c− 1)
≤ ac

(T − c)(T − c− 1)

Thus ∫
C

f(s) ds ≤ πT sup
ζ∈C

|f(ζ)| ≤ πT
ac

(T − c)(T − c− 1)

T→∞−→ 0

When 0 < a ≤ 1, we instead consider the right semicircular curve:

Re(s) = c

This curve contains no poles. A similar bound shows that the integral over the arc is
zero. So the integral in this case is zero.
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Proposition 6.24

For c, x ∈ R with c > 1, x > 0,

ψ1(x) =
1

2πi

∫
Re(s)=c

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds

Proof. By Lemma 6.16, the integral is equal to

1

πi

∫
Re(s)=c

(
xs+1

s(s+ 1)

∞∑
n=1

Λ(n)

ns

)
ds

As we showedin Lemma 6.16, the series is absolutely convergent, so we rearrange this into

x

∞∑
n=1

Λ(n)
1

2πi

∫
Re(s)=c

(
x
n

)s
s(s+ 1)

ds

By Lemma 6.23, the integrals are zero whenever x
n > 1. So only finitely many terms are

nonzero:

x
∑
n≤x

Λ(n)
1

2πi

∫
Re(s)=c

(
x
n

)s
s(s+ 1)

ds = x
∑
n≤x

Λ(n)
(
1− n

x

)
=
∑
n≤x

Λ(n)(x− n) = ψ1(x)

Now, consider the function

F (s) =
xs+1

s(s+ 1)

(
−ζ ′(s)
ζ(s)

)
Lemma 6.25

res1 F = x2

2

Proof. Recall that we showed for Re(s) > 0,

ζ(s) =
1

s− 1
+H(s)

where H is holomorphic on {Re(s) > 0}. Then

ζ ′(s) = − 1

(s− 1)2
+H ′(s)

so

−ζ
′(s)

ζ(s)
=

1
(s−1)2 −H ′(s)

1
s−1 +H(s)

=
1

s− 1
+

(s− 1)H ′(s)−H(s)

1 + (s− 1)H(s)︸ ︷︷ ︸
holomorphic

Thus

res1 F =
x2

2
TODO: check this argument.
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iT

−iT

c

Let γT be the curve (set c = 2):

Lemma 6.26

ψ1(x) =
1

2πi

∫
γT

F (s) ds

Proof. By cancellation, this is equal to the integral over the following curves:

iT

−iT

c

Consider the upper curve (call it τ). The integral is given by∫
τ

F (s) ds = −i
∫ ∞

T

F (1 + it) dt+ i

∫ ∞

T

F (2 + it) dt+

∫ 2

1

F (t+ iT ) dt

We can pick ε = 1
4 and apply Theorem 6.19 to get

|F (1 + it)| ≤ x2

t2
C1(ε)|t|ε

C2(ε)|t|−ε
≤ C3(ε)

x2

t2−2ε

so ∣∣∣∣∫ ∞

T

F (1 + it) dt

∣∣∣∣ ≤ ∫ ∞

T

C3(ε)
x2

t2−2ε
dt =

C(ε)

1− 2ε
x2

1

T 1−2ε

T→∞−→ 0

The same bound works for ∣∣∣∣∫ ∞

T

F (2 + it) dt

∣∣∣∣
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For the last integral, we bound by

|F (t+ iT )| ≤ xt+1

T 2
C(ε)M2ε T→∞−→ 0

and since the integral is from 1 to 2, it suffices to show that the integrand tends to 0.

Proposition 6.27

Fix T > 1. Then there exists 0 < δT ≤ 1
2 such that ζ has no zeroes in the set

{σ + it : |t| ≤ T, 1− δT ≤ σ ≤ T}.

Proof. We apply a compactness argument. If no such δT exists then there is a sequence
of zeroes with real part tending to 1. But we showed that there are no zeroes on the line
Re(s) = 1, so this is a contradiction.

We have now developed the ideas we need to conclude the proof of the prime number
theorem.

Theorem 6.28

ψ1(x) ∼ 1
2x

2.

Proof. Consider the curves:

iT

−iT

2

γ3

γ1

γ2

γ4

γ5

γ6

Using the residue theorem,

ψ1(x)−
1

2
x2 =

1

2πi

∫
up+right+up+left+up

F (s) ds− 1

2πi

∫
box

F (s) ds

=
1

2πi

(∫
γ1

+

∫
γ2

+

∫
γ3

+

∫
γ4

+

∫
γ5

)
F (s) ds

γ1, γ5 may be estimated the same way by symmetry. For s = 1 + it and t ≥ T , we have

|F (1 + it)| = x2

t2
C
√
t = C

x2

t
3
2
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so ∣∣∣∣∫
γ5

F (s) ds

∣∣∣∣ ≤ ∫ ∞

T

C
x2

t
3
2

dt = 2C
x2√
T

The same bound holds for γ1. On γ3, we have s = 1− δT + it for |t| ≤ T . Then

|F (1− δT + it)| ≤ x2−δT(
1
2

) (
3
2

) max
ζ∈γ3

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣︸ ︷︷ ︸
MT

= 2MTx
2−δT

so ∣∣∣∣∫
γ3

F (s) ds

∣∣∣∣ ≤ 4MTx
2−δT

On γ4, we have s = σ + it for 1− δT ≤ σ ≤ 1.

|F (σ + it)| ≤ xσ+1

T 2
max
ζ∈γ4

∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣︸ ︷︷ ︸
M ′

T

giving ∣∣∣∣∫
γ4

F (s) ds

∣∣∣∣ ≤ M ′
T

T 2
x

∫ 1

1−δT
eσ ln x dσ =

M ′
T

T 2

x2

lnx

The same bound holds for γ2. So∣∣∣∣ψ1(x)−
x2

2

∣∣∣∣ ≤ 1

2π

(∫
γ1

+

∫
γ2

+

∫
γ3

+

∫
γ4

+

∫
γ5

)
|F (s)|ds

≤ 4C
x2√
T

+ 4TMTx
2−δT +

2M ′
T

T 2

x2

lnx

Thus ∣∣∣∣ψ1(x)
1
2x

2
− 1

∣∣∣∣ =
∣∣∣ψ1(x)− x2

2

∣∣∣
x2

2

≤ 8C√
T

+
8TMT

xδT
+

4M ′
T

T 2

1

lnx

As x→ ∞ the x-dependent terms vanish and we are left with

lim sup
x→∞

∣∣∣∣ψ1(x)
1
2x

2
− 1

∣∣∣∣ ≤ 2C√
T

This is true for all T , so we conclude that

lim
x→∞

∣∣∣∣ψ1(x)
1
2x

2
− 1

∣∣∣∣ = 0

so ψ1(x) ∼ 1
2x

2.
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Definitions

analytic, 13, 26
analytic continuation, 48
argument, 3

biholomorphic, 76
Blaschke factor, 80
boundary, 8
bounded, 8

Cauchy sequence, 6
Cauchy-Riemann equations, 17
Chebyshev ψ-function, 128
closed curve, 27
closed disk, 7
closed set, 7
closure, 8
compact, 8
complex conjugate, 5
complex differentiable, 13
conformal automorphism, 80
conformal equivalence, 76
connected, 10
continuous, 11
contour integral, 28
converges, 5
converges absolutely, 20
converges uniformly, 50
critical strip, 127
curve, 27

diameter, 8
disk of convergence, 21

entire, 13
equicontinuous, 83
equivalent curves, 27

essential singularity, 66
at infinity, 67

Euler-Mascheroni constant, 114
exponential, 22
exterior, 41

fractional linear transformation, 79

gamma function, 108
growth rate, 93

Hadamard’s formula, 21
holomorphic, 12
homotopic, 38

imaginary part, 3
interior, 7, 41
interior point, 7
isolated zero, 57

length, 28
limit point, 7
logarithm, 74

meromorphic, 67
at infinity, 67
extended complex plane, 67

Mobius mapping, 79
modulus, 3
multiplicity, 58, 59

negative orientation, 27
normal family, 83

open cover, 9
open disk, 7
open mapping, 71
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open set, 7
order, 58, 59
order of growth, 93

parameterized curve, 26
path, 11
path connected, 11
piecewise smooth, 26
pole, 58
positive orientation, 27
power series, 20
primitive, 30
principal branch, 75
principal part, 60

radius of convergence, 21
real part, 3
region, 11
removable singularity, 63

at infinity, 67
residue, 60
Riemann zeta function, 52

sequence, 5
simple, 41

simple closed, 41
simple pole, 59
simple zero, 58
simply connected, 40
smooth curve, 26
smoothing function, 129
subcover, 9
symmetric, 53

theta function, 115
triangle, 33
triangle inequality, 4
trigonometric functions, 23
trivial zeroes, 127

uniformly bounded, 83

von Mangoldt, 125

Weierstrass canonical factor, 98

xi function, 119

zero, 57
zeta function, 118
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