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Introduction

This document contains notes taken for the class MAT 217: Honors Linear
Algebra at Princeton University, taken in the Spring 2024 semester. These
notes are primarily based on lectures and lecture notes by Professor Jakub
Witaszek. Other references used in these notes include Linear Algebra Done
Right by Sheldon Axler, Linear Algebra by Kenneth Hoffman and Ray Kunze,
and Linear Algebra by Stephen Friedberg, Arnold Insel, and Lawrence Spence.
Since these notes were primarily taken live, they may contains typos or errors.
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Chapter 1

Systems of Linear
Equations and Matrices

1.1 Introducton

We are often concerned with finding solutions to simultaneous equations, par-
ticular linear equations. We can solve these by performing certain operations
on the various equations in the system. For instance, we may have the following
system: {

x+ 2y = 5

3x− y = 0
⇐⇒

{
x+ 2y = 5

0− 5y = −10
⇐⇒{

x+ 2y = 5

y = 2
⇐⇒

{
x = 1

y = 2

We can also think of these equations as describing lines in the plane (or hyper-
plane), and the solutions as the set of intersections between these (see Figure
1.1).
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We are often concerned about studying vector spaces, especially Rn, of which
the elements are real n-tuples:

Rn =


v1...
vn


∣∣∣∣∣∣∣v1, . . . , vn ∈ R


Vectors can have geometric interpretation as elements of n-dimensional space.
However, they can also model mathematical concepts. For instance, we may
encode a polynomial in a matrix:c0...

cn

←→ c0 + c1x+ . . .+ cnx
n

Similarly, the coordinates of an n-tuple may encode the features of a particular
entry in a database (such as data on a user).
Consider a system of three linear equations in three (real) variables. Then each
equation represents a plane, and we are interested in their intersection. The
solutions may take the following forms:

0) No solution: if the three planes are parallel (but not equal), or two planes
intersect in a line and the third is parallel to that line.

1) A point: for instance if we have the system


x = 0

y = 0

z = 0

2) A line: if the three planes intersect in a line.

3) A plane: if the three planes are equal.

4) R3: If each plane involves no variables (i.e. each is the entire space R3).

1.2 Gauss-Jordan Elimination

Definition 1.1

Call a rectangular array of numbers a matrix. We denote its size by
m× n, where m is the number of rows and n the number of columns:

A =

[
∗ ∗ ∗
∗ ∗ ∗

]
(A is a 2× 3 matrix)
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Definition 1.2

The n×n identity matrix In has 1 along the diagonal and 0 everywhere
else:

In =

1 0 0

0
. . . 0

0 0 1


For a given system of linear equations, we define the augmented matrix:{

x+ 2y = 5

2x− y = 0
←→

[
1 2 5
2 −1 0

]
We define the permitted operations on augmented matrices as follows:

Definition 1.3

The elementary row operations (EROs) on matrices are:

• Swap any two rows.

• Multiply or divide a row by any non-zero number.

• Add or subtract a multiple of any row to another row.

Example 1.1

Consider the system of equations:
x− 2y + 3z = 1

−x+ y + 2z = −2
x− 4y + 13z = −1

Then we write the corresponding augmented matrix, and perform ele-
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mentary row operations (where R1, R2, R3 represent the rows): 1 −2 3 1
−1 1 2 −2
1 −4 13 −1

 R2→R2+R1−→
R3→R3−R11 −2 3 1

0 −1 5 −1
0 −2 10 −2

 R2→−R2−→

1 −2 3 1
0 1 −5 1
0 2 10 −2

 R1→R1+2R2−→
R3→R3−2R21 0 −7 3

0 1 −5 1
0 0 0 0

 ⇐⇒
x − 7z = 3

y − 5z = 1
0 = 0

So we have x = 7z + 3 and y = 5z + 1, so our solution is
7t+ 3
5t+ 1
t

∣∣∣∣∣∣t ∈ R

 = t

75
1

+

31
0


and it is apparent that our solution is a line in R3.

The significance of the EROs is that, by performing an ERO, we do not
change the solutions to the system of equations associated with a given matrix.
This is how we were able to conclude in the example that the solution to the
original system was precisely the solution to the final system.

Theorem 1.1

Suppose that an augmented matrix B is reached from matrix A by a
finite sequence of EROs (they are row-equivalent). Then the solutions
to the system associated with B are identical to the solutions to the
system associated with A.

Proof. It is sufficient to show that any single ERO does not change the solutions
to the equation. Suppose a certain ERO takes a matrix M to M ′. Then each
row ofM ′ is a linear combination of the rows ofM . Thus, any solution toM will
also be a solution toM ′. To show inclusion in the other direction, note that any
ERO has an inverse which is also an ERO. Thus, we may perform the inverse
ERO to take us from M ′ to M . By the same logic as above, every solution to
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M ′ is also a solution to M . So the solutions are identical. By induction, this is
true for any two row-equivalent matrices.

Definition 1.4

A matrix is in reduced row-echelon-form (RREF) if:

• From left to right, the first nonzero entry of each row is 1 (leading
1).

• If a column contains a leading 1, then every other entry in the
column is 0 (nonleading 1s are unaffected)

• From top to bottom, leading 1s are left to right.

Essentially, our matrix should have the form:0 . . . 1 ∗ 0 ∗ 0 ∗
0 . . . 1 ∗ 0 ∗

0 . . . 1 ∗


It should also be noted that for augmented matrices, the augmented
column is not considered when determining whether the matrix is in
RREF.

For any matrix in RREF, we consider the column indices of the leading 1s:
i1 < i2 < . . . < ik. Then we denote the corresponding variables xi1 , xi2 , . . . , xik .
This motivates the following definition:

Definition 1.5

A free variable is a variable for which the column in the RREF does
not have a leading 1. A determined variable is a variable which is not
free.

Referring back to the example, we see that determined variables will have
values in terms of the free variables, which result in parameters in our final
solution set. In other words, free variables may be assigned arbitrary variables,
which will uniquely determine values for the free variables that results in a
solution to the system of equations.

Theorem 1.2

Any matrix can be put into RREF using EROs. Moreover, the RREF
matrix of A is unique regardless of the EROs, which allows to refer to
the RREF of a given matrix, which we denote RREF(A).

Gauss-Jordan elimination offers an algorithm for finding RREF(A):
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1. Consider the first column. If column is all zeros, then move on. Otherwise,
choose any row such that the first nonzero value is in the first column, and
swap it into the first row.

2. Divide the row so that the first entry is 1.

3. Add multiples of the first row to the other rows so that every other entry
in the first column is 0.

4. Repeat with each following column, except that in Step 1 we only use rows
that have not already been used.

Example 1.2

Define the following RREF matrix:

A =

1 2 0 0 1 0
0 0 1 0 1 0
0 0 0 1 4 0


Denote the variables associated with the columns x, y, z, w, u, respec-
tively. Then our leading variables are x, z, w, and our free variables are
y, u. So we have 

x+ 2y + u = 0

z + u = 0

w + 4u = 0

We can then move the free variables to the right side:
x = −2y − u
z = −u
w = −4u

Here, any choice of y, u will determine the values of x, z, w, giving a
solution to the system:y


−2
1
0
0
0

+ u


−1
0
−1
−4
1


∣∣∣∣∣∣∣∣∣∣
y, u ∈ R



1.3 Linear Systems

In the introduction, we found that the solution sets of a given linear system
make take many different forms. The following theorem allows us to determine
the form of the solutions of a linear system.
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Theorem 1.3

Suppose an augmented matrix is in RREF:

1 ∗ 0 ∗ 0 ∗ c′1
1 ∗ 0 ∗ c′2

...
...

1 ∗ c′k
...
c′n


Then the associated linear system

1) has no solutions (is inconsistent) if and only if any c′i ̸= 0 for
some k + 1 ≤ i ≤ n.

2) has exactly 1 solution if and only if every variable is leading. In
this case, we have

RREF(A) =



1 0 c′1
. . .

...
0 1 c′k

0
...
0


3) has infinitely many solutions if and only if it is consistent and there

is at least one free variable.

Corollary

If a linear system has m equations and n variables, with m < n, then
the system is either inconsistent or has infinitely many solutions.

Proof. There is at most one leading variable per equation. So there are at most
m leading variables, but m < n, so we have free variables. So the system either
satisfies condition 1) or 3) above.

For certain systems, we may make stronger statements about their solutions.

Definition 1.6

A system is homogeneous if c′1 = . . . = c′n = 0 (where c′ denotes the
constants of RREF(A)).
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A homogeneous system is always consistent, since 0 = (0, . . . , 0) is always
a solution. Moreover, suppose a homogeneous system has m equations and n
variables, with m < n. Since a homogeneous system is always consistent, the
corollary implies there are infinitely many (nonzero) solutions.

We now consider some applications of our study of linear systems to geom-
etry.

Definition 1.7

We call X ⊆ Rn algebraic if it is described by a system of polynomial
equations in n variables.

Consider an algebraic set X ⊆ R2 defined by {(x, y)|g(x, y) = 0} for some
polynomial g in x, y.

• Suppose deg(g) = 1. Then g(x, y) = ax+ by+ c, which describes a line in
R2.

• Suppose deg(g) = 2. Then g(x, y) = ax2 + bxy + cy2 + dx+ ey + f . This
describes a conic section of some kind. The nondegenerate conic sections
are the ellipse, parabola, and hyperbola. The degenerate conic sections
are the line (for instance g(x, y) = x2), empty set (g(x, y) = x2 + 1), or
two lines (g(x, y) = xy).

We can use the facts we have learned about linear systems to prove the following
statement:

Theorem

Through any 5 points in R2, there is always a conic X ⊆ R2 passing
through the 5 points (where we demand that g is not identically 0).

Proof. Let our points be (x1, y1), . . . , (x5, y5). Then our conic must be described
by a polynomial g = ax2 + bxy + cy2 + dx+ ey + f such that

g(x1, y1) = 0
...

g(x5, y5) = 0

⇐⇒


x21a+ x1y1b+ . . .+ f = 0

...

x25a+ x5y5b+ . . .+ f = 0

⇐⇒

x
2
1 x1y1 . . . 1 0

...
...

x25 x5y5 . . . 1 0


Here we have a linear system, where the variables are a, b, c, d, e, f . Moreover,
the system is homogeneous with 5 equations and 6 variables, so we know there
is a nonzero solution, completing the proof.
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We can also consider systems of linear equations over other fields. Systems
of linear equations over Q behave similarly to those over R. In particular, we
have the following result:

Proposition 1.4

For any homogeneous system of linear equations over R with rational
coefficients, if there exists a real nonzero solution x = (x1, . . . , xn) ∈ Rn,
then there exists a rational nonzero solution x’ = (x′1, . . . , x

′
n) ∈ Qn

Proof. Since the homogeneous system has a nonzero solution, it must have in-
finitely many solutions. This implies that there are one or more free variables.
Setting the free variables to rational values ensures all variables are rational (if a
determined variable doesn’t depend on free variables, then its value will always
be rational).

1.4 Fields

We have so far assumed that all variables and coefficients of our linear systems
are in R, but this need not be so.

Example 1.3

Consider the system over C {
x+ iy = 1

x− iy = i

Then we can use Gauss-Jordan elimination to find RREF(A):[
1 i 1
1 −i 1

]
R2→R2−R1−→

[
1 i 1
0 −2i i− 1

]
R2→R2/(−2i)−→[

1 i 1
0 1 − i−1

2i

]
R1→R1−iR2−→

[
1 0 1 + i i−1

2i
0 1 − i−1

2i

]
⇐⇒

{
x = 1+i

2

y = − 1+i
2

So we have seen that solving linear systems over C is very similar to solving
linear systems over R. This is also the case inQ. We are led naturally to consider
which algebraic structures we can apply similar methods to. This motivates the
following definition, which generalizes the properties of Q, R, and C; namely,
addition, subtraction, multiplication, and division, with distribution.
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Definition 1.8

A field is a triple (F,+, ∗) such that F is a nonempty set together with
two operations + : F × F → F, ∗ : F × F → F that satisfy the following
axioms:

1. α+ B = B + α and α ∗ B = B ∗ α (commutativity of +, ∗).

2. (α+B)+ γ = α(B+ γ) and (αB)γ = α(Bγ) (associativity of +, ∗).

3. ∃0 ̸= 1 ∈ F such that ∀α ∈ F, α + 0 = α, α ∗ 1 = α (existence of
additive and multiplicative identities).

4. ∀α ∈ F, ∃B ∈ F s.t. α+ B = 0 (existence of additive inverses).

5. ∀α ̸= 0 ∈ F, ∃B ≠ 0 ∈ F s.t. αB = 1 (existence of multiplicative
inverses for nonzero elements).

6. γ(α+ B) = γα+ γB (distributivity of ∗ over +).

Example 1.4

Q, R, C are all examples of fields. Z is a nonexample, since multiplicative
inverses do not exist for elements besides 1,−1. R2 with addition, multi-
plication defined componentwise is not a field, since (1, 0) has no additive
inverse (this is in general true for any Fn>1 with addition, multiplication
defined componentwise).

Here are some immediate consequences of the definition of a field:

• The additive inverse of an element α is unique (denoted −α)

• The multiplicative inverse of an element α is unique (denoted α−1)

Definition 1.9

Given a field F, the characteristic of F is the smallest n such that
1 + . . .+ 1︸ ︷︷ ︸

n times

= 0. If no such n exists, then the field is of characteristic

0.

Remark

Gauss-Jordan elimination holds in any field. However, many results in
this class will only hold for fields of characteristic 0, so we will assume
that fields are characteristic 0 unless stated otherwise.

In search of a field that is less familiar than R,Q,C, with nonzero characteristic,
we make use of the following theorem.
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Theorem 1.5

Let a, n ∈ Z be given, with n ̸= 0. Then there exist unique q, r such that
a = qn + r, with 0 ≤ r < n. In this case, q is the greatest integer such
that qn ≤ a, and r is a (mod n).

The uniqueness from the above theorem allows us to define congruence mod-
ulo n.

Definition 1.10

We write a ∼= b (mod n) ⇐⇒ n|a− b.

We can use this definition to define the following class of fields:

Definition 1.11

For p prime, we define the finite field Fp = {0, . . . , p− 1}. We define
the operations +p, ∗p modulo p. That is, we have

• a+p b := (a+ b) (mod p)

• a ∗p b := (a ∗ b) (mod p)

It can be shown that for any a ∈ Fp with a ̸= 0, there exists b ∈ Fp such
that a ∗p b = 1. Moreover, associativity holds. So (Fp,+p, ∗p) is a field
for every prime p. Conventionally, the bars are omitted, and the specific
field is simply indicated.

In addition to being of interest due to having different characteristic than
the fields we have worked in so far, finite fields are also practically useful.

Example 1.5

Suppose we have three switches and three lamps, all of which are initially
off. The switches are connected to the lamps as shown above.

Suppose we want to make Lamp 1 turn on, but have Lamp 2 and 3 off.
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Define the indicator variables x1, x2, x3 ∈ R, where each variable is 1 if
the corresponding lamp is on, and 0 otherwise. Then the system can be
represented as the following system of equations:x1 + x3 = 1

x1 + x2 + x3 = 0
x2 + x3 = 0

⇐⇒

1 0 1 1
1 1 1 0
0 1 1 0


RREF (A)−→

in F2

1 0 0 0
0 1 0 1
0 0 1 1


So we need to turn on switches 2 and 3, and leave 1 off.
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Chapter 2

Matrices and Linear
Transformations

2.1 Matrices

So far we have only used matrices to represent linear systems, and we have
defined the EROs that we can use to act on matrices. We will now offer more
definitions that will allow us to use matrices to represent linear maps.

Definition 2.1

Given a field F, the set of n ×m matrices with entries in F is denoted
Mn×m(F).

Definition 2.2

Given two matrices A,B ∈ Mn×m(F ) and a scalar λ ∈ F, addition is
defined entry-wise and scalar multiplication is done to all entries. That
is, (aij) + (bij) = (aij + bij) and λ(aij) = (λaij).

Definition 2.3

The dot product of two column vectors of the same length is

−→
A ·
−→
B =

a1...
an

 ·
b1...
bn

 = a1b1 + . . .+ anbn =
∑

aibi ∈ F
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Definition 2.4

Let A ∈Mn×m(F), x ∈ Fm. Suppose we denote the i-th row of A by wi.
Then we define

Ax :=

w1 · x
...

wn · x

 ∈ Fn

Remark

The observant reader may notice that the wi are row vectors, not column
vectors, and we have not defined the dot product of a row and column
vector. This is easily remedied by instead considering w′

i = wT
i .

Given these definitions, we can easily demonstrate basic matrix properties:

Theorem 2.1

Let A ∈Mn×m(F), x, y ∈ Fm, λ ∈ F. Then

• A(x+ y) = Ax+Ay

• A(λx) = λ(Ax)

We define certain distinguished vectors:

Definition 2.5

Let F be a field. Consider Fm. Then we define

ei :=

δij...
δij


where the Kroncker delta δij is 1 if i = j and 0 otherwise.

Observe that for any matrix A, Aei = Vi is simply the ith column of A. So
we can rewrite the formula for matrix-vector multiplication as

Ax =
[
V1 . . . Vm

] x1...
xm

 =
∑

xiVi ∈ Fm

Proof. Note that x =
∑
xiei. Applying the properties we have already discov-

ered, we have Ax = A
∑
xiei =

∑
x1(Aei) =

∑
xiVi.
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Remark

Let A ∈ Mm×n, b ∈ Fm. Then solving the augmented matrix system
[A|b] is equivalent to solving the equation Ax = b, where x ∈ Fn.

To this point, we have not yet defined multiplication of two matrices. We
will do so now.

Definition 2.6

Suppose A ∈ Mm×k(F), B ∈ Mk×n(F). Denote the columns of B
v1, . . . , vn. Then we define

AB ∈Mm×n(F) =
[
Av1 Av2 . . . Avn

]
Observe that the i, jth entry of AB is the dot product of the ith row of
A and the jth column of B: AB = (Ai ·Bj).

Remark

Note that the existence of AB does not imply that BA is even well
defined. If it is, AB ̸= BA in general.

The key properties of matrices are as follows. Assume always that A,B,C
are matrices over F of appropriate sizes so that products are defined, and that
λ ∈ F.

• (AB)C = A(BC) (associativity)

• A(B+C) = AB+AC, (A+B)C = AC+BC (left and right distributivity)

• (λA)B = λ(AB) = A(λB) (commutativity with scalars)

In particular, if we consider vectors as n× 1 matrices, we see that

A(Bv) = (AB)v, v ∈ Fn

2.2 Linear Transformations

We will see that matrices have a very natural geometric interpretation. This is
best seen by associating matrices with linear mappings between two spaces.

Definition 2.7

A linear transformation T : Fm → Fn is a function satisfying

• T (x+ y) = T (x) + T (y) for x, y ∈ Fm

• T (λx) = λT (x) for x ∈ Fm, λ ∈ F
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Example 2.1

The function f : R→ R defined by f(x) = 2x is linear, while g(x) = x2

is not. Rotation of R2 by 30 degrees counterclockwise is linear, which
can be seen by putting elements of R2 in polar form and observing that
rotation acts linearly on the angle (and not at all on the modulus).

The most important linear transformations for our study are those which
can be associated with matrices.

Definition 2.8

Let A ∈Mn×m(F). Define T : Fm → Fn by T (x) := Ax for x ∈ Fm. We
denote this by T = LA.

Remark

Note that an n×m matrix is a transformation from Fm to Fn.

The fact that the above transformation is indeed linear is immediate from
the properties of matrix-vector multiplication from the previous section.

Remark

From the previous section, we know that LA(ei) = Aei sends ei to the
ith column of A. Thus, the columns of A tell us precisely where the
vectors ei are sent after the mapping LA. This seems to imply that the
matrix of a linear transformation (and hence the transformation itself) is
completely determined by where the ei are sent. In fact we will see that
this is true in general for linear transformations represented by matrices.

The corresponding between matrices and linear transformations will allow us
to formulate corresponding results in both geometric and algebraic terms. We
have already shown that matrices can be associated with linear transformations.
It is of interest to determine when a linear transformation can be represented
as a matrix.

Theorem 2.2

For any T : Fm → Fn, there exists a unique A ∈ Mn×m(F) such that
T = LA. We denote this matrix M(T ). Specifically, the ith column of
this matrix are given by T (ei).

Proof. Observe that if we consider the various ei (standard basis vectors in Fm),
then Mei = the ith column of M for any matrix M . So we can construct a
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matrix A which has as its ith column T (ei). Take some x ∈ Fm. Then if

x =

x1...
xm


we can also say

x = x1e1 + . . .+ xmem

Since both T (x) and Ax are linear, we only need to ensure that T (ei) = Aei
for all 1 ≤ i ≤ m. But by construction, Aei = the ith column of A = T (ei).
So T (x) = Ax for all x ∈ Fm. Moreover, suppose that T (x) = Bx as well for a
matrix B. Then T (ei) = Aei = the ith column of A, and T (ei) = Bei = the ith
column of B. So the columns are identical and thus the matrices are identical.
So we have a unique matrix.

Moreover, a later theorem will show us that this is true of every linear trans-
formation between finite vector spaces over a common field F. Thus, we have
shown a bijective correspondence between linear transformations from Fm → Fn

and matrices in Mn×m(F).

Example 2.2

Suppose we define Tθ : R2 → R2 by rotation of the plane counterclock-
wise by θ. Then to find M(Tθ), we simply find the values of Tθ(e1) and
Tθ(e2). Consider first Tθ(e1). Since e1 has radius 1 and angle 0, we
just need to find the coordinates of the point with radius 1 and angle θ.
Geometrically, we can see that this is just (cos θ, sin θ). Similarly, Tθ(e2)
has coordinates (cos(θ + π/2), sin(θ + π/2) = (− sin θ, cos θ). So we can
construct M(Tθ) by filling in the columns with Tθ(ei), and thus

M(Tθ) =

[
cos θ − sin θ
sin θ cos θ

]

The correspondence between linear transformations and matrices gives us a
convenient way to prove the properties of matrix multiplication.

Definition 2.9

Given two linear transformations ϕ : Fm → Fn and ψ : Fn → Fk, the
composition (ψ ◦ ϕ) : Fm → Fk is defined by (ψ ◦ ϕ)(x) = ψ(ϕ(x)) for
all x ∈ Fm.

Theorem 2.3

The composition of two linear transformations is a linear transformation.
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Proof. Let ϕ : Fm → Fn, ψ : Fn → Fk be given. Let x, y ∈ Fm and λ ∈ F
be arbitrary. Then (ψ ◦ ϕ)(λx + y) = ψ(ϕ(λx + y)) = ψ(λϕ(x) + ϕ(y)) =
ψ(λϕ(x)) + ψ(ϕ(y) = λψ(ϕ(x)) + ψ(ϕ(y)) = λ(ψ ◦ ϕ)(x) + (ψ ◦ ϕ)(y).

Using this definition, we can now prove the following:

Theorem 2.4

Given two linear transformations ϕ : Fm → Fn and ψ : Fn → Fk, we
have M(ψ ◦ ϕ) =M(ψ)M(ϕ).

Proof. let x ∈ Fm be arbitrary. Then (ψ ◦ ϕ)(x) = ψ(ϕ(x)) = ψ(M(ϕ)x) =
M(ψ)(M(ϕ)x) = (M(ψ)M(ϕ))x. ButM(ψ◦ϕ)x = (ψ◦ϕ)(x) = (M(ψ)M(ϕ))x.
Since there is a unique matrix M(ψ ◦ϕ), we must have M(ψ ◦ϕ) =M(ψ)M(ϕ).

Algebraically, we can also see that the ith column of M(ψ ◦ ϕ) is given by (ψ ◦
ϕ)(ei). This is ψ(ϕ(ei)) = ψ(M(ϕ)ei = ψ(ith column of M(ϕ) =M(ψ)(ith column of M(ϕ) =
ith column of M(ψ)M(ϕ) by definition. So we see that our definition of matrix
multiplication makes sense here.

Theorem 2.5

Matrix multiplication is associative, distributive, and commutes with
scalar multiplication.

Proof. By translating these into linear transformations, we automatically get as-
sociativity (function composition is always associative). Showing commutativity
with scalar multiplication is similarly easy. Left and distributivity is longer but
not difficult in terms of linear transformations.

Example 2.3

Let T : R2 → R2 be the linear transformation which first projects onto
the line x = y and then reflects across the y-axis. Then to find M(T ),
we can first find the matrix representing each of the individual transfor-
mations, and then multiply them. To find the projection matrix, we see
that both (1, 0) and (0, 1) should get projected to the point (1/2, 1/2).
So our projection matrix is

M(P ) =
1

2

[
1 1
1 1

]
The reflection matrix is given by

M(R) =

[
−1 0
0 1

]
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So we can find M(T ) by multiplying:

M(T ) =M(R◦P ) =M(R)M(P ) =

[
−1 0
0 1

](
1

2

[
1 1
1 1

])
=

1

2

[
−1 −1
1 1

]

Summary

Matrix - Linear Transformation Correspondence

For any matrix M ∈ Mn×m(F), the associated linear transformation
LM : Fm → Fn is defined by LM (x) :=Mx.

For any linear transformation L : Fm → Fn, the associated matrix
(assuming the standard basis for Fm) is M(L), where the ith column of
M(L) is given by L(ei).

Given two linear transformations S, T , we have M(S ◦T ) =M(S)M(T ),
M(S + T ) =M(S) +M(T ) (whenever these make sense).
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Chapter 3

Vector Spaces

3.1 Vector Spaces and Subspaces

It is of interest to generalize the results that we have achieved without specif-
ically invoking the specific choice of coordinates induced by Fn (or even any
choice of coordinates at all). We do this by abstracting Fn into a vector space:

Definition 3.1

A vector space over a field F is a set V with an operation + : V ×V → V
and an operation ∗ : F× V → V (∗ is denoted with juxtapostion), such
that the following conditions are satisfied:

• x+ y = y + x for any x, y ∈ V

• (x+ y) + z = x+ (y + z) for any x, y, z ∈ V

• (ab)v = a(bv) for any a, b ∈ F, v ∈ V

• There exists e ∈ V such that e+ v = v+ e = v for any v ∈ V (this

element is unique and denoted
−→
0 ).

• For any x ∈ V , there exists y ∈ V such that x + y =
−→
0 (this

element is unique and denoted −x).

• 1v = v1 = v for any v ∈ V .

• (a+ b)v = av + bv for any a, b ∈ F, v ∈ V

• a(u+ v) = au+ av for any a ∈ F, u, v ∈ V

A vector space over R is called a real vector space and a vector space
over C is called a complex vector space. We call elements of the set
V vectors and elements of the field F scalars.
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Example 3.1

Some examples of vector spaces:

• Rn is a real vector space.

• Less trivially, a line in R2 through the origin is a real vector space
(as well as any hyperplane through the origin in Rn).

• If we denote by R[x]≤n the set of univariate polynomials in R with
degree at most n, then this is another real vector space. This is
also the case if we consider polynomials of any degree (R[x]).

• If we consider the set of functions (or set of continuous functions, or
smooth functions) from [0, 1]→ R, then this is another real vector
space over.

• Any field F is a one dimensional vector space over itself.

• Lastly, C can be considered a real vector space of dimension 2, or
a complex vector space of dimension 1.

Some nonexamples:

• If we consider polynomials of degree exactly n, then it is not a real
vector space, since there is no additive identity, and in any case
the set is not closed under addition.

• The set of n-tuples in Rn, with a1 ≥ 0 is not a vector space, since
it’s not closed under scalar multiplication and it is missing some
additive identities.

• The x-axis unioned with the y-axis.

One way to construct vector spaces is to extract them from larger vector
spaces; in other words, to identify a subspace:

Definition 3.2

If (V,+V , ∗V ) is a vector space over F, then W is a subspace of V if
W ⊆ V and (W,+V , ∗V ) is a vector space.

Since we use the same operations, many of the axioms of vector spaces are
automatically inherited for the subspace from the parent space. Thus, we only
need to check a few conditions:
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Theorem 3.1

Given a vector space V , a subset W is a subspace of V if and only if−→
0 ∈W and W is closed under +V , ∗V .

Corollary

If W is a subspace of V and U is a subspace of W , then U is a subspace
of V .

Proof. Since we use the same operations in W and in V , closure in U from W
implies closure in U from V . Since 0W = 0V , 0W ∈ U implies 0V ∈ U .

Example 3.2

R is a subspace of R2. Any line passing through the origin in R2 is a
subspace of R2.

3.2 Span and Linear Independence

Definition 3.3

Let V be a vector space over F. Then given some vectors {v1, . . . , vm},
the span of these vectors is a subspace of V given by

span(v1, . . . , vm) = {a1v1 + a2v2 + . . .+ amvm|ai ∈ F}

Theorem 3.2

Given v1, . . . , vm ∈ V , then span(v1, . . . , vm) ⊆ V is a subspace of
V . Moreover, it is the smallest subspace of V containing each of the
v1, . . . , vm.

Example 3.3

The span of

10
0

 ,
01
0

 is the xy-plane. In general, the span of n vectors

in Rm, n ≤ m, is a k-dimensional hyperplane, where k ≤ n (≤ because
we may have collinear vectors).
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Example 3.4

Let V = C(R) (the set of continuous real functions). Then cos(2x) ∈
span(cos2(x), 1) since cos(2x) = 2 cos2(x)− 1.

Note that the span of a number of vectors is the set of linear combinations
of the vectors. Then in this way, a set of vectors is distinguished if the entire
space is a linear combination of the vectors.

Definition 3.4

A set of vectors {v1, . . . , vm} ⊆ V spans a vector space V if V =
span(v1, . . . , vm).

In particular, though we have not defined dimension, we can use this defini-
tion to distinguish between finite and infinite dimensional vector spaces.

Definition 3.5

A vector space V is called finite dimensional if there is a finite list
of vectors which spans it. It is called infinite dimensional if it is not
finite dimensional.

Here, we are motivated by the key question of asking how we can use less
data to encode a vector space. So given a subspace W ⊆ V , such that W =
span(v1, . . . , vm), then we want to find fewer vector that still span W .

Definition 3.6

Given an ordered list of vectors v1, . . . , vm, a vector, we say that vi is
redundant if vi ∈ span(v1, . . . , vi−1).

Example 3.5

Suppose we consider the ordered set

{
[
1
0

]
,

[
1
1

]
,

[
0
1

]
}

Then

[
1
0

]
isn’t redundant, since the first vector is never redundant (span

of empty set is the trivial vector space).

[
1
1

]
isn’t redundant, since it
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isn’t in span(

[
1
0

]
. However,

[
0
1

]
is redundant, since

[
1
1

]
−

[
1
0

]
=

[
0
1

]

This leads to the observation that if we remove a redundant vector, then
the span of the resulting set is the same as the original. Suppose we reduce our
spanning vectors by recursively removing all redundant vectors. Is it possible
that a vector can still be removed?

Theorem 3.3

If span(v1, . . . , vm) = span({v1, . . . , vm} \ {vi}), then {v1, . . . , vm} con-
tains a redundant vector.

Proof. Since vi ∈ span(v1, . . . , vm), vi ∈ span({v1, . . . , vm} \ {vi}), so we can
write

vi = a1v1 + . . .+ ai−1vi−1 + ai+1vi+1 + . . . amvm

Then we can rearrange this to write

a1v1 + . . .+ amvm = 0

where ai = −1. If am ̸= 0, then we could move vm to the right and show that
vm is redundant. In the event that am = 0, we simply choose am−1, assuming
that is nonzero. So we choose the largest k such that ak ̸= 0 (at least one such
k exists since ai ̸= 0). Then

vk = −a1
ak
v1 − . . .−

ak−1

a1
vk−1 (+0vk+1 + . . . 0vm)

So vk is redundant.

Definition 3.7

Given a vector space V over F, we say that a set of vectors {v1, . . . , vm} ∈
V are linearly independent if a1v1 + . . . + amvm = 0 implies that
a1 = . . . = am = 0 (with ai ∈ F ). We call them linearly dependent if
there is a linear relation a1v1 + . . .+ amvm = 0 with at least one ai ̸= 0.

Then we have the following:
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Theorem 3.4

The following statements are equivalent:

• The list {v1, . . . , vn} is linearly independent.

• There is no redundant vector in the list.

• Removing any vector makes the span strictly smaller.

Lemma: Linear Independence Lemma

Let {v1, . . . , vn} be linearly independent. Let v ∈ V be arbitrary. Then
v ∈ span(v1, . . . , vn) or {v1, . . . , vn, v} are linearly independent. More-
over, only one of those cases can hold.

Proof. Suppose v /∈ span(v1, . . . , vn). Note that there are no redundant vec-
tors in {v1, . . . , vn} by assumption. But since v is not in the span, the list
{v1, . . . , vn, v} also has no redundant vectors, and is thus linearly independent.
Thus at least one of the two cases is true.

To show that only one can hold, suppose v ∈ span(v1, . . . , vn). Then by defi-
nition, {v1, . . . , vn, v} contains the redundant vector v, and is thus not linearly
independent. Thus we cannot have both cases at once, so we have exactly
one.

3.3 Basis and Dimension

As we can see from the previous section, any vector in the span of a list of other
vectors can be written as a linear combination of the vectors in the list. Thus,
a spanning set allows us to write any vector in a vector space in terms of only
the vectors in a certain list. Moreover, our discussion of linear independence
shows that a linearly independent spanning set is something of an ”optimal” set
in terms of requiring a minimal number of vectors.

Definition 3.8

A basis of a vector space V is a (possibly finite) linearly independent
list of vectors {v1, . . .} ⊆ V that spans V .

Example 3.6

Here are some examples of bases of vector spaces.

1. e1, . . . , en is a basis of Rn.
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2.

[
1
1

]
,

[
1
0

]
is a basis of R2.

3. 1, x, x2, . . . , xn is a basis of R[x]≤n.

4. 1, x, x2, . . . is a basis of R[x].

5. Any two nonzero, noncollinear vectors in R2 is a basis of R2.

6. Any three nonzero, nonplanar vectors in R3 is a basis of R3.

However, we will see that this definition actually implies many more signif-
icant results, especially when considering finite dimensional vector spaces. For
instance, given a spanning set, every vector can be written as a linear combina-
tion of the spanning vectors. But by adding the condition of linear independence,
we find that this representation is unique. In fact, this correspondence is even
more powerful:

Theorem 3.5

v1, . . . , vn is a basis of V if and only if every vector v ∈ V can be written
uniquely as v = a1v1 + . . .+ anvn for ai ∈ F.

Proof. ( =⇒ ) Let v ∈ V be arbitrary. Then since v ∈ span(v1, . . . , vn), v =
a1v1 + . . . + anvn. To prove uniqueness, suppose that v = a′1v1 + . . . + a′nvn.
Then we have

(a1 − a′1)v1 + . . .+ (an − a′n)vn = (v − v) = 0

But by linearly independence, (ai − a′i) = 0 for every i, and thus ai = a′i. So
this representation is unique.

( ⇐= ) If every v ∈ V is a linear combination of v1, . . . , vn, then {v1, . . . , vn}
spans V . To show that {v1, . . . , vn} is linearly independent, suppose a1v1+ . . .+
anvn = 0. Then since 0 has a unique representation, and 0v1 + . . . + 0vn, we
must have ai = 0 for each i. So {v1, . . . , vn} is linearly independent and must
be a basis.

Thus, if we have chosen a basis, then this justifies the use of a n-tuple of
coordinates to represent each vector, at least in the finite dimensional case.

We now turn our attention to the study of how to construct bases. We
first consider spanning lists. Suppose we have a list of vectors v1, . . . , vn ∈ V
that spans V . If we remove all redundant vectors, then the new list is linearly
independent. Moreover, since removing redundant vectors doesn’t change the
span, this new list still spans V , and is thus a basis of V . So we have proved
the following theorem:
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Theorem 3.6

Every finite spanning set S of a vector space V can be reduced to a basis
B ⊆ S.

On the other hand, we can also take a linearly independent set and ex-
tend it to a basis. Suppose v1, . . . , vn is linearly independent. By the linear
independence lemma, if v /∈ span(v1, . . . , vn), then {v1, . . . , vn, v} is linearly in-
dependent. So we can choose some vector vn+1 /∈ span(v1, . . . , vn) and add it
to the list. The new list is still linearly independent, so we repeat until this
process stops (which happens only in the finite dimensional case). We can also
use results from the previous section to prove the following:

Theorem 3.7

Every finite dimensional vector space has a finite basis.

Proof. By definition, every finite dimensional vector space has a finite spanning
set. Then by the previous theorem, it can be reduced to a basis.

Corollary

Any linearly independent set of vectors in a finite dimensional vector
space V can be extended to a basis.

Proof. Suppose we we have {v1, . . . , vn} linearly independent. Then suppose
V = span(w1, . . . , wm). Then we simply take the set v1, . . . , vn, w1, . . . , wm

and remove redundant vectors, we have a linearly independent spanning set.
Moreover, we know none of the original vi were linearly independent, so they
will still be in the new set.

Example 3.7

Suppose we consider the plane {⟨x, y, z⟩|x + y + z = 0}. Then if we
choose any vector in the plane, and then any vector in the plane which
is not in the span of the first, we have a basis of the plane.

We can summarize the results of this discussion in the following:
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Theorem 3.8

The following statements are equivalent:

• {v1, . . . , vn} is a basis of V .

• Every v ∈ V can be written uniquely as a linear combination of
{v1, . . . , vn}.

• {v1, . . . , vn} is a maximal linearly independent subset of V (that
is, any set of which it is a strict subset is linearly dependent).

• {v1, . . . , vn} is minimal spanning set of V (that is, any strict subset
does not span V ).

Proof. 1. We have already proved 1 ⇐⇒ 2.

2. 1 =⇒ 3 because any possible addition is already in the span, and thus
by the linear independence lemma, the new list is linearly dependent.

3. 3 =⇒ 1 because if it were not a spanning set, then we could add a
new vector that is not in the span, and the new set would be linearly
independent by the linear independence lemma.

4. 1 =⇒ 4 because removing any vector from a linearly independent set
makes the span strictly smaller.

5. 4 =⇒ 1 If the set were not linearly independent, then there would be a
redundant vector, that we could remove to create a smaller spanning set.
Since this is assumed to not be the case, the set is linearly independent
and thus is a basis.

Moreover, we have shown that every finite dimensional vector space has a
finite basis. There are stronger results we can show as well. First, we begin a
discussion of linear independence of the columns of a matrix:

Consider a matrix A with column vectors v1, . . . , vn. Then for any x, Ax =
x1v1 + . . . + xnvn. Thus, the column vectors are linearly independent if and
only if the equation Ax = 0 has only the zero solution. In particular, if we row
reduce the matrix, the independence of the column vectors does not change.

Example 3.8

Consider the matrix

A =

1 0 1 1
0 1 1 0
1 0 1 2


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If we calculate the RREF we get

RREF(A) =

1 0 1 0
0 1 1 0
0 0 0 1


Clearly, the third column vector is redundant; moreover, it corresponds
to a free variable in the system. Thus we conclude that free variables
correspond with redundant column vectors.

We can now show that every basis of a finite dimensional vector space has
the same length (for infinite dimensional vector spaces, they are equicardinal).

Theorem 3.9

If {v1, . . . , vn} and {w1, . . . , wm} are bases of V , then n = m.

Proof. If n ̸= m, suppose without loss of generality that n > m. Then we can
set up a matrix A with column vectors v1, . . . , vn. Then since we have more
variables than equations, the homogeneous system Ax = 0 admits a nonzero
solution and must have a free variable. This shows that v1, . . . , vn is linearly
dependent, which contradicts the statement that it is a basis of V . So we must
have that n = m.

This allows us to define the dimension of a vector space:

Definition 3.9

Given a finite dimensional vector space V , the dimension of the vector
space is the unique length of every basis of V .

It immediately follows that for any list of vectors V, then if V is linearly
independent, |V| ≤ dimV , and if it is a spanning set, then |V| ≥ dimV . As a
result, we have

Theorem 3.10

If a vector space V has dimV = m, then any list of vectors {v1, . . . , vm}
the following statements are equivalent:

• {v1, . . . , vm} is a basis.

• {v1, . . . , vm} is linearly independent.

• {v1, . . . , vm} span V .
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Proof. 1 implies 2, 3 by definition. If the list is linearly independent, then any
nontrivial extension of the list will be longer than dimV and is thus not linearly
independent. So the list is a maximal linearly independent set and therefore a
basis. The proof for the other case is similar.

Suppose we consider subspaces of the form V ⊆ Rn defined as the set of
solutions to the equation Av = 0 for some matrix A (in other words, V = kerA).
We will now explore a general method for computing a basis of V .

Example 3.9

Let A be the matrix [
1 1 1 1
1 2 3 4

]
If we compute RREF(A) we find[

1 0 −1 −2
0 1 2 3

]
Since kerA = kerRREF(A), we simply observe that

1
−2
1
0

 ,


2
−3
0
1


In other words, we let each of the free variables equal 1 and the rest
equal 0, and find the values of the determined variables.

Lemma

Suppose U is a subspace of V . If V is finite dimensional, then U is finite
dimensional with dim(U) ≤ dim(V ).

Proof. We seek to construct a basis of U . Choose a vector in U to begin our
basis. Then choose a vector in U but not in the span of the previous vector.
Continue this process until a basis is constructed. This must be finite because we
cannot have a linearly independent list in V with length longer than dim(V ). So
we have a finite dimensional basis of U , and its length is dim(U) ≤ dim(V ).
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Summary

Span, Linear Independence, Basis, Dimension

• The span of a set of vectors is the set of linear combinations of those
vectors.

• A spanning set of a vector space V is a set of vectors v such that V ⊆
span(v).

• A set of vectors is linearly independent if the only linear relation between
them is the trivial one.

• A basis of a vector space V can be equivalently defined as:

– A set of vectors which spans V and is linearly independent.

– A minimal spanning set.

– A maximal linearly independent set.

• Any spanning set can be reduced to a basis.

• Any linearly independent set can be extended to a basis.

• Every spanning list is longer than or equal length to every linearly inde-
pendent list.

• Every basis of a finite dimensional vector space has equal length, denoted
dim(V ).
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Chapter 4

Linear Maps and Vector
Spaces

4.1 Linear Maps over Abstract Spaces

As refresher, we restate the definition of a linear mapping between vector spaces,
this time in terms of abstract vector spaces:

Definition 4.1

A linear map between two vector spaces V,W over a common field F
is a function T : V →W satisfying

• T (v + w) = T (v) + T (w) for any v, w ∈ V

• T (λv) = λT (v) for any v ∈ V , λ ∈ F.

Example 4.1

Here are more examples of linear maps, this time between vector spaces
other than Fn:

• The transformation F : R[x]→ R[x] defined by F (p) := x2p.

• The transformation D : R[x]→ R[x] defined by D(p) = p′.

• The transformation T : R[x]→ R defined by T (p) =
∫ 1

0
p.

We can also generalize a previous theorem:
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Lemma

Suppose v1, . . . , vn is a basis of V . Let w1, . . . , wn be an arbitrary list
of n vectors in W . Then there is a unique linear map T : V → W such
that T (vi) = wi for each 1 ≤ i ≤ n.

Proof. Suppose T (vi) = S(vi) = wi for T, S : V →W . Then for any vector v ∈
V , there is a unique representation of v in terms of the basis vectors v1, . . . , vn.
Then by linearity, T (v) = S(v) for each v ∈ V and thus T = S. So such a map
must be unique.

For any vector v ∈ V , there is a unique representation of v as a1v1 + . . . +
anvn. Define T (v) := a1w1 + . . . + anwn. Then this is a well-defined linear
transformation with T (vi) = wi by inspection.

Now that we have considered more abstract spaces, we can construct new
vector spaces from linear transformations over other spaces.

Definition 4.2

Let V,W be vector spaces over F. Then the set of linear transformations
from V to F is denoted L(V,W ). Moreover, L(V,W ) is a vector space
over F.

To show that L(V,W ) is a vector space, we define addition and multiplication
in the natural way:

(T + S)(v) = T (v) + S(v), (λT )(v) = λT (v)

Definition 4.3

Let T : V → W be a linear transformation. Then we define the kernel
of T as the preimage of 0W , in other words, kerT = {v ∈ V : T (v) = 0}.
We define the image of T as the set of points mapped to by T , in other
words, imT = {T (v) : v ∈ V }.

Clearly, kerT ⊆ V , and imT ⊆W . Moreover, kerT is a subspace of V , and
imT is a subspace of W .

If we consider linear transformations of the form T = Ax for some A, then we
can easily find the bases of imT and kerT by calculating RREFA. Then kerT
is the solutions to the equation Ax = 0, and imT is the span of all the columns.
So a basis of imT is the set of columns without the redundant vectors.
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4.2 Injective and Surjective Maps

Definition 4.4

Let f : X → Y be a function between two sets (not necessarily a linear
function, and not necessarily between vector spaces). Then we call f
injective if f(x) = f(y) implies x = y for x, y ∈ X. We call f surjective
if for all y ∈ Y , there is some x ∈ X with f(x) = y.

In other words, f is injective if it distinguishes points in the domain, and f
is surjective if it maps to the entire codomain.

Definition 4.5

We call f : X → Y bijective if it is both injective and surjective.

The importance of bijectivity is that the equation f(x) = y has exactly one
solution for every y ∈ Y . This allows us to construct an inverse function for f .

Proposition 4.1

A function f : X → Y is bijective if and only if there exists g : Y → X
such that g ◦ f = idX and f ◦ g = idY .

In particular, we will explore bijectivity of linear transformations between
vector spaces:

Proposition 4.2

Let T : V →W be a linear transformation between vector spaces. Then
we have

• T is surjective if and only if imT =W .

• T is injective if and only if kerT = {0}.

Proof. 1 is clear.

Proof of 2: ( =⇒ ) Choose v ∈ kerT . Then T (v) = 0, but T (0) = 0 for every
linear transformation. By injectivity, we conclude v = 0. So kerT = {0}.

( ⇐= ) Choose v1, v2 ∈ V with T (v1) = T (v2). Then by linearity, T (v1) −
T (v2) = T (v1− v2) = 0. Then v1− v2 ∈ kerT =⇒ v1− v2 = 0. So v1 = v2 and
thus T is injective.

This allows us to prove one of the most fundamental results about linear
mappings over finite dimensional vector spaces:
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Theorem 4.3: Rank-Nullity Theorem

Let T : V → W be a linear transformation between finite dimensional
vector spaces. Then dimkerT + dim imT = dimV (nullity + rank =
dimension of source space).

Proof. Consider kerT , a subspace of V . Then we know kerT is finite dimen-
sional, so we can select a basis B1 = {v1, . . . , vk} for kerT (with k = dimkerT ).
Then B1 is linearly independent in V , so we can extend it to a basis of V :
B1 → B1 ∪ B2. In particular, we have B2 = {w1 . . . , wl}. Then we claim that
T (B2) is a basis of imT .

To prove this, choose some u ∈ imT . Then u = T (x) for some x ∈ V . Then we
can write x = a1v1 + . . .+ akvk + b1w1 + . . .+ blwl. Then by linearity, we have

u = T (x) = a1T (v1) + . . .+ akT (vk)︸ ︷︷ ︸
equal to 0

+b1T (w1) + . . .+ blT (wl)

So every u ∈ imT can be written as a linear combination of the T (wi), and thus
T (B2) spans imT .

To prove linear independence, suppose b1T (w1) + . . . + blT (wl) = 0. Then by
linearity, T (b1w1 + . . . + blwl) = 0, so b1w1 + . . . + blwl ∈ kerT . Since B1 is a
basis of kerT , we can set this equal to a combination of the vi:

b1w1 + . . .+ blwl = a1v1 + . . .+ akbk

But if we move the aivi to the left side, we get that the combination is equal to
0, and since B1 ∪ B2 is a basis, every coefficient (in particular, the bi) must all
be 0. So T (B2) is linearly independent and thus a basis of imT .

Then we have k = |B1| = dimkerT , and l = |B2| = |T (B2)| = dim imT , so
dimkerT + dim imT = |B1|+ |B2|+ |B1 ∪ B2| = dimV .

Just as bijectivity of general functions implies an inverse function, so too
does bijectivity of linear transformations.

Definition 4.6

A linear transformation T : V →W is invertible if there exists a linear
transformation S :W → V such that S ◦ T = idV and T ◦ S = idW .

Definition 4.7

A matrix A ∈ Mn×n(F) is invertible if there exists a matrix B ∈
Mn×n(F) such that AB = BA = In.
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Then T : V → W is invertible if and only if T is bijective and the inverse
T−1 is also linear. However, we will see that linearity of a bijective T implies
linearity of T−1, so only the bijective condition is necessary to check.

Proposition 4.4

T : V →W is invertible if and only if T is bijective.

Proof. Suppose T is linear and bijective, with T−1 : W → V . Then choose
w1, w2 ∈ W and λ ∈ F. Then w1 = T (v1), w2 = T (v2) for some v1, v2 ∈ V .
Then we have T−1(λw1 + w2) = T−1(T (λv1 + v2)) = λv1 + v2.

Given this, we also have the following fact:

Theorem 4.5

Let T : V →W be a linear transformation, and let B = {v1, . . . , vm} be a
basis of V . Then T is invertible if and only if T (B) = {T (v1), . . . , T (vm)}
is a basis of W .

Proof. ( =⇒ ) By injectivity, dimkerT = 0, so the rank nullity theorem implies
that dimV = dim imT . By surjectivity, we then have dimV = dim imT =
dimW . So we have a list of m linearly independent vectors (proof is the same
as rank-nullity proof) in a m-dimensional vector space, so T (B) is a basis.

( ⇐= ) By a lemma in the previous section, we know that there is a unique
S : W → V such that S(T (vi)) = vi for each i. So (S ◦ T )(vi) = vi = idV (vi)
for each i, so by uniqueness (S ◦ T ) = idV and similarly (T ◦ S) = idW . So T is
invertible.

4.3 Isomorphisms

The significance of linear transformations over vector spaces is that linear trans-
formations respect linearity from the vector space; that is, they respect the
underlying vector space structure. However, for noninvertible linear transfor-
mations, we may lose some of this structure, since there is no way to invert the
transformation and return to the original structure. So we say that invertible
linear transformations preserve vector space structure, which is precisely the
notion captured by an isomorphism.

Definition 4.8

We say that a linear transformation T : V → W is an isomorphism if
T is invertible. We say that V,W are isomorphic (denoted V ∼= W ) if
there exists an isomorphism φ : V →W .
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It is immediate that isomorphic congruence is an equivalence relation, since
φ−1 and φ ◦ ϕ are both isomorphisms if φ, ϕ are isomorphisms.

Theorem 4.6

Given finite dimensional vector spaces V,W , V ∼= W if and only if
dimV = dimW . In particular, any finite dimensional vector space V
over F is isomorphic to FdimV .

Proof. ( =⇒ ) Let B be a basis of V . Then there is an isomorphism T : V →W
by assumption. Then by Theorem 4.5, T (B) is a basis of W , and by bijectivity,
dimV = |B| = |T (B)| = dimW .

( ⇐= ) Let {v1, . . . , vn} be a basis of V and {w1, . . . , wn} a basis of W . Then
there exists T such that T (vi) = wi, which shows that T is isomorphic by
Theorem 4.5.

This leaves us with a number of useful facts about isomorphisms:

Theorem 4.7

Given finite dimensional vector spaces V,W with dimV = dimW , and
a linear transformation T : V →W , the following are equivalent:

• T is an isomorphism (is invertible).

• T is injective.

• T is surjective.

Proof. Immediate by Rank-Nullity Theorem.

Note that for n×nmatricesA which are invertible, we must have RREF(A) =
In. Thus we can find A−1 through the following process:

Denote by [A|In] the matrix which has In appended to A. Then if we perform
row operations on the combined matrix until we reach [In|B], then we will have
B = A−1. Note that the remark about RREF(A) guarantees that we will never
have a result here if A is not invertible, since noninvertible matrices are not row
equivalent to In.

One application of this is to the space of solutions to differential equations.
In particular, given a homogeneous ordinary differential equation, the set of
solutions forms a vector space (specifically, a vector subspace of C∞(R)).

Example 4.2

Consider the differential equation f” + f = 0. Then cos t and sin t
are linearly independent solutions to the differential equation, and in
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fact every solution takes the form a cos t + b sin t. So we can say that
{cos t, sin t} forms a basis of the solution space, and it has dimension 2.

Theorem 4.8

Suppose we have a differential equation

akf
(k) + . . .+ a1f

′ + a0f = 0

with ai ∈ c∞(R). Then if we denote the set of solutions V , that is,

V = {f ∈ C∞(R)|akf (k) + . . .+ a1f
′ + a0f = 0}

Then dimV ≤ k. Moreover, on a sufficiently small interval [−δ, δ] ⊆ R,
then

V ∗ = {f ∈ C∞([−δ, δ])| . . .}

has dimV ∗ = k.

The following proof is incorrect in its current form (because the differentiable
functions do not form a complete metric space with the metric given). However,
it is retained out of interest.

Proof. Note that if we introduce initial conditions, then we can isolate unique
solutions to the differential equations. In particular, given some v ∈ Rk, there
exists a unique solution f ∈ C∞([−δ, δ]) such that

f(0)
f ′(0)
...

f (k−1)(0)

 = v

Then define a mapping ϕ : Rk → V such that ϕ(v) is that unique solution
to the differential equation. In particular, we see that this mapping is linear.
Clearly, it is surjective, since for any f ∈ V we can simply build v by evaluating
f(0), f ′(0), . . . , f (k−1)(0). We will prove that ϕ is also injective. Thus ϕ is an
isomorphism of vector spaces.

Now, by way of example, consider the differential equation f ′′ + f = 0. Then
from the differential equation, we have g′(t) = −f(t). Then we have{

g′(t) = −f(t)
f ′(t) = g(t)

⇐⇒
[
g(t)
f(t)

]′
=

[
0 −1
1 0

] [
g(t)
f(t)

]

If we define −→x (t) :=
[
g(t)
f(t)

]
, with −→x : [−δ, δ] → R, then we have reformulated

this to be −→x ′(t) = A−→x (t) (where in this case our A is constant but in general
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could depend on t).

Now suppose we fix some v0 ∈ R2 so that −→x (0) = v0. Then in the general case,
we are looking for the solutions to{−→x ′(t) = A(t)−→x (t)

−→x (0) = v0

Note that since A(t) is continuous, there is some δ > 0 such that∫ δ

−δ

||A(t)||opdt =
∫ δ

−δ

max−→x ∈Rn\{0}
|A(t)(

−→x )
−→x

|dt = c < 1

Let Sδ be the (complete) metric space of differentiable functions −→x : [−δ, δ] →
Rn, with the metric d(−→x ,−→y ) = maxt∈[δ,δ] |−→x (t) = −→y (t)|. Then define an
operator ϕ : Sδ → Sδ such that

ϕ(−→x )(t) = v0 +

∫ t

0

A(u)−→x (u)du

Then we can observe that the statement that −→x is a solution:

ϕ(−→x ) = −→x ⇐⇒

{
v0 = −→x (0)
A−→x (t) = −→x ′(t)

is equivalent to the statement that −→x is a fixed point for ϕ.

Claim: ϕ is a contraction.

Let −→x ,−→y ∈ Sδ be arbitrary. Then

|ϕ(−→x )(t)− ϕ(−→y )(t)| = |
∫ t

0

A(u)[−→x (u)−−→y (u)]du|

≤
∫ t

0

|A(u)[−→x (u)−−→y (u)]|du

≤
∫ t

0

||A(u)||op|−→x (u)−−→y (u)|du

≤
∫ t

0

||A(u)||opd(−→x ,−→y )du

= d(−→x ,−→y )
∫ t

0

||A(u)||opdu

= cd(−→x ,−→y )

This is true for any t ∈ [−δ, δ], so we have

d(ϕ(−→x ), ϕ(−→y )) = max
t∈[−δ,δ]

|ϕ(−→x )(t)− ϕ(−→y )(t)| ≤ cd(−→x ,−→y )
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So ϕ is contractive on Sδ. Then by the Banach fixed point theorem, since ϕ
is contractive on a complete metric space Sδ, so there is some unique u ∈ Sδ

such that ϕ(u) = u, which is therefore the unique solution to the differential
equation.

Thus we have demonstrated that given a differential equation, there is an iso-
morphism between Rk, with vectors representing initial conditions, and V , con-
taining solutions to the differential equation. Thus V has dimension k when δ
is sufficiently small.

4.4 Change of Basis

Recall that for any basis B = {v1, . . . , vn} ⊆ V , then for any v ∈ V , there exists
unique scalar ci ∈ F such that

v = c1v1 + . . .+ cnvn

Definition 4.9

Given a basis B = {v1, . . . , vn} ⊆ V , for any v ∈ V , define

[v]B =MB(v) =

c1...
cn

 ∈ Fn

such that c1v1 + . . . + cnvn, where this is well defined because B is a
basis. In other words, [v]B satisfies [v]B · ⟨v1, . . . , vn⟩ = v.

Example 4.3

Suppose we consider V = R[x]≤2. Define the standard basis B =
{1, x, x2} and another basis ε = {x2 + 1, x, 2}. Then for the polyno-
mial p(x) = 5 + 3x+ 7x2, we have

MB(p) = [p]B =

53
7

 , Mε(p) = [p]ε =

 7
3
−1


Definition 4.10

Given a vector space Fn, then define the standard basis ε =
{e1, . . . , en}.

Note that any v ∈ Fn then satisfies Mε(v) = v.
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Theorem 4.9

Given some vector space V over F with dimV = n, and a basis B of V ,
the map ϕ : V → Fn defined by ϕ(v) :=MB(v) is an isomorphism.

Proof. Linearity is clear, surjectivity follows from closure, and injectivity follows
from unique representation in terms of the basis.

Definition 4.11

Let T : V → W be a linear transformation. Let B = {v1, . . . , vm} be a
basis of V and let C = {w1, . . . , wn} be a basis of W . Then for any vi,
we can uniquely write T (vi) = a1,iw1 + . . . + an,iwn. Then define the
transformation matrix of T with respect to the bases B, C as

MB,C(T ) = [T ]CB =


a11 . . . a1m
a21 . . . a2m
...

...
an1 . . . anm

 =
[
MC(T (v1)) MC(T (v2)) . . . MC(T (vm))

]

Example 4.4

Define projL : R2 → R2 to be projection onto the line L = span(⟨1, 1⟩).
Let . Then under the standard basis, we have

M(projL) =
1

2

[
1 1
1 1

]

But under the basis B = {v1, v2} = {
[
1
1

]
,

[
−1
1

]
}, we have T (v1) =

[
1
1

]
and T (v2) =

[
0
0

]
. Then [T (v1)]B =

[
1
0

]
and [T (v2)]B =

[
0
0

]
. So we have

[projL]
B
B =

[
[T (v1)]B [T (v2)]B

]
=

[
1 0
0 0

]
Now consider [projL]

ε
B. Then the matrix is

[projL]
ε
B =

[
[T (v1)]ε [T (v2)]ε

]
=

[
1 0
1 0

]
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Remark

Notice from the above example that when constructing the matrix
MB,C(T ) = [T ]CB, we choose v1, . . . , vm based on the elements of B, then
apply T , then convert the resulting vectors into coordinates in C. In
other words, the source basis determines which vectors to use, and the
target basis determines the coordinates we use.

A key proposition of these matrices in terms of basis is as follows:

Proposition 4.10

Let T : V →W be linear, with B a basis of V and C a basis of W . Then
for any v ∈ V , we have

[T ]CB[v]B = [T (v)]C

If we additionally take S :W → U , with D a basis of D, then we have

[S ◦ T ]DB = [S]DC [T ]
C
B

Example 4.5

Consider the differentiation operator D;R[x]≤2 → R[x]≤2. Let p = 2 +
x+ 3x2. Then we can calculate D(p) by writing

M(Dp) =M(D)M(p)

The matrix M(D) is given by 0 1 0
0 0 2
0 0 0


And the matrix M(p) is given by 21

3


So we have

M(Dp) =

0 1 0
0 0 2
0 0 0

21
3

 =

16
0

 ⇐⇒ D(p) = 1 + 6x

Suppose we have two vector spaces V,W , with ordered bases B, C, respec-
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tively, and a linear transformation T : V → W . Then there is an isomorphism
from V → Fn induced by B, and an isomorphism from W → Fm induced by C.
Then these can be related by the following commutative diagram:

V W

Fm Fn

T

∼=B ∼=C

L([T ]BC)

Now note that just as we can encode a transformation as a matrix with respect
to a source and target basis, we can also encode the change of basis itself as a
matrix.

Definition 4.12

Given a vector space V and two bases B, C of V , define the change of
basis matrix from B to C as

MB→C :=MB,C(IdV ) = [IdV ]
C
B

Then we have the inverse matrix MC→B as being given by

[MB→C ]
−1 =MC→B =MC,B(IdV ) = [IdV ]

B
C

The we can observe that for any T : V → V , we immediately have

MB(T ) =MC→BMC(T )MB→C

which can be intuitively confirmed by ”tracking” the basis through the RHS
from right to left. More formally, we can use the previous results to confirm
this:

MC→BMC(T )MB→C = [Id]BC [T ]
C
C [Id]

C
B = [IdT ]BC [Id]

C
B = [IdT Id]BB = [T ]BB =MB(T )

Then since any choice of bases induces a different isomorphism to Fn, we arrive
at the following commutative diagram (where ϕB is the isomorphism given by
ϕB(v) =MB(v), and similarly for ϕC).

Fn Fn

V V ]

Fn Fn

MB(T )

ϕB

T

ϕC

ϕB

ϕC

MC(T )

4.5 Sums and Direct Sums of Subspaces

Given two subspaces of a vector space, we can consider the subspace formed by
sums of the vectors in the original spaces.
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Definition 4.13

Given U,W that are subspaces of V , we define the sum of U and W to
be the smallest subspace of V containing both U and W . That is,

U +W := {u+ w|u ∈ U,w ∈W}

In the general case, U and W may overlap, and we may then have multiple
representations for some vectors in the intersection. Thus it is of particular
interest to study spaces such that there is a unique representation of every
vector, so that we can translate nice properties about subspaces to their sum.

Definition 4.14

Let U,W be subspaces of V . Then if every vector x ∈ U +W can be
written uniquely in the form x = u + w for some u ∈ U , w ∈ W , then
we say that U +W is the direct sum of U and W , which we denote
U ⊕W . We can extend this definition to a direct sum of any number of
subspaces.

However, as we alluded to in the previous case, this is very closely linked
with the intersection between U +W . That is, U +W is a direct sum if and
only if U and W are completely ”opposed.”

Proposition 4.11

Let U,W be subspaces of V . Then W + U is a direct sum if and only if
W ∩ U = {0}.

Proof. If W ∩ U ̸= {0}, then choose some nonzero v ∈ W ∩ U . Then we have
0 = v − v but also 0 = 0 + 0, so 0 has two representations and thus we don’t
have a direct sum.

If W ∩ U = {0}, then choose some v ∈ U +W and write it as v = u + w and
v = u′+w′. Then we have (u−u′)+(w−w′) = 0. Then we have u−u′ = w′−w,
where the left side is in U and the right side in W . Since the only intersection
is 0, we must have u−u′ = w′−w = 0, so u = u′ and w = w′ and thus we have
a unique representation.

Proposition 4.12

Let V be a finite dimensional vector space and let U be a subspace of
V . Then there exists some subspace W of V such that U ⊕W = V .

Proof. Choose some basis u1, . . . , uk of U . We can extend this to a basis
u1, . . . , uk, w1, . . . , wl of V . Let W = span(w1, . . . , wl), so that w1, . . . , wl is
a basis of W . Then we clearly have U +W = V , so we only need to prove that
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the intersection is trivial.

Choose some v ∈ U ∩W . Then since v ∈ U , we have v = c1u1 + . . .+ ckuk. We
also have v ∈W , so v = d1w1 + . . .+ dlwl. Then we have

c1u1 + . . .+ ckuk − d1w1 − . . .− dlwl = v − v = 0

with u1, . . . , uk, w1, . . . , wl linearly independent, so all the ci, di are 0. Thus we
have v = 0 and the intersection is trivial. So we have exhibited a W such that
U ⊕W = V .

Then we also have another way to combine vector spaces:

Definition 4.15

Let V1, V2 be vector spaces over F. Then the product is defined as

V1 × V2 = {(v1, v2)|v1 ∈ V1, v2 ∈ V2}

Addition and scalar multiplication are defined coordinatewise. For a set
of vector spaces V1 . . . , Vn over F, then the product is

V1 × . . .× Vn = {(v1, . . . , vn|vi ∈ Vi}

It can be easily verified that V1 × V2 as defined here satisfy the axioms for
vector spaces, so we find that V1 × V2 is a vector space over F . In particular,
suppose we consider R2 × R3. Then we have the set of 2-tuples where the first
element is a 2-tuple and the second is a 3-tuple, so it is isomorphic to the set of
5-tuples R5. This leads to the general observation:

Proposition 4.13

Let V1, . . . , Vm be finite dimensional vector spaces over F. Then

dim(V1 × . . .× Vm) = dim(V1) + dim(V2) + . . .+ dim(Vm)

Theorem 4.14

Let V1, . . . , Vm be subspaces of V , with V1 ⊕ . . . ⊕ Vm = V . Then the
transformation ϕ : V1 × . . .× Vm → V1 + . . .+ Vm given by

ϕ(v1, . . . , vm) 7→ v1 + . . .+ vm

is an isomorphism.

Proof. This transformation is clearly linear. It is surjective, since we can re-
construct any element in V1 + . . . + Vm as a sum of elements of the individual
spaces, and thus construct the ntuple. Since the sum is direct, only one tuple
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will send to any given vector in the sum, so ϕ is also injective. So this is an
isomorphism.

Corollary

Let U,W be subspaces of V . Then we have

dim(U +W ) = dimU + dimW − dim(U ∩W )

Proof. Consider the transformation ϕ : U ×W → U +W given by (u,w) 7→
u + w. Then this transformation is clearly linear and surjective. It is not
injective, however, we only need to find the kernel, which is in fact equal to
{(u,w)|u+ w = 0, u ∈ U,w ∈W}.

The kernel, by definition, is {(u,w)|u + w = 0}. This implies that u = −w,
which implies that u,w ∈ U ∩ W . Then we can define a map from kerϕ to
U ∩W , which one can verify is also invertible. So kerϕ ∼= U ∩W , so by rank
nullity we have

dim(U ×W ) = dimU + dimW − dim(U ∩W )

Lemma

Suppose V = V1 ⊕ . . .⊕ Vr. Suppose Bi is a basis of Vi for each i. Then
the basis given by concatenating the Bi is a basis of V .

Proof. By associativity, we only need to prove this for the direct sum of two
spaces. Suppose V = U ⊕ W . Then suppose B1 = {u1, . . . , uk} and B2 =
{w1, . . . , wl}. We want to show that B = {u1, . . . , uk, w1, . . . , wl} is a basis of
V .

To show that it spans V , pick some v ∈ V . Then v = u + w for some u ∈ U ,
w ∈W . Suppose u = a1u1 + . . .+ akuk and w = b1w1 + . . .+ blwl. Then

v = a1u1 + . . .+ akuk + b1w1 + . . .+ blwl

so B spans V .

To show linear independence, suppose c1u1+ . . .+ ckuk +d1w1+ . . .+dlwl = 0.
0 can also be represented as 0u1 + . . .+ 0wl, and by unique representations we
have that all the ci, di are 0. So they are linearly independent.

4.6 Quotient Spaces

Suppose we have a finite dimensional vector space V , and we have a subspace
U . Then we can imagine translating U within V , by some offset vector v ∈ V .
While this is not a subspace in general, it does contain similar (affine) structure
to U .
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Definition 4.16

Given a finite dimensional vector space V , a subspace U of V , and a
vector v ∈ V , then define the translate of U by v to be

v + U := {v + u|u ∈ U}

One important note is that translating a given subspace by multiple vectors
may result in the same set. For instance, in R3, if we translate the xy-plane
by ⟨0, 0, 1⟩, or by ⟨1, 0, 1⟩, we will have the same set. However, if we call two
vectors v1, v2 equivalent when v1+U = v2+U , then we can see that this defines
an equivalence relation on V , and thus U partitions V . Moreover, this partition
has the structure of a vector space, which we call the quotient space:

Definition 4.17

Let V be finite dimensional and let U be a subspace. Define the quotient
space of V by U to be

V/U := {v + U |v ∈ V }

We define addition and scalar multiplication on V/U as follows:

(v1 + U) +q (v2 + U) = (v1 +V v2) + U, v1, v2 ∈ V
λ ∗q (v + U) = (λ ∗V v) + U, λ ∈ F, v ∈ V

We can verify that the operations defined here are well defined; that is, if
different representatives for the same translates are chosen, then the outputs
are the same. Moreover, the operations as chosen also satisfy all the axioms for
a vector space. Thus, the set we have constructed is indeed a vector space. It
should be noted that V/U is not actually a subspace of V . While it is isomorphic
to subspaces of V , that choice is not canonical.

Since each element of the quotient space corresponds to one of the partitions
of V , we can naturally define a map which indicates which partition a given
element is in.

Definition 4.18

Let V be a finite dimensional vector space and U a subspace. Then the
canonical map or quotient map from V to V/U is the map π : V →
V/U such that π(v) = v + U .

One can clearly see that this map is linear and surjective.
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Proposition 4.15

dimV/U = dimV − dimU .

Proof. Consider π : V → V/U . By rank nullity, dimV = dim imπ + dimkerπ.
π is surjective so dim imπ = dimV/U , and kerπ = U , so dimV = dimV/U +
dimU and thus dimV/U = dimV − dimU .

We can also prove this without using rank nullity, which will then allow us
to prove rank nullity separately.

Alternate Proof. We know that there exists a subspaceW such that V = U⊕W .
We know that dimW = dimV − dimU Then if iW : W → V is the inclusion
map, then π ◦ iW :W → V → V/U is an isomorphism, so dimV/U = dimW =
dimV − dimU .

Thus we have found an identification from subspaces to linear maps. Sim-
ilarly, we can also find an identification from linear maps to subspaces. This
identification is a fundamental result which demonstrates the relationship be-
tween vector space structure and structure preserving mappings (i.e. linear
maps).

Theorem 4.16: First Isomorphism Theorem

Let T : V →W be a linear map, and let U = kerT . Define T̃ : V/U →W
with T̃ (v + U) = T (v). Then T̃ is a well-defined, linear injective map.

In other words, by quotienting out the kernel elements, we remove all the
redundancy in T , which forces it to become injective.

The rank-nullity theorem is a consequence of the first isomorphism theorem.
If we have some T : V → imT , then this is obviously surjective, and the first
isomorphism theorem says that T̃ : V/ kerT → imT is also injective and thus
dim imT = dimV/ kerT = dimV − dimkerT .
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Chapter 5

Determinants

5.1 Invariants

Encoding a linear map as a matrix allows us to extract algebraic information
from the matrix elements. However, since matrix representations are basis de-
pendent, this is of little interest to us in general. Where this becomes important
is when we are able to identify quantities which are invariant under a change of
basis. That is, if I(·) is a function which retrieves some algebraic invariant of a
matrix, then we should have I(MB(T )) = I(MC(T )) for any bases B, C and any
transformation T .

5.2 Laplace Expansion

The determinant is an invariant which is defined only for square matrices (that
is, matrices which encode a endomorphic transformation T : V → V ). The
determinant has a natural geometric interpretation as the scaling factor of the
transformation. That is, if we consider the unit n-cube of Rn, then the n-volume
of that cube after applying T is |detT |. Moreover, the sign of detT tells us
whether the handedness of the space has changed; or whether space has been
”flipped.”

Here we will define a process called Laplace expansion which will allow us to
calculate the determinant of an n× n matrix. However, this calculation should
not be taken as the definition of the determinant, but simply as one method
for calculating it that will also allow for convenient proofs of properties of the
determinant.

For a 2× 2 matrix, we simply take for granted the following formula:

det

[
a b
c d

]
= ad− bc

For a 3 × 3 and larger matrix, we will define this recursively. We can expand
along any row or column of the matrix. In this discussion, we will assume that
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we are expanding along a row for convenience; the notation is analogous for a
column.

Let A be our original matrix. We denote by Aij the matrix obtained by deleting
the ith row and jth column of A. Then suppose we expand along the ith row.
We define the Laplace expansion along the ith row to be

n∑
j=1

(−1)i+jaij detAij

By recursively expanding along the first column, we can see that for any upper
triangular matrix, the determinant will simply be the product of the diagonal
entries:

deg


a1 ∗ ∗ ∗
0 a2 ∗ ∗

0 0
. . . ∗

0 0 0 an


Similarly, we can see that any matrix with a row or columns of all zeroes has
determinant zero.

Since the determinant is invariant under change of basis, we would expect many
natural properties to follow. For instance, we have

Proposition 5.1

det(AB) = det(A) det(B) for any n× n matrices A,B.

Corollary

A is invertible if and only if detA ̸= 0, and in that case det(A−1) =
1/ detA.

So far we have used the fact that det is invariant under a change of basis.
We will formalize this notion as follows:

Definition 5.1

Two matrices A and B are similar if there exists some invertible matrix
S such that A = S−1BS.

Then we have the following:

Proposition 5.2

If A,B are similar, then detA = detB.
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Proof. SinceA = S−1BS, we have detA = detS−1 detB detS = 1/ detS detB detS =
detB.

The entire point of our search for invariants was to be able to algebraically
extract information about linear transformations, not just matrices. Specifically,
we define the following:

Definition 5.2

Given T : V → V , where V is finite dimensional, define the determi-
nant of T to be detT := detMB(T ).

By the change of basis formula, any choice of basis here will lead to the same
answer.

5.3 Multilinearity

We now investigate the question of linearity for det. By a simple inspection, we
can see that det is certainly not linear, since it fails under scalar multiplication
for 2× 2 matrices:

det(2

[
a b
c d

]
= det

[
2a 2b
2c 2d

]
= 2a2d− 2b2c = 4det

[
a b
c d

]
We can perform a similar calculation with a 3× 3 and get the following:

det(2

a b c
d e f
g h i

) = 8 det

a b c
d e f
g h i


This leads us to guess that detλA = λn detA for any n × n matrix and any
scalar. In fact, this is true, and our search of a proof for this will lead us to a
deeper understanding of the nature of det.

Suppose our initial matrix has columns as follows:

A =

 | | |
a1 . . . an
| | |


Then if we multiply any singular row by a scalar, leaving the others unchanged,
we have:

A′ =

 | | |
ca1 . . . an
| | |


By expanding along the row which has been modified, we see that

detA′ = cdetA
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Similarly, if we add any other column vector b ∈ Fn, so that

A′′ =

 | | |
a1 + b . . . an
| | |


then we have

detA′′ = detA+ det

| | |
b . . . an
| | |


So although det is not linear, it is linear in each column when modified indi-
vidually. Since we could have expanded along either rows or columns, the same
would apply for modifying any column. We call this property multilinearity.

Using multilinearity, the property that we guessed earlier is easy to prove:

Proposition 5.3

For any square matrix A ∈Mn×n(F) and any scalar λ ∈ F,

detλA = λn detA

Proof. We can modify one column at a time by multiplying by λ. Each time,
we will scale the determinant by λ, and since we need to do this once for each
column, the total scaling factor is λn.

Scalar multiplication and addition of columns or rows are of particular note
because they are two of the elementary row operations that we use for row reduc-
tion and comparison of row-equivalent matrices. We should similarly investigate
the last operation, switching rows.

Proposition 5.4

If two columns or rows in a matrix are the same, then the determinant
is 0.

Proof. If we have a matrix of the form

A =

 | | | | |
. . . a . . . a . . .
| | | | |


Then the columns are not linearly independent, so the transformation LA :
Fn → Fn is not injective or surjective. Thus det(A) = 0.
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Corollary

If a matrix A can be obtained from B via switching two columns, then
detA = −detB. That is,

det

 | | | | |
. . . a . . . b . . .
| | | | |

 = −det

 | | | | |
. . . b . . . a . . .
| | | | |


Proof. Using multilinearity of the determinant and the proposition above, we
have

det

 | |a b
| |

 = det

 | |
a a
| |

+ det

 | |a b
| |


= det

 | |
a a+ b
| |


= det

 | |
−b −b
| |

+ det

 | |
a a+ b
| |


= det

As a result, we can now quantify the determinant of A after performing the
row reduction process.

Theorem 5.5

Let A be a matrix and suppose that in the Gaussian reduction pro-
cess, rows are switched s times and rows are divided by the quantities
k1, . . . , kr. Then if A is invertible,

det(A) = (−1)sk1 . . . kr

and if it is not invertible
det(A) = 0

5.4 Trace

We will now examine a second invariant of matrices which comes up in functional
analysis, called the trace.
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Definition 5.3

Let A be a square n × n matrix. Then the trace of A, tr(A) is defined
as the sum of the entries on the diagonal. That is,

tr(A) =

n∑
i=1

aii

Then by using variables for matrix entries, we can see that

Proposition 5.6

tr :Mn×n(F)→ F is linear.

We also have the following:

Proposition 5.7

For any square n× n matrices A,B, we have

tr(AB) = tr(BA)

Then we can show that the trace is indeed invariant under similarity:

Theorem 5.8

Suppose A and B are similar. Then tr(A) = tr(B).

Proof. Since B = S−1AS, we have

tr(B) = tr((S−1A)S) = tr(SS−1A) = tr(A)

This allows us to define the trace of a linear transformation just as we did
for a determinant:

Definition 5.4

Let V be finite dimensional and let T : V → V . Then the trace of V is
T is defined to be

tr(T ) := tr(MB(T ))

where B is any basis of V .

Then the preceding theorem shows that this is a well-defined value.

57



Chapter 6

Eigenvalues, Eigenvectors,
and Diagonalization

6.1 Eigenvalues and Eigenvectors

We now turn our attention to more important information that we can extract
about a transformation or a matrix. In particular, we will study eigenvalues and
eigenvectors, both of which are strongly connected with invariant subspaces.
Invariant subspaces are useful to us because, intuitively speaking, they don’t
interact under a transformation. Thus, we can analyze the action of a trans-
formation on a space by decomposing the space into invariant subspaces and
separately analyzing the transformation on each of the subspaces.

Definition 6.1

Let T : V → V be a transformation. Then we call a subspace U ⊆ V
T-invariant if T (U) ⊆ U . That is, we have T (u) ∈ U for every u ∈ U .

Note that this definition does not necessarily mean that a subspace remains
the same, but merely that it cannot be taken out of the subspace under T . That
is, T may make the subspace smaller than itself. For instance, we have:

Proposition 6.1

Let T : V → V . Then kerT and imT are both T -invariant subspaces of
V .

Proof. We have T (kerT ) = {0} by definition, and {0} ⊆ kerT , so kerT is T-
invariant.

T (imT ) ⊆ T (V ) = imT so imT is T-invariant.

58



We will be particularly interested in 1-dimensional invariant subspaces in this
class, since those are related to the concepts of eigenvalues and eigenvectors.

Definition 6.2

We say that a scalar λ ∈ F is an eigenvalue of T if there exists some
nonzero vector v ∈ V such that T (v) = λv.

Then v ∈ V is an eigenvector of T corresponding to an eigenvector λ
if v ̸= 0 and T (v) = λv.

Example 6.1

Suppose we have the matrix [
5 0
0 3

]
Then we have eigenvalues of 5 and 3. The eigenvectors corresponding to
5 are the x-axis (excluding the origin) and the eigenvectors corresponding
to 3 are the y-axis (excluding the origin).

Recall that since we are dealing with transformations of the form T : V → V
where V is finite dimensional, we can make use of the useful fact that surjectivity,
injectivity, and bijectivity are all equivalent.

Proposition 6.2

Let T : V → V , where V is finite dimensional. Then v ∈ V is an
eigenvector of eigenvalue λ if and only if v ∈ ker(T − λI), where I is the
identity transformation. Moreover, λ ∈ F is an eigenvalue of T if and
only if det(M(T )− λI) = 0.

Proof. For the first fact, note that

T (v) = λv ⇐⇒ (T − λI)(v) = 0 ⇐⇒ v ∈ ker(T − λI)

For the second, we know that λ is an eigenvalue of T if and only if there exists
some nonzero v ∈ V such that T (v) = λv. Now this happens if and only if

v ∈ ker(T − λI)

which means that T − λI is not injective and thus det(T − λI) = 0.
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Definition 6.3

Let T : V → V with V finite dimensional and let λ be an eigenvalue of
T . Then define the eigenspace of λ in F to be

Eλ,T := {0}∪{v ∈ V : v is an eigenvector of eigenvalue λ} = ker(T−λI)

We should note that eigenvalues may be repeated for different 1-dimensional
invariant subspaces. That is, there may be unrelated eigenvectors which have
the same eigenvalue, and thus a single eigenspace may encapsulate multiple
distinct invariant subspaces.

Definition 6.4

We define the geometric multiplicity of an eigenvalue λ to be
gemuλ = dimEλ,T .

Lastly, we will define the characteristic polynomial, which is another invari-
ant that captures lots of important information about a transformation.

Definition 6.5

Given a transformation T : V → V finite dimensional, we define the
characteristic polynomial of T to be PT = det(T −λI), with λ being
taken as the variable.

Remark

An observant reader will note that the determinant of T − λI is not a
value in the field, since the entries are of the form a−λ, where λ is taken
to be a variable. However, these entries are elements of K(λ), which is
still a field, and thus the same results hold.

Then the discussion above easily shows that the roots of the characteristic
polynomial are precisely the eigenvalues of the transformation.

We can similarly define these properties for a matrix. Specifically, given a
matrix A, we can perform the following operations to find its eigenvalues and
eigenvectors:

• Calculate the characteristic polynomial det(A − λI). The roots are pre-
cisely the eigenvalues of A.

• Calculate the eigenspace Eλ,A = ker(A− λI) for each eigenvalue λ. This
allows us to find eigenvectors for each eigenvalue.
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Theorem 6.3

Let T : V → V , with V finite dimensional. Let v1, . . . , vm be eigenvec-
tors for V , with corresponding eigenvalues λ1, . . . , λm. Suppose all the
eigenvalues are distinct. Then v1, . . . , vm are linearly independent.

In other words, eigenvectors corresponding to distinct eigenvalues are linearly
independent. This is a very intuitive result, since we can use the eigenvalues to
decompose into distinct eigenspaces. These eigenspaces don’t necessarily sum
to the entire space, but they are certainly disjoint (besides 0). This makes sense,
since the action of the transformation on each eigenspace is different, and thus
they must be different subspaces. For a formal proof, we can use induction.

Proof. We induct on m. For the case m = 1, we trivially have linearly indepen-
dent, since v1 is nonzero and thus linearly independent. Now assume that the
first k vectors are linearly independent. Then add the k+1th vector and create
a linear relation:

c1v1 + . . .+ ckvk + ck+1vk+1 = 0

Then we can apply T :

T (c1v1 + . . .+ ckvk + ck+1vk+1) = 0

and since they are eigenvectors:

c1λ1v1 + . . .+ ckλkvk + ck+1λk+1vk+1

Then we can multiply the first equation by λk+1 and subtract from the second
to get

0 = (c1λ1 − c1λk+1)v1 + . . .+ (ckλk − ckλk+1)vk

Since the first k vectors are linearly independent, we must have ci(λi−λk+1) = 0
for each i. Since the coefficients are distinct, we must have ci = 0, and thus the
original coefficients were all 0. So v1, . . . , vk+1 are linearly independent.

As a corollary, we are able to formalize the intuitive argument made in the
paragraph before this proof:

Corollary

Let T : V → V with V finite dimensional. Let λ1, . . . , λm be distinct
eigenvalues. Then the sum Eλ1 + . . . + Eλm is a direct sum; that is,
Eλ1 + . . .+ Eλm = Eλ1 ⊕ . . .⊕ Eλm .

Proof. Choose some v ∈ Eλ1
+ . . .+Eλm

. Suppose we have two representations

v1 + . . .+ vm = v = v′1 + . . .+ v′m
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such that vi, v
′
i ∈ Eλi . Then

0 = (v1 − v′1) + . . .+ (vm − v′m)

Since these are linearly independent by the theorem, the (vi − v′i) must all be
zero, so the representations are the same.

6.2 Diagonalization

We have observed that eigenvectors are of particular importance because they
define 1-dimensional subspaces of V which are invariant under a transformation.
We now turn our attention to the problem of diagonalization. This problem
asks us, given some matrix, to find a similar matrix which is diagonal. This is a
powerful tool because it allows us to represent the transformation very simply,
as scaling in certain directions and nothing more. Then we need to decide when
such a matrix can be found.

Definition 6.6

Given a transformation T : V → V with V finite dimensional, n vectors
v1, . . . , vn is an eigenbasis of V for T if it is a basis, and each vi is
eigenvector of T .

Definition 6.7

A transformation T : V → V is diagonalizable if there exists some
basis B ⊆ V such that MB(T ) is diagonal.

In particular, we have:

Proposition 6.4

T is diagonalizable if and only if there exists an eigenbasis of V for T .

Proof. ( =⇒ ) Suppose we have some basis B ⊆ V such thatMB(T ) is diagonal.
Then

MB(T (vi)) =MB(T )MB(vi) =


a1

a2
. . .

an




0
...
1
...
0

 =



0
...
ai
...
0

 = aivi

so each vi is an eigenvalue and thus we have an eigenbasis.

(⇐= ) Suppose we have an eigenbasis B. The central idea here is that when we

62



have an eigenbasis, each coordinate is acted on separately. Thus, if vi ∈ B has
eigenvalue λi, then T (vi) = λivi. If we have an eigenbasis, this holds for any i
and thus

MB(T ) =


λ1

λ2
. . .

λn


so T is diagonalizable.

From the proof we see that not only is a transformation diagonalizable if
and only if it has an eigenbasis, but also the diagonal matrix is precisely one
with eigenvalues along the diagonal.

Similarly, we can ask about the diagonalization of a matrix.

Definition 6.8

A diagonalization of an n× n matrix A is a presentation

D = S−1AS

where D is diagonal and S is invertible.

This question is equivalent to the diagonalization problem for transforma-
tions:

Proposition 6.5

A matrix A is diagonalizable if and only if there is some basis B ⊆ Fn

such that MB(LA) is diagonal.

Proof. ( =⇒ ) If A is diagonalizable, then we have D = S−1AS for some S
invertible and D diagonal. Then A = Me(LA). Choose B such that vi ∈ B is
the ith column of S. Since S is invertible, it follows that the vi are a basis.
Then S =MB→e and similarly S−1 =Me→B. By change of basis, then we have
D =Me→BMe(LA)MB→e =MB(LA).

( ⇐= ) If there exists a basis B such that MB(LA) is diagonal. We have A =
Me(LA), and we pick S to beMB→e. Then by change of basis this choice works,
since MB(LA) =Me→BMe(LA)MB→e.

In particular, the procedure for calculating the diagonalization of a matrix
is to calculate an eigenbasis B of Fn for TA. Then we have S = MB→e, which
is the matrix with column i equal to vi ∈ B. By change of basis, we will then
have D as the diagonal matrix with eigenvalues on the diagonal.

One particular advantage is that because a diagonalized matrix acts on each
vector in the eigenbasis independently, it is very easy to calculate repeated
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applications of the transformation. This manifests itself as cancellation of the
change of basis matrices S and S−1.

Proposition 6.6

If A is diagonalizable with A = SDS−1, then An = SDnS−1.

Now that we have seen some of the power of diagonalization, we turn our
attention to the question of which transformations and matrices can be diago-
nalized.

Proposition 6.7

If T has n distinct eigenvalues, then T is diagonalizable.

Proof. We can pick n eigenvectors, each corresponding to one of the eigenvalues.
These are linearly independent since they correspond to distinct eigenvalues.
Since we have n linearly independent vectors, it is a basis, so this is an eigenbasis
and thus T is diagonalizable.

A similar proposition holds for matrices. Not that the converse is certainly
not true, since we may have repeated eigenvalues (consider the identity).

Proposition 6.8

Suppose there exists an eigenbasis of V for T , and T has distinct eigen-
values λ1, . . . , λm. Then V = Eλ1 ⊕ . . .⊕ Eλm .

Proof. ( =⇒ ) Suppose v1, . . . , vn are an eigenbasis of V for T . Let ij be the
number of eigenvectors in the eigenbasis of eigenvalues λj . Then we clearly have∑

j ij = n. We must have ij ≤ dimEλj for each j, because the vi are linearly
independent. This gives us

n =
∑
j

ij ≤
∑
j

dimEλj

Since we know that the sum of the eigenspace is direct (though not necessarily
equal to n), we have

dim
⊕
j

Eλj
=

∑
j

dimEλj

Moreover
⊕
Eλj
⊆ V so

n = dimV ≥ dim
⊕
j

Eλj
=

∑
j

dimEλj
≥

∑
j

ij = n

So the only way this holds is if the inequality is in fact an equality, proving the
direct sum.
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(⇐= ) Suppose V = Eλ1 ⊕ . . .⊕Eλm . Since this is a direct sum, we can pick a
basis of each and concatenate them to find a basis of V . But each basis vector
is an eigenspace and thus an eigenvector, so we have an eigenbasis.

To summarize the results on diagonalizability so far, we have the following:

Theorem 6.9

Let V be a finite dimensional vector space over F. Let T : V → V be a
transformation. Let λ1, . . . , λm be the eigenvalues of T with repetition.
Then the following are equivalent:

1. There exists an eigenbasis of V for T .

2. MB(T ) is diagonal for some basis B.

3. V =
⊕
Eλi

.

4. dimV =
∑

dimEλi =
∑

gemu(λi).

6.3 Permutations (∗)
We will briefly take a detour here to discuss applications of permutations to
linear algebra. Doing so will allow us to derive Leibniz’s formula for the deter-
minant, which is phrased in terms of permutations.

Definition 6.9

A permutation of a set X is a bijection π : X → X. In particular, we
consider permutations of the set {1, . . . , n}, and we will represent such
a permutation as i1i2 . . . in, where ij = π(j).

For instance, the identity permutation on 3 elements is 123. Other permu-
tations would be 213, 231, and so on. In particular, we consider swaps, which
are permutations that switch exactly two elements.

Definition 6.10

A permutation is even if there exists a decomposition into an even num-
ber of swaps τ1, . . . , τ2k such that π = τ2k ◦ . . . ◦ τ1. A permutation is
odd if there exists an odd number of swaps. The sign of a permutation
is sgn(π), which is defined to be 1 if π is even and -1 if π is odd.
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Theorem 6.10: Leibniz’s Formula

Let A be a matrix. Then

det(A) =
∑

sgn(i1 . . . in)a1i1 . . . anin

where the sum is over all possible permutations of n elements.

Proof. Let us first consider the 2 × 2 case. The only permutations are 12 and
21, so

det

[
a b
c d

]
= ad− bc = sgn(12)a11a22 + sgn(21)a12a21

Though we will not provide a full proof here, the strategy is to apply induction
using Laplace expansion.

In other words, each term is constructed by picking one element from each
row, such that each column is only represented once.

6.4 Further Study of Eigenvalues and Eigenvec-
tors

We will now continue to study diagonalization and related problems.

Definition 6.11

Given an eigenvalue λ of T , the algebraic multiplicity of λ is almuλ,
which is the multiplicity of λ as a root of the characteristic polynomial
PT (x).

We should note that this is inequivalent to the geometric multiplicity in
general.

Example 6.2

Consider the matrix

[
1 2
0 1

]
. Since this is a skew matrix, the only

eigenspace is the x axis and thus gemu 1 = 1. But the characteristic
polynomial is PA(λ) = (1− λ)2, and thus almu 1 = 2.

As we just saw, the algebraic multiplicity may contain more multiplicities
than the dimension of the eigenspace. To prove that this only works in one
direction, we use the following lemma:
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Lemma

SupposeA ∈Mm×m, B ∈Mm×n, and C ∈Mn×n. Then the determinant
of the block matrix is

det

[
A B
0 C

]
= detA detC

We have the following:

Proposition 6.11

For any eigenvalue λ, gemuλ ≤ almuλ.

Proof. Suppose m = gemuλ = dimEλ. Choose some basis v1, . . . , vm of Eλ.
Then extend this to a basis of V , given by B = {v1, . . . , vm, . . . , vn}. So we have

MB(T ) =


λ ∗ . . .

λ ∗ . . .
. . . ∗ . . .

λ ∗ . . .
∗ . . .


As a block matrix, this is

MB(T ) =

[
λIm B
0 C

]
for some B,C. Then

PT (x) = det(Mβ(T )− xIn+m) = det

[
λIm − xIm B

0 C − xIn

]
= (λ− x)mPC(x)

Thus almuλ ≥ m.

We note here that in C, every characteristic polynomial will decompose into
linear factors, and thus every matrix (over either R or C) has exactly n complex
eigenvalues, counting algebraic multiplicity. So n =

∑
almuλ ≥

∑
gemuλ. For

diagonalizable real matrices,
∑

gemuλ = n, so we have gemuλ = almuλ for
each λ.

This means that over the complex numbers, every matrix has at least one (pos-
sibly complex) eigenvalue.

Proposition 6.12

For a finite dimensional vector space V over R, if dimV = n is odd, then
every linear transformation T : V → V has a real eigenvalue.
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Proof. If n is odd, then deg(pT (x)) = n is also odd. Thus, the limits at infinity
are different, with limx→∞ p = ±∞ and limx→−∞ p = ∓∞. By the intermediate
value theorem, there exists some real λ such that p(λ) = 0.

We can also prove this using facts about polynomials. Since V is a real
vector space, pT (x) has real coefficients. Thus for any nonreal root λ of pT ,
λ is also a root of pT . thus, the nonreal complex roots (and thus eigenvalues)
come in conjugate pairs. Thus we can decompose every real polynomial into
a product of degree 1 and degree 2 real polynomials. Since we have n odd, at
least one must be of degree 1, which gives a real polynomial.

Proposition 6.13

Let T : V → V with V finite dimensional. Then the coefficient of
the first, second, and last terms of the characteristic polynomial are
pT (x) = (−1)nxn + (−1)n−1 tr(T )xn−1 + . . .+ det(T ).

Proof. Let A be the matrix of T in some basis. To construct the characteristic
polynomial, we have

pT (x) = det


a11 − x a12 . . . a1n
a21 a22 − x . . . a2n
...

...
. . .

...
an1 an2 . . . ann − x


We will evaluate this using Leibniz’s rule. In particular, the term for the product
along the diagonal is

(a11 − x) . . . (ann − x)
where sgn of this permutation is 1. Certainly, this term has degree n. For any
other term, there is at least one off-diagonal entry. Moreover, since each row
or column can only be represented by one entry. Thus, the other terms must
have degree at most n − 2. Thus, the coefficients of xn and xn−1 in pT (x) are
precisely the coefficients in (a11 − x) . . . (ann − x).

Calculating, we can see that the xn coefficient is simply (−1)n. Moreover, if
we expand, the terms with coefficients xn−1 are of the form aii(−1)n−1xn−1.
Summing over all possible choices, the xn−1 coefficient is (−1)n−1(a11 + . . . +
ann)x

n−1 = (−1)n−1 tr(A)xn−1 = (−1)n−1 tr(T )xn−1.

Lastly, note that the last term is given by p(0) = det(A − 0I) = det(A) =
det(T ).

Corollary

For any 2× 2 matrix A, the characteristic polynomial is given by

pa(x) = x2 − tr(A)x+ det(A)
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The upshot of this is that we get some interesting facts about the trace and
determinant:

Corollary

For any real or complex matrix A with eigenvalues λ1, . . . , λn, repeated
by algebraic multiplicity, we have:

• tr(A) =
∑

i λi

• det(A) =
∏

i λi

Proof. We have pA(x) = (−1)n(x − λ1) . . . (x − λn). So the second term is
(−1)n(−1)(λ1+ . . .+λn)xn−1 = (−1)n−1(λ1+ . . .+λn)x

n−1. But we also know
the characteristic polynomial has second term given by (−1)n−1 tr(A)xn−1.

Similarly, the last term is (−1)n(−1)nλ1 . . . λn = λ1 . . . λn = det(A).

For diagonalizable matrices, this can be shown by diagonalizing A into a
diagonal matrix with the λi along the diagonal. However, not every matrix can
be diagonalized, even with n complex eigenvalues, since here we are counting
by algebraic multiplicity and not geometric multiplicity.

Example 6.3

Find all eigenvalues of the n× n matrix A, which has all entries as 1.

We have E0 = kerA. Since we only have one linearly independent
column, we find that rankA = n and thus kerA = n − 1. Thus
almu 0 ≥ gemu 0 = n− 1, so the trace is given by 0 + . . .+ 0︸ ︷︷ ︸

n−1

+λ, where

λ is unknown. But trA = n, so λ = n. Thus the only eigenvalues are 0,
with almu 0 = gemu0 = n− 1 and n, with almun = gemun = 1.

6.5 Minimal Polynomials

We will now consider other ways of working with polynomials to represent ma-
trices. First, we need to discuss how to evaluate polynomials using operators.
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Definition 6.12

Let p(x) ∈ F[x] be a polynomial given by

p(x) = c0 + c1x+ . . .+ cmx
m, ci ∈ F

Let A be an F-matrix or operator over an F-vector space. Then we define

p(A) = c0I + c1A+ . . .+ cmA
m

Example 6.4

Let p(x) = 2 + x2 and A =

[
1 0
0 2

]
. Then

p(A) =

[
2 0
0 2

]
+

[
1 0
0 4

]
=

[
3 0
0 6

]

Because matrices do not commute, we cannot say that in general p(A)q(B) =
q(B)p(A). However, we can say the following:

Lemma

Given p, q ∈ F[x] and A ∈Mn×n(F), we have p(A)q(A) = (pq)(A).

Proof. Suppose p(x) =
∑
cix

i and q(x) =
∑
dix

i. Then

(pq)(x) =
∑
k

∑
i+j=k

cidjx
k

so
(pq)(A) =

∑
k

∑
i+j=k

cidiA
k

On the other hand, we have

p(A)q(A) =
(∑

ciA
i
)(∑

djA
j
)
=

∑
k

∑
i+j=k

ciA
idjA

j =
∑
k

∑
i+j=k

cidjA
k

Proposition 6.14

Let A ∈ Mn×n(F). Then there exists some polynomial p(x) ∈ F[x] such
that p(A) = 0.

Proof. Consider the matrices In, A, . . . , A
n2

. These are all elements of the n2-
dimensional vector space Mn×n(F), so these are linearly dependent. Thus, we
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can create a linear relation

c0In + c1A+ . . .+ cn2An2

= 0

So we pick the polynomial

p(x) = c0 + c1x+ . . .+ cn2xn
2

= 0

and thus P (A) = 0.

Now let us make some remarks on the significance of this result. First,
suppose that the polynomial has degree 2, with A2 + 2A + In = 0. Then we
have

A2 = −2A− In
A3 = A2A = −2A2 −A = −2(−2A− In)−A = 4A+ 2In −A = 3A + 2In

A4 = A3A = 3A2 + 2A = −4A− 3In

...

An = cA+ dIn

and thus we see that for any n, An ∈ span(In, A). We also have that

−A(A+ 2In) = In

Thus A−1 = −A− 2In.

Definition 6.13

We call a polynomial p(x) monic if the highest nonzero coefficient of p
is 1.

We now introduce the minimal polynomial, an important polynomial in our
study of linear algebra.

Definition 6.14

Let A be a matrix. We call a monic polynomial µ(x) ∈ F[x] a minimal
polynomial of A if µ(A) = 0 and, for any other monic polynomial h
with h(A) = 0, we have degM ≤ deg h.

Moreover, this polynomial is unique. We can prove this as follows:

Proposition 6.15

Suppose h(A) = 0 and µ is a minimal polynomial for A. Then µ|h.
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Proof. Applying the division algorithm, h(x) = q(x)µ(x) + r(x) for some q, r.
Then we must have r = h − qµ, and in particular r(A) = h(A) − q(A)µ(A) =
0. So r also satisfies r(A) = 0. But if r ̸= 0, deg r < degµ, contradicting
minimality. So we must have r = 0 and thus h = qµ, so µ|h.

Corollary

The minimal polynomial of a matrix is unique.

Proof. Suppose µ, µ′ are both minimal polynomials. Then µ|µ′ and µ′|µ, but
they are both monic, so µ = µ′.

Note that we have already constructed a polynomial p such that p(A), and
we know that deg p ≤ n2. So the minimal polynomial has degree at most n2.
However, a much stronger bound exists due to Cayley and Hamilton:

Theorem 6.16: Cayley-Hamilton Theorem

Let A ∈ Mn×n(F) and let pA(x) be the characteristic polynomial of A.
Then pA(A) = 0.

Of course, this means that the minimal polynomial always divides the char-
acteristic polynomial (up to sign), so degµ ≤ n.

Example 6.5

Let A be an invertible 2×2 matrix. From a previous disucssion, we know
that pA(x) = x2 − tr(A)x+ det(A). Then by Cayley-Hamilton, we have
A2 − tr(A)A+ det(A)I = 0. This tells us that

A(A− tr(A)I) = det(A)I =⇒ A−1 =
1

det(A)
(A− tr(A)I)

Here, we easily recover the formula

A−1 =
1

ad− bc

[
d −b
−c a

]

6.6 Matrix Exponentiation (∗)
So far, we have been able to define basic arithmetic operations on matrices,
including addition, multiplication, subtraction, and raising to natural powers.
We will now define the function given by an exponent power.
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Recall that one definition of the function ex is given by its Taylor expansion,

ex :=

∞∑
i=1

xn

n!

We will define matrix exponentiation analogously:

Definition 6.15

Let A be an n×nmatrix over R or C. Then define thematrix exponent
as

eA = exp(A) :=

n∑
i=0

An

n!

Note that A0 := In for all A, and that this sum always converges.

Example 6.6

Suppose A =

[
a 0
0 b

]
. Then the exponent is given by

eA = I +

[
a 0
0 b

]
+

1

2

[
a2 0
0 b2

]
+ . . . =

[
ea 0
0 eb

]
and similar results hold for other diagonal matrices.

This observation gives us the following fact:

Proposition 6.17

Suppose λ is an eigenvalue of A. Then eλ is an eigenvalue of eA.

Similarly, the following allows us to calculate exponents more easily:

Proposition 6.18

Suppose A is diagonalizable. Then if the diagonalization is given by
A = SDS−1, then we have

eA = SeDS−1

Proof. We have

eA = I + (SDS−1) +
1

2
(SD2S−1 + . . . = S(I +D +

1

2
D2 + . . .)S−1 = SeDS−1
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Now consider a function of the form eAt for some matrix A. If we differentiate
this with respect to t, we have the following:

eAt = In +At+
1

2
A2t2 + . . .

d

dt
eAt = 0 +A+

1

2
(2A2t) +

1

3!
(3A3t2) + . . .

= A(In +
1

2
At+

1

3!
A2t2 + . . .)

= AeAt

analogously to the normal exponential function.

Let us now consider the following application. Suppose we have a differential
equation with x(t) : R → Rn and x′(t) = Ax(t) for some A ∈ Mn×n(R).
Consider a solution of the form x(t) = eAtx0, where x0 is some vector in Rn

representing the inital state. Then the by the previous calculation, we see that
x′(t) = AeAtx0, so functions of this form are indeed solutions. Moreover, this
form is in fact the only form, though we do not prove this here.

Example 6.7

Consider the oscillation differential equation, given by{
g′(t) = 0g(t)− f(t)
f ′(t) = g(t) + 0f(t)

Then this is equivalent to

x′(t) = Ax(t)

where we have

x(t) =
g(t)

f(t)
, A =

[
0 −1
1 0

]
We can diagonalize A to get[

0 −1
1 0

]
=

[
i −i
1 1

] [
i 0
0 −i

]
1

2

[
−i 1
i 1

]
and thus

At =

[
0 −t
t 0

]
=

[
i −i
1 1

] [
it 0
0 −it

]
1

2

[
−i 1
i 1

]
Then by the previous discussion, we know that solutions of the form
x(t) = eAtx0 will work. We can calculate

eAt = SeDtS−1 =

[
i −i
1 1

] [
eit 0
0 e−it

]
1

2

[
−i 1
i 1

]
=

[
cos(t) − sin(t)
sin(t) cos(t)

]
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So if we have the original condition x0 =

[
a
b

]
, then our solution is

x(t) = eAtx0 =

[
cos(t) − sin(t)
sin(t) cos(t)

] [
a
b

]
=

[
a cos(t)− b sin(t)
a sin(t) + b cos(t)

]

Recall from the previous section that for a 2×2 matrix, we have A2−tr(A)A+
det(A)I2 = 0. In other words, we have A2 ∈ span(I2, A), and by repeatedly
multiplying this equation by A, we see that in general, An ∈ span(I2, A). Since
eA is a linear combination of these, we have eA ∈ span(I2, A).

6.7 Complex and Real Vector Spaces (∗)
As we showed before, real transformations do not in general have to have eigen-
values, but complex transformations do. Since R ⊆ C, this means that every
real transformation, considered as a complex transformation, has a (possibly
complex) eigenvalue. So far we have glossed over the formalization of this ex-
tension, since we were working with matrices. Indeed, it is fairly easy to extend
a transformation from Rn to Cn. However, this becomes more difficult when
we are working with abstract vector spaces and would like to maintain this re-
lationship.

If we suppose that T : V → V for some V over R, then we would like to extend
this to a complex transformation TC : VC → VC, where VC is a complex vector
space which ”contains” V . One way to do this is is as follows:

Definition 6.16

Given a vector space V , define the complexification of V to be

VC := {(v, w)|v, w ∈ V } = {v + iw|v, w ∈ V }

where the addition operator is defined as in V × V , and scalar multipli-
cation is defined as follows:

λ = a+bi ∈ C =⇒ λ(v+ iw) = (a+bi)(v+ iw) = (av−bw)+ i(bv+aw)

Then if we consider the vector space Rn, its complexification is

Rn
C =


v1...
vn

+ i

w1

...
wn

 |vi, wi ∈ R

 = Cn

as we would expect.
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Chapter 7

Inner Product Spaces

7.1 Inner Products

Remember that one of the original motivations for our definition of a vector
space was to capture the notion of a space in which we have magnitude and
direction. These both exist informally in our abstract definition, with basis
vectors representing different directions, and scalar multiplication representing
changing the magnitude of a vector. However, none of these can be explicitly
quantified in general. We will do so using the inner product operator.

Definition 7.1

Let v, w ∈ Rn be two vectors. Then the dot product of v, w is given byv1...
vn

 ·
w1

...
wn

 := v1w1 + . . .+ vnwn =
[
v1 . . . vn

] w1

...
wn


One of the uses of the dot product is that it allows us to have a (relative)

notion of direction. Explicitly, if we have two vectors v, w ∈ R2, then we have

v · w = cos(θ)||v|| · ||w||

where θ represents the angle between v, w. For Rn with larger n, then we simply
define the angle to be

θ(v, w) := arccos

(
v · w
||v||||w||

)
Now consider the line L = span(u) for some u with ||u|| = 1. Then the trans-
formation which gives the projection onto L is given by

projL(v) = (v · u)u
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For arbitrary vectors w which may not have ||w|| = 1, we simply consider the
direction vector, so that

projL(v) =

(
v · w

||w||

)
w

||w||
=

v · w
||w||2

w =
v · w
w · w

w

Here are some further properties of the dot product:

• (u+ v) · w = u · w + v · w

• (λu) · w = λ(u · w)

• u · w = w · u

• v · v ≥ 0, and v · v = 0 if and only if v = 0.

We should note here that these properties only hold in R. In C, we can have
some properties which will become clear when we discuss general inner products.
In fields such as F2, these certainly do not work. For instance, we have[

1
1

]
·
[
1
1

]
= 2 = 0

so there are nonzero vectors with zero magnitude (under the dot product).

In order to define a similar product over an abstract vector space, we note that
the definition of a dot product does not necessarily work. Even for finite dimen-
sional spaces, which we know we can cast into coordinates with an appropriate
isomorphism, there is no canonical choice of isomorphism.

Instead, we will simply use our study of the dot product to capture the key
properties that a general product should have, and then work with any such
product.

Definition 7.2

Let V be a finite dimensional vector space over R. Then a function
⟨−,−⟩ : V × V → R is an inner product if it satisfies the following
axioms:

• ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩

• ⟨λu,w⟩ = λ⟨u,w⟩

• ⟨u, v⟩ = ⟨v, u⟩

• ⟨v, v⟩ > 0 for any v ∈ V with v ̸= 0.

As we have already discussed, the dot product over Rn satisfies these def-
initions, as does the dot product composed with any isomorphism from an n
dimensional real vector space to Rn. For some more interesting examples, con-
sider the following:
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Example 7.1

Let V = C([−1, 1],R) be the set of continuous, real valued functions on
the compact interval [−1, 1]. Then we define

⟨f, g⟩ :=
∫ 1

−1

f(t)g(t)dt

To check positive definiteness, we have the following:

⟨f, f⟩ =
∫ 1

−1

f2(t)dt ≥ 0

Moreover, ⟨f, f⟩ = 0 if and only if f is nonzero on a set of measure zero.
But f is continuous, so this only happens if f is identically zero. So we
have positive definiteness. The other axioms follow from properties of
the integral.

Example 7.2

Consider the vector space V = R[x]≤n of real valued polynomials of
degree at most n. We can first define an inner product using the isomor-
phism to Rn given by

a0 + a1x+ . . .+ anx
n 7→


a0
a1
...
an


such that

⟨a0 + a1x+ . . .+ anx
n, b0 + b1x+ . . .+ bnx

n⟩ = a0b0 + a1b1 + . . .+ anbn

We can also use the previous example, since polynomials are continuous:

⟨p, q⟩ =
∫ 1

−1

p(t)q(t)dt

Lastly, we can define a separate inner product, given by

⟨p, q⟩ =
∫ ∞

0

p(t)q(t)e−tdt

where the e−t factor forces this integral to converge for polynomials.

Then we see that the choice of inner product is not unique for a given vector
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space. Thus, we need to specify the inner product we use:

Definition 7.3

An inner product space over R is a vector space V over R together
with an inner product ⟨−,−⟩ : V × V → R, denoted (V, ⟨−,−⟩).

Then for an inner product space, we can finally define what is meant by
magnitude and direction:

Definition 7.4

Given an inner product space, the magnitude of a vector v is ||v|| :=√
⟨v, v⟩.

Definition 7.5

Given an inner product space, we say that two vectors u, v are orthog-
onal if ⟨u, v⟩ = 0, written u ⊥ v.

Example 7.3

If we consider the inner product given by

⟨f, g⟩ =
∫ 1

−1

fgdt

then the norm is ||f || =
√∫ 1

−1
f2dt which is the L2 norm on [−1, 1].

Proposition 7.1

If u ⊥ v, then ||u+ v||2 = ||u||2 + ||v||2.

Proof.

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨v, u⟩+ ⟨u, v⟩︸ ︷︷ ︸

0

+⟨v, v⟩

= ||u||2 + ||v||2
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Theorem 7.2: Cauchy-Schwarz Inequality

For two vectors u, v ∈ V in some real inner product space, we have

|⟨u, v⟩| ≤ ||u|| · ||v||

with equality if and only if u, v are linearly dependent.

Proof. If we consider some scalar α, we have

0 ≤ ⟨u− αv, u− αv⟩ = ⟨u, u⟩ − 2α⟨v, u⟩+ α2⟨v, v⟩

Specifically, we will make the choice

α =
⟨u, v⟩
⟨v, v⟩

Geometrically, the intuition for this choice is that we want to find the minimum
value of ||u− αv||, which occurs when u− αv ⊥ v. Then we have

0 ≤ ⟨u, u⟩ − 2
⟨u, v⟩
⟨v, v⟩

⟨u, v⟩+ ⟨u, v⟩
2

⟨v, v⟩2
⟨v, v⟩

⟨u, v⟩2

⟨v, v⟩
≤ ⟨u, u⟩

⟨u, v⟩ ≤ ⟨u, u⟩⟨v, v⟩

proving the inequality. Moreover, we see that equality holds if and only if u, v
are linearly dependent.

Example 7.4

Considering again the L2 norm on continuous functions from [−1, 1] →
R, the Cauchy-Schwarz inequality shows that(∫ 1

−1

fg

)2

≤
(∫ 1

−1

f

)(∫ 1

−1

g

)

Lastly, we have the triangle inequality, we have

||u+ v|| ≤ ||u||+ ||v||

Many of the results we have shown in this section are important results in various
analysis fields. In particular, we see that it is quite common to quantify abstract
spaces in such a way that lines up with our definition of an inner product space
here, which makes the study of inner products extremely useful.
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7.2 Orthogonality

We will now focus our study on the concept of orthogonality, which we defined
in the previous section. Recall that vectors are orthogonal, written u ⊥ v, when
⟨u, v⟩ = 0.

Theorem 7.3

Suppose v1, . . . , vm are nonzero mutually orthogonal vectors, such that
⟨vi, vj⟩ = 0 for any i ̸= j. Then v1, . . . , vm are linearly independent.

Proof. Consider an arbitrary linear relation

c1v1 + . . .+ cmvm = 0

Then choose some vi. If we take the inner product of the linear relation with
vi, we must have 0 by the properties of the inner product:

⟨c1v1 + . . .+ cmvm, vi⟩ = c1⟨v1, vi⟩+ . . .+ ci⟨vi, vi⟩+ . . .+ cm⟨vm, vi⟩ = 0

But the all the terms in the middle 0 by the orthogonality assumption, except
the ⟨vi, vi⟩ term:

ci⟨vi, vi⟩ = 0

Since vi ̸= 0, ⟨vi, vi⟩ ≠ 0 and thus ci = 0. This holds for all the ci so v1, . . . , vm
are linearly independent.

Definition 7.6

A list of vectors v1, . . . , vm ∈ V are orthonormal if they are mutually
orthogonal and ||vi|| = 0 for all i. In other words, ⟨vi, vj⟩ = δij .

Proposition 7.4

Given a set of orthonormal vectors u1, . . . , um, and any scalars, we have

||a1u1 + . . .+ amum|| = a21 + . . .+ a2m

Proof. Using orthogonality, we can apply the Pythagorean identity m times to
get

||a1u1 + . . .+ amum|| = ||a1u1||2 + . . .+ ||amum||2

which by the normality assumptions becomes

a21 + . . .+ a2m
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Definition 7.7

A basis B of an inner product space V is an orthonormal basis if it is
orthonormal.

For instance, the standard basis of Rn is an orthonormal basis, and we can
even consider an orthonormal basis to be an abstraction of the standard basis.
Observe that if we have some orthonormal basis B = {u1, . . . , un} and any
vector v, then we have

v = ⟨v, u1⟩u1 + . . .+ ⟨v, un⟩un

Moreover, we can consider the ⟨v, ui⟩ to be projections of v onto the correspond-
ing basis vectors. In particular, this means that if we put v into B− coordinates,
we have

MB(v) =

⟨v, u1⟩...
⟨v, un⟩


Definition 7.8

Let W be a subspace of an inner product space (V, ⟨−,−⟩). Suppose
B = {u1, . . . , um} is some basis of W . Then define the projection map
from V onto W by

projW : V →W

such that
projW (v) := proju1

(v) + . . .+ projum
(v)

where projui
(v) = ⟨v, ui⟩ui.

Example 7.5

We will informally discuss an application of inner product projections
to Fourier analysis. However, this discussion is mainly for the purpose
of intuition and interest, and should not be taken to be rigorous. Con-
sider the set of continuous functions from [−π, π] → R. Then the set
1, cosx, cos 2x, . . . , sinx, sin 2x, . . . is orthogonal. By way of example,

⟨sinx, cosx⟩ =
∫ π

−π

sinx cosxdx =
1

2

∫ π

−π

sin 2xdx = 0

Moreover, if we consider their norms,

⟨sinx, sinx⟩ = π
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except for the constant function, which has norm√∫ π

−π

1 =
√
2π

So to get normality, we divide the functions:

1√
2π
,
cosx√
π
,
sinx√
π
, . . .

Moreover, for periodic differentiable functions, Fourier analysis tells us
that we can decompose into trigonometric functions. Thus, we will hand-
wave away some of the details and declare that the above set is an or-
thonormal basis.

In this case, then, we can use this to find the Fourier series of a periodic
function. Remember that Fourier analysis tells us that every periodic
function can be uniquely decomoposed as

f(x) =
a0
2

+

∞∑
n=1

√
nan cosnx/

√
n+
√
nbn sinnx/

√
n

Then to calculate the ai, bi, we project f onto cosnx, sinnx:

√
nan = ⟨f, cosnx√

n
⟩ =⇒ an =

1

n
⟨f, cosnx⟩, bn =

1

n
⟨f, cosnx⟩

Thus, we have used the inner product to (informally) recover the formula
for the coefficients of a Fourier transform.

7.3 Gram-Schmidt

As we have seen, orthonormal bases of vector spaces are particularly powerful.
Thus, it is of interest to us to find a way to build an orthogonal basis out of any
basis of the space. This process is known as Gram-Schmidt orthonormalization.

The basic idea is that given some basis v1, . . . , vm ∈ V , we wish to recursively
build an orthogonal basis. We do this as follows:

• First, we take the normalized version of v1 to be our first vector: u1 =
v1

||v1|| .

• Then, we obtain the perpendicular component of v2 with respect to u1:
v2⊥ = v2 − ⟨v2, u1⟩u1.

• This new vector is orthogonal to u1, but it is not normalized, so we nor-
malize it: u2 = v2⊥

||v2⊥|| .
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• We continue with v3, obtain the perpendicular component with respect to
the plane spanned by u1, u2: v3⊥ = v3 − ⟨v3, u1⟩u1 − ⟨v3, u2⟩u2.

• We then normalize.

• Repeat until we have m basis vectors, with the recursive definition

un =
vn −

∑n−1
i=1 ⟨vn, ui⟩ui

||vn −
∑n−1

i=1 ⟨vn, ui⟩ui||

or more concisely, vn⊥ = vn −
∑n−1

i=1 ⟨vn, ui⟩ui, un = vn⊥
||vn⊥|| .

Example 7.6

Consider the basis of R[x]≤2 of 1, x, x2. Suppose we have the inner

product ⟨p, q⟩ =
∫ 1

0
pq. Then we normalize the first basis vector:

u1 =
1

||1||
= 1

We take the perpendicular component of x with respect to 1:

v2⊥ = x− ⟨x, 1⟩1 = x−
∫ 1

0

xdx = x− 1

2

To normalize, we calculate:

||x− 1

2
|| = ⟨x− 1

2
, x− 1

2
⟩ = ⟨x, x⟩ − ⟨1, x⟩+ 1

4
⟨1, 1⟩ = 1

3
− 1

2
+

1

4
=

1

12

So we have

u2 =
√
12(x− 1

2
)

Then, we take the perpendicular component of x2:

v3⊥ = x2 − ⟨x2,
√
12(x− 1

2
)⟩
√
12(x− 1

2
)− ⟨x2, 1⟩1

= x2 − 12⟨x2, x− 1

2
⟩(x− 1

2
− 1

3

= x2 − (x− 1

2
)− 1

3
= x2 − x+

1

6

So our orthonormal basis is

{1,
√
12(x− 1

2
,
x2 − x+ 1

6

||x2 − x+ 1
6 ||
}
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Theorem 7.5: QR Factorization

For any M ∈ Mn×m with linearly independent columns (nonsingular),
then M = QR where Q is an n ×m matrix with orthonormal columns,
and R is an m×m upper triangular matrix.

We will not discuss this process in depth. However, note that when M has
columns

M =

 | | |
v1 . . . vm
| | |


then we will obtain Q by performing Gram-Schmidt on v1, . . . , vm, then using
the resulting vectors u1, . . . , um to form the columns of Q:

Q =

 | | |
u1 . . . um
| | |


In this case, then our R should be

R =


||v1|| ⟨v2, u1⟩ . . . ⟨vm, u1⟩

||v2⊥|| . . . ⟨vm, u2⟩
. . .

...
||vm⊥||


As a few consequences of Gram-Schmidt, we have the following:

Corollary

For a finite dimensional inner product space (V, ⟨−,−⟩), there is an or-
thonormal basis.

Proof. Pick any basis of V and apply Gram-Schmidt.

Corollary

If u1, . . . , uk is an orthonormal list of vectors in V , then it can be ex-
tended to an orthonormal basis.

Proof. Extend to a basis, then apply Gram-Schmidt. Because the first k vectors
are already orthonormal to the previous vectors, Gram-Schmidt will not change
them.
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7.4 Transpositions and Projections in Rn

We will now discuss the transpose of a matrix. From a computational viewpoint,
the reader may have already learned that given anm×nmatrix A, the transpose
is given by an n×m matrix AT which is A “flipped” along the primary diagonal.

Proposition 7.6

We have the following properties:

• (AT )T = A

• (AB)T = BTAT

• For (square) invertible matrices, (A−1)T = (AT )−1

• For column vectors v, w ∈ Rn, v · w = vTw

Proposition 7.7

If V ⊆ Rn has an orthonormal basis u1, . . . , um, then the matrix of the
projection onto V is A = QQT , where

Q =

 | | |
u1 . . . um
| | |


Proof. We have projV (x) = (x · u1)u1 + . . .+ (x · um)um, so in matrix form we
have  | | |

u1 . . . um
| | |


x · u1...
x · um


which is also  | | |

u1 . . . um
| | |


− u1 −

...
− um −

x = QQTx

So A = QQT .

It is often useful to denote the orthogonal ”parts” of a vector space with
respect to some subspace. We call this the orthogonal complement :

Definition 7.9

Given a subspace U of V , we define the orthogonal complement of U
to be

U⊥ := {v ∈ V |⟨u, v⟩ = 0∀u ∈ U}
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Proposition 7.8

U ∩ U⊥ = {0}.

Proof. Pick some v ∈ U ∩ U⊥. By definition, we have ⟨v, v⟩ = 0 which implies
v = 0.

Proposition 7.9

If U is a subspace of V , then V = U ⊕ U⊥.

Proof. Pick some orthonormal basis u1, . . . , uk of U . Then extend this to an or-
thonormal basis u1, . . . , uk, w1 . . . , ul of V . Then we have V = span(u1, . . . , uk)⊕
span(w1, . . . , wl). The first term is clearly U . We want to show that the second
term is U⊥.

Let W = span(w1, . . . , wl). Choose some w ∈W . Then w = d1w1 + . . .+ dlwl.
Pick u ∈ U and write u = c1u1 + . . . + ckuk. By orthonormality, ⟨u,w⟩ so
W ⊆ U⊥.

In the other direction, choose v ∈ U⊥. Then v = ⟨v, u1⟩u1 + . . . + ⟨v, uk⟩uk +
⟨v, w1⟩w1 + . . .+ ⟨v, wl⟩wl. The ⟨v, ui⟩ terms are all 0, so v = ⟨v, w1⟩w1 + . . .+
⟨v, wl⟩wl ∈W . So U⊥ ⊆W .

Thus V = U ⊕W = U ⊕ U⊥.

Thus, we see that we can calculate the orthogonal complement by finding
an orthonormal basis of U , extending to an orthonormal basis of the full space,
and simply taking U⊥ to be the span of the added vectors.

Similarly, we see that for any vector V , we can write it as v = projU (v) +
projU⊥(v). This is generally true for subspaces forming a direct some of the
original space.

Proposition 7.10

The following are consequences of the above discussion:

• dimU⊥ = dimV − dimU

• (U⊥)⊥

• U⊥ = {0} ⇐⇒ U = V

Since we have dimU⊥ = dimV −dimU = dimV/U , there is an isomorphism
between U⊥ and V/U . But more significantly, there is a canonical such isomor-
phism. For instance, if we quotient R3 by the xy plane, then the orthogonal
complement is the z axis, and the quotient is the set of parallel planes. Then
we can identify a plane with its z coordinate, constructing the isomorphism.
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More generally, for each coset, we can pick a representative u such that u+U is
the coset, and u is in the orthogonal complement. This constructs the canonical
isomorphism.

To investigate the theoretical basis of transposition, consider the dot product
between two vectors u,w ∈ Rn. We can write this as

u · w = uTw

under the basic definition of transposition. If we consider this under some
transformation, we have

Av · w = (Av) · w = (Av)Tw = vTATw = v · (ATw)

Proposition 7.11

Let A ∈Mn×n(R). Then (im(A))⊥ = ker(AT ).

Proof. Let x ∈ (im(A))⊥. Suppose the columns of A are u1, . . . , un ∈ imA.
Then for any ui, we have x · ui = 0. Since this is true for all i, we get− u1 −

...
...

...
− un −

x = 0

But this matrix is precisely AT , and thus x ∈ ker(AT ). This holds in the other
direction as well, so ker(AT ) = (im(A))⊥.

However, we can prove the above proposition with a different method, using
the below observation:

Proposition 7.12

If V is an inner product space and there is some v ∈ V such that ⟨v, u⟩ =
0 for all u ∈ V . Then v = 0.

Proof. Take u = v. Then ⟨v, v⟩ = 0 but by the axioms of an inner product, we
must have v = 0.

This gives an alternate proof for the previous proposition:

Alternate Proof. Let x ∈ (im(A))⊥. Then for any v ∈ Rn, we have x · Av = 0
(since Av ∈ imA). Using the transposition trick, we have (ATx) · v = 0 for all
v, and by the above fact we then must have ATx = 0. So x ∈ kerAT .
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We will now discuss the covariance matrix, which is useful in many statistical
and probabilistic applications of linear algebra.

Definition 7.10

Let A ∈ Mn×n(Rn). Then the covariance matrix of A is defined as
ATA.

Suppose our matrix A is given by | | |
v1 . . . vn
| | |


Then consider the covariance matrix. By the process of matrix multiplication,
the (i, j)th entry of ATA is given by vi · vj . This becomes important because
if each of the vi is a single data point in Rn, wrapped into a matrix, then the
covariance matrix tells us how correlated two data points are.

Example 7.7

Suppose users are asked to rate two movies on a scale of -5 to 5, and their
responses are recorded. Suppose three users have the following scores:

u1 =

[
5
5

]
, u2 =

[
5
−5

]
, u3 =

[
−5
5

]
Note that here, u2 and u3 are linearly dependent, and thus maximally
correlated. Meanwhile, if we calculate the dot products between u1 and
u2, we see that they are uncorrelated. If a company wants to tailor
movie recommendations to different user, then it is more computationally
efficient to classify the users by taste – that is, to consider users with
correlated tastes to be the same.

Proposition 7.13

Suppose the columns of A, v1, . . . , vm are linearly independent. Then
ATA is invertible.

Proof. The kernel of ATA is given by {v ∈ Rn : ATAv = 0} = {v : Av ∈
ker(AT )}. Then we have Av ∈ imA. We also have Av ∈ ker(AT ) = (imA)⊥.
But (imA)⊥ ∩ imA = {0}, so we have Av = 0. But A has linearly independent
columns, and thus v = 0. So ker(ATA) = {0} and we have invertibility.

We now consider the application of inner products and transposes to least
squares regression. Suppose some equation Ax = b has no solutions. However,
we would like to find the ”closest solution.” That is, we want to find the vector
x∗ ∈ Rn such that ||Ax∗ − b|| is minimized.
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Note that the image of A is, in general, a hyperplanar subspace of Rn. Moreover,
Ax = b has solutions precisely when b ∈ imA, or when b lies in this hyperplane.
On the other hand, if b is not in the hyperplane, then the vector v ∈ imA
which minimizes the value ||b − v|| is the projection of b into the hyperplane.
Then to find the ”closest solution,” we simply need to find some x∗ such that
Ax∗ = projV b, where V = imA.

In order to actually solve this equation, we could solve this normally, but we
can also use transposes to find this as well. Note that we have b− projV b ⊥ V ,
so Ax∗− b ∈ V ⊥ = kerAT . Thus we have AT (Ax∗− b) = 0. So our least square
solution is a solution to

ATAx∗ = AT b

When A has linearly independent columns, we have that ATA is invertible, so
we can find a solution by calculating

x∗ = (ATA)−1AT b

Now in the case of least squares regression, we are given some dataset of points,
and we want to draw some curve. If this is linear, then the curve is y = ax+ b;
if it is quadratic, the curve is y = ax2 + bx+ c, and so on. This also generalizes
to higher dimensions. The key is that if b is the prediction, then we need to find
the parameters x such that Ax = b where A is our data matrix.

Example 7.8

Suppose we have some dataset with linear relations betwen features and
price, and we have the system 50x+300y = 600

200x = 450
100x 100y = 250

Then we want to find the parameters x, y such that the linear model150 300
200 0
100 100

[
x
y

]
is closest to 600450

250


This can be done by calculating

(ATA)−1AT b

which gives parameters [
2.18
0.85

]
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In the quadratic case, we would record the values of 1, x, x2; in the
bivariate quadratic case we would record 1, x, y, x2, y2, xy, and so on.

Then in a general inner product space, we can similarly say that the best
approximation for a vector v ∈ V by a vector in the subspace w ∈W is given by
w = projW v. To calculate this, we just pick some orthonormal basis u1, . . . , um
of W , and we calculate the projections onto each basis vector:

projW v = ⟨v, u1⟩u1 + . . .+ ⟨v, um⟩um

7.5 Isometries and Orthogonal Matrices

Definition 7.11

Let Q be an nonsquare n × m real matrix, with n > m. We call Q
semiorthogonal when the columns of Q are orthonormal. When n,m,
we call Q semiorthogonal when the rows are orthonormal instead. How-
ever, in the following we will assume n > m unless stated otherwise.

Note that since each columnn vector is in Rn, we must have n > m in order
to have orthonormality.

Proposition 7.14

Q is semiorthogonal if and only if QTQ = Im.

Proof. If the columns of Q are u1, . . . , um, then the covariance matrix QTQ
is made of the dot products between ui. But they are orthonormal, so the
covariance matrix is the identity, and thus QTQ = Im. This argument works in
both ways.

Definition 7.12

Let Q be a real square matrix. We call Q orthogonal if its columns are
orthonormal (equivalently, if its columns form an orthonormal basis of
Rn).

Proposition 7.15

If A,B are n× n orthogonal matrices, then we have the following:

1. detA = ±1.

2. AB is orthogonal.
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Proof. 1. We have detA = detAT (by Laplace expansion), so 1 = det I =
detATA = detAT detA = (detA)2. So detA = ±1.

2. We have (AB)TAB = BTATAB = BT InB = In.

Proposition 7.16

A is orthogonal if and only if ATA = AAT = In, and thus if and only if
A−1 = AT .

Orthogonal matrices are of particular importance to computing because they
allow for robust methods of solving matrix equations of the form

Ax = b

In particular, we would like a stable method, such that small changes in the
data do not affect our solution much. One method of doing this is to factor A
using QR factorization, giving

QRx = b

for some Q semiorthogonal and R upper triangular. Then we use the properties
of semiorthogonality to get

QTQRx = Rx = QT b

(Note that this is not an equivalent statement but an implication, so we are
now looking for the least square solution rather than the true solution). If we
suppose R takes the form c11 . . . c1n

. . .
...
cnn


then this gives the system

...

cn−1,n−1xn−1 + cn−1,nxn = dn−1

cn,nxn = dn

where d1, . . . , dn are the entries of QT b. Then we can solve this using only n
divisions, which allow for a much more stable procedure.

Definition 7.13

Let (V, ⟨−,−⟩V ) and (W, ⟨−,−⟩W ) be two inner product spaces. Let
T : V →W be a linear transformation. Then we call T an isometry or
inner product preserving if, for any u, v ∈ V we have ⟨u, v⟩ = ⟨Tu, Tv⟩.
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In particular, an isometry preserves the norm of any vector. In the opposite
direction, we want an isometry to preserve lengths and angles between vectors.
But the polarization identity says that

⟨v, w⟩ = 1

2
(||v + w||2 − ||v||2 − ||w||2)

which shows that it is acutally sufficient to only check norm. Thus, T is an
isometry if and only if it preserves norm.

Proposition 7.17

If T is an isometry, then T is injective.

Proof. If v ∈ kerT then Tv = 0 and thus ||0|| = ||Tv|| = ||v|| so v = 0.

Proposition 7.18

Let v1, . . . , vm ∈ V be linearly independent and let T : V → W be an
isometry. Then T (v1), . . . , T (vm) are linearly independent.

Moreover, they preserve orthogonality:

Proposition 7.19

Let v1, . . . , vm ∈ V be orthonormal. Let T : V → W be an isometry.
Then T (v1), . . . , T (vi) are orthonormal.

Lemma

If A,B are square real n× n matrices and

xTAy = xTBy

for all x, y ∈ Rn, then A = B.

Proof. Let x = ei, y = ej for some i, j. Then eTi Aej is the i, jth entry of A. But
by assumption it is also the i, jth entry of B, so A = B.

Proposition 7.20

Let T : Rn → Rm be a transformation. Then T is an isometry if and
only if M(T ) is semiorthogonal.

Proof. Let T be a isometry and let A =M(T ). Let x, y ∈ Rn. Then we have

xT y = x · y = Ax ·Ay = (Ax)TAy = xTATAy
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We also have
x · y = xT Iy

Then we have x · y = Ax · Ay =⇒ I = ATA by the lemma, and the reverse
direction follows as well.

Corollary

T : Rn → Rn is an invertible isometry if and only if M(T ) is orthogonal.

7.6 The Spectral Theorem

In this section, we will introduce the spectral theorem for linear algebra. In
fact, there are many forms of the spectral theorem in various fields, but we will
work with the theorem in this form:

Theorem: Spectral Theorem

Let A be an n×n real matrix. If A is symmetric, then it is diagonalizable.
Moreover, A is symmetric if and only if it is orthogonally diagonalizable.

Definition 7.14

Let (V, ⟨−,−⟩) be an inner product space and T : V → V be linear.
We say v1, . . . , vn is an orthonormal eigenbasis of V for T if it is an
eigenbasis and an orthonormal basis. If such a basis exists, we say that
T is orthogonally diagonalizable

Definition 7.15

A matrix A ∈Mn×n(R) is orthogonally diagonalizable if there exists
an orthogonal n×n matrix S such that A = SDST where D is diagonal.

Note that for orthogonal matrices, ST = S−1, so what this definition es-
sentially says is that A is diagonalizable, and the change of basis matrix is
orthogonal.

Proposition 7.21

T : Rn → Rn is orthogonally diagonalizable if and only if M(T ) is
orthogonally diagonalizable.

Proof. (⇐= ) Let the orthonormal eigenbasis be the columns of S.

( =⇒ ) Let A =M(T ). Let v1, . . . , vn be an orthonormal eigenbasis of Rn for T
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with associated eigenvalues λ1, . . . , λn. Then we set our diagonalization to be

S =

 | | |
v1 . . . vn
| | |

 , D =

λ1 0
. . .

λn


But by the assumption that the vi are orthonormal, we see that S is orthogonal
and thus S−1 = ST , so we have

A = SDS−1 = SDST

with S orthogonal. So A =M(T ) is orthogonally diagonalizable.

Example 7.9

Consider the matrix

[
0 1
1 0

]
. This is reflection over the line y = x, so the

eigenspaces are the lines y = x (λ = 1) and the line y = −x (λ = −1).
Then we pick a unit vector in each line and we have an orthonormal
eigenbasis.

We now consider an algorithm which will allow us to orthogonally diagonalize
a matrix. Recall that in the general diagonalization case, we use the following
process:

1. Find the eigenvalues using the characteristic polynomial.

2. Find a basis for each eigenspace.

3. Concatenate the bases to get an eigenbasis v1, . . . , vn.

4. Let S be the matrix with columns v1, . . . , vn. Let D be the corresponding
eigenbases.

In the case of orthogonal diagonalization, we need to make sure that our basis
is orthogonal. To do so, we modify step two by applying Gram-Schmidt to find
an orthonormal basis of of each eigenspace. However, we need to guarantee that
the concatenation process preserves orthogonality.

Recall that for diagonalizability, an equivalent condition was that the eigenbases
direct summed to the entire space. For orthogonalizability, we have the following
instead:

Proposition 7.22

T is orthogonally diagonalizable if and only if V = Eλ1 ⊕ . . .⊕Eλk
and

Eλi
⊥ Eλj

for any λi ̸= λj .
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Thus, the additional knowledge that the eigenspaces are mutually orthogo-
nal guarantees that the concatenated orthonormal eigenbases forms an overall
orthonormal eigenbasis.

We will now progress to proving the spectral theorem.

Theorem: Spectral Theorem

Let A be an n×n real matrix. If A is symmetric, then it is diagonalizable.
Moreover, A is symmetric if and only if it is orthogonally diagonalizable.

Proof. ( ⇐= ) Assume A is orthogonally diagonalizable with A = SDST . Ap-
plying the transpose gives us AT = (SDST )T = (ST )TDTST = SDST (since
D is diagonalizable). So AT = A and A is symmetric.

In the forward direction, we make use of the following lemma.

Lemma

Let A be symmetric and real. Let λ1 ̸= λ2 be distinct real eigenvalues.
Then Eλ1

⊥ Eλ2
.

Proof. Let v1, v2 be eigenvectors with respective eigenvalues λ1, λ2. We want to
show that v1 ⊥ v2. Consider the product

λ1v1 · v2 = (Av1) · v2 = v1 ·AT v2 = v1 ·Av2 = λ2v1 · v2

So λ1(v1 · v2) = λ2(v1 · v2), but λ1 ̸= λ2, so v1 · v2 = 0.

Using this lemma, the proof reduces to the problem of demonstrating that
A is real diagonalizable. To do so, we will need to investigate the complex inner
product.

Definition 7.16

Given a complex number z = a+ bi, the complex magnitude of z is

|z| :=
√
a2 + b2 =

√
zz ∈ R

Definition 7.17

Given two vectors z, w ∈ Cn, then the complex dot product is given byz1...
zn

 ·
w1

...
wn

 := z1w1 + . . .+ znwn
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In this case, the norm of z is given by ||z|| =
√
z · z =

√
z1z1 + . . .+ znzn =√

|z1|2 + . . .+ |zn|2. Then just as we generalized the real dot product to real
inner products, we can generalize the complex dot product to complex inner
products.

Definition 7.18

Let V be a complex vector space. A complex inner product on V is
a function ⟨−,−⟩ : V × V → C such that

1. ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩ (additivity in first argument)

2. ⟨λu,w⟩ = λ⟨u,w⟩ (homogeneity in the first argument)

3. ⟨u,w⟩ = ⟨w, u⟩ (conjugate symmetry)

4. ⟨v, v⟩ > 0 for all v ̸= 0 ∈ V .

Note that the comparison in axiom 4 makes sense because ⟨v, v⟩ = ⟨v, v⟩,
so ⟨v, v⟩ ∈ R. Note also that we still have additivity in the second argument.
However, we do not have homogeneity in the second argument, but instead
conjugate homogeneity:

Proposition 7.23

If u,w ∈ V for some complex inner product space V , then for any λ ∈ C,

⟨u, λw⟩ = λ⟨u,w⟩

Proof.

⟨u, λw⟩ = ⟨λw, u⟩

= λ⟨w, u⟩

= λ⟨w, u⟩
= λ⟨u,w⟩

Under this definition, the dot product is then given by z · w = zTw.

Definition 7.19

Let A be a complex square matrix. Then the Hermitian conjugate of
A is A∗, where A∗ = AT is the conjugate transpose of A.

Proposition 7.24

If v, w ∈ Cn and A is a complex square matrix, then (Av) ·w = v ·(A∗w).
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Proof.

(Av) · w = (Av)Tw

= vTATw

= vTA∗w

= v · (A∗w)

Proposition 7.25

Let A be a real symmetric matrix. Then every complex eigenvalue of A
is real.

Proof. Let λ be a complex eigenvalue. Let v ∈ Cn be an eigenvector with
eigenvalue λ. Then we have

(Av) · v = λv · v

But since A is symmetric, A∗ = A. Since it is also real, A = A, so A∗ = A.

(Av) · v = v · (A∗v)

= v · (Av)
= v · (λv)
= λv · v

So we have
λv · v = λv · v

and since v · v > 0, we conclude that λ = λ, so λ ∈ R.

Theorem 7.26

Let V be a finite dimensional real vector space. Let T : V → V be
linear with no nonreal complex eigenvalues. Then there exists a basis
B = v1, . . . , vn such that MB(T ) is upper triangular.

Proof. We sketch this proof only since the complex version was proved for home-
work.

Proceed by induction. Let λ be an eigenvalue of T (which we know exists be-
cause there is at least one complex eigenvalue, and all complex eigenvalues are
real. Then define

W = im(T − λ Id)

Then we have dimW ≤ dimV − 1 by rank nullity. By construction, W is
T -invariant. Then define TW : W → W to be the restriction of T to W .
TW cannot have eigenvalues other than the eigenvalues of T , so the hypothesis
applies. By the inductive hypothesis, there exists a basis B′ of W such that
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MB′(T ) is upper triangular, meaning that T (wi) ∈ span(w1, . . . , wi) for any i.
Then we extend this to a basis w1, . . . , wk, v1, . . . , vl of V . For any of the vi, we
have T (vi) = (T −λ Id)(vi)+λvi ∈W +span(vi) ⊆ span(w1, . . . , wk, v1, . . . , vl),
So T is upper triangular with respect to this basis.

Remark

In fact, we can use orthonormal bases instead of bases in the above proof.
So instead we have that every real matrix with only real eigenvalues is
upper triangular with respect to some orthonormal basis.

Given this, let B be this orthonormal basis and suppose we let U =MB(T ).
Let A = M(T ). Then A,U are similar so A = SUS−1 for some S. But the
columns of S are the elements of B, and the elements of B are orthonormal, so
S is orthogonal and thus A is orthogonally diagonalizable. This allows us to
finish the proof of the spectral theorem. We repeat the statement and first half
of the proof here for convenience.

Theorem 7.27: Spectral Theorem

Let A be an n×n real matrix. If A is symmetric, then it is diagonalizable.
Moreover, A is symmetric if and only if it is orthogonally diagonalizable.

Proof. ( =⇒ ) Let A be a real symmetric matrix. We showed that all complex
eigenvalues of A are real. Then A is similar to some upper triangular matrix U
by some orthogonal matrix S. Then we have

A = SUST

U = STAS

UT = (STAS)T

= STATS

= STATS

= STAS = U

So UT = U , and thus U is both upper triangular and symmetric, and thus must
be diagonal. So A is orthogonally diagonalizable.

( ⇐= ) Assume A is orthogonally diagonalizable with A = SDST . Applying
the transpose gives us AT = (SDST )T = (ST )TDTST = SDST (since D is
diagonalizable). So AT = A and A is symmetric.

7.7 Inner Products on Rn

We will now discuss arbitrary inner products on Rn. Of course, the dot product
satisfies the inner product axioms, but there are many other ways of constructing
a dot product. Suppose we have some inner product of Rn, given by (Rn, ⟨−,−⟩).
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Example 7.10

We can define the following inner products on R2:

• The normal dot product.

• ⟨
[
x1
x2

]
,

[
y1
y2

]
⟩ := 2x1y1 + 3x2y2

• ⟨
[
x1
x2

]
,

[
y1
y2

]
⟩ := x1y1+x1y2+x2y1+3x2y2 =

[
x1 x2

] [1 1
1 3

] [
y1
y2

]
.

To check positive definiteness, we can verify that

⟨
[
x1
x2

]
,

[
x1
x2

]
⟩ = x21 + 2x1x2 + 3x22 = (x1 + x2)

2 + 2x22 ≥ 0

with equality if and only if x1 = x2 = 0.

To see a non example, consider

⟨
[
x1
x2

]
,

[
y1
y2

]
⟩ := x1y1 + x1y2 + x2y1 + x2y2

This violates positive definiteness because we have ⟨
[
x1
x2

]
,

[
x1
x2

]
⟩ = x21 +

2x1x2 + x22 = (x1 + x2)
2 ≥ 0, but this can have equality for nonzero

vectors.

The general idea here is that we can associate inner product with matrices
that encode the transformation. Consider some inner product. Using linearity,
we have

⟨x, y⟩ = ⟨x1e1 + . . .+ xnen, y1e1 + . . .+ ynen⟩ =
∑
i,j

⟨xiei, yjej⟩

Thus, every inner product is identified by the coefficients of xiyj . We can encode
this by writing a matrix A that has entries aij = ⟨ei, ej⟩, then this becomes∑

i,j

⟨xiei, yjej⟩ =
∑
i,j

xiyj⟨ei, ej⟩ =
∑
i,j

xiyjaij

On the other hand, if we consider the multiplication xTAy, then we would get

[
. . . xi . . .

]  aij



...
yj
...

 =
[
. . . x1 . . .

] 
...

. . . aijyj . . .
...

 = . . .+aijxiyj+. . .

So the total multiplication is

xTAy =
∑
i,j

aijxiyj = ⟨x, y⟩
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Thus, we can associate the inner product with a matrix encoding the coefficients
of the various xiyj terms. This allows us to easily translate between matrices
and explicit expressions of inner products.

Example 7.11

⟨
[
x1
x2

]
,

[
y1
y2

]
⟩ := 2x1y1 + 3x2y2 has matrix

[
2 0
0 3

]
.

Of course, not every matrix can be associated with a valid inner product,
as the nonexample in the first example in this section showed. This leads us to
investigate the question of which matrices are able to represent inner products.

Definition 7.20

Let A be a square real matrix. Then define ⟨−,−⟩A such that ⟨x, y⟩A =
xTAy.

By the properties of matrix multiplication, we automatically get additivity
and homogeneity for any matrix. To check symmetricity, we observe that lin-
earity means it is enough to check the standard basis. By our definition, we
have

⟨ei, ej⟩A = aij , ⟨ej , ei⟩A = aji

So we have symmetricity if and only if A itself is symmetric. Then the last
condition we need is positive definiteness: that for any x ̸= 0, we have xTAx > 0.
Since there is not an easy condition that we already know that is equivalent to
this, we simply define:

Definition 7.21

A real square matrix A is called positive definite when it is symmetric
and xTAx = ⟨x, x⟩A > 0 for any x ̸= 0.

Note that by the spectral theorem, we automatically know that A is (or-
thogonally) diagonalizable. Thus, we are able to make claims in terms of its
eigenvalues:

Proposition 7.28

A symmetric n× n real matrix A is positive definite if and only if all its
eigenvalues are positive.
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Remark

Suppose A,B are ”orthogonally similar,” such that there exists S orthog-
onal with A = STBS. Then we have ⟨x, y⟩A = xTAy = xTSTBSy =
(Sx)TB(Sy) = ⟨Sx, Sy⟩B . This means that A and B encode the same
inner product, but acting on different orthonormal eigenbases (in the
sense that the corresponding coefficients are the same). Specifically, if
we take A to act on the standard basis, then B acts on the orthonormal
eigenbasis which is given by the columns of S. Then if the columns of S
are B = {v1, . . . , vn}, we have ⟨vi, vj⟩B = ⟨ei, ej⟩A. Alternatively, using
change of basis, we can summarize this as

⟨x, y⟩A = ⟨MB(x),MB(y)⟩B

In other words, if A =Me(T ) and MB(T ), with B orthonormal, then the
above equality holds.

Proof. By the spectral theorem, we can writeA = STDS for S orthogonal andD
diagonal. Then ⟨x, x⟩A = ⟨Sx, Sx⟩D. Letting λ1, . . . , λn be the diagonal entries
of D (or the eigenvalues of A), we have ⟨Sx, Sx⟩D = λ1(Sx)

2
1 + . . .+ λn(Sx)

2
n.

If all the λi are positive, then this is positive for all nonzero Sx, and if any are
zero or negative, then we lose the condition. Since S is invertible, this is true
of x as well. Thus A is positive definite if and only if all the eigenvalues are
positive.

The conclusion of the above discussion is that there is a direct correspon-
dence between inner products on Rn and postiive definite n× n real matrices.

We now look to extend this concept to inner products on abstract finite dimen-
sional vector spaces.

Proposition 7.29

Let B = {v1, . . . , vn} be a basis of V . Then there exists a unique inner
product ⟨−,−⟩B on V such that B is orthonormal.

Proof. We begin with uniqueness. Suppose we have an inner product ⟨−,−⟩
such that B is orthonormal. Then let x = c1v1+ . . .+ cnvn and y = d1v1+ . . .+
dnvn be arbitrary. Then by orthonormality,

⟨x, y⟩ = c1d1 + . . .+ cndn

Then since this is the definition, we automatically get uniqueness. For existence,
we simply define this to be the inner product ⟨x, y⟩B := c1d1 + . . .+ cndn.

Note that this definition is given by changing the identity matrix into the
basis B, so that ⟨x, y⟩B =MB(x) ·MB(y).
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This discussion has suggested that inner products are related to each other up
to a change of basis.

Definition 7.22

Two inner product vector spaces (V, ⟨−,−⟩V ), (W, ⟨−,−⟩W ) are isomor-
phic in the category of inner product spaces if there exists an invertible
isometry between them.

Proposition 7.30

Any real finite dimensional inner product space is isomorphic to (Rn, ·)

Proof. Follows from the above proposition.

Thus we have seen that inner products are related to matrices, and also
to bases. Thus, we are led to ask the question of how matrices and bases are
related through inner products.

Using the observations we have made so far, we make the identification

S =Me→B =

 | | |
v1 . . . vn
| | |

−1

such that ⟨x, y⟩B =MB(x)·MB(y) = Sx·Sy = (Sx)TSy = xTSTSy = ⟨x, y⟩STS .
In the case that S is orthogonal (or that B is orthonormal), this reduces to the
dot product. This results in the important observation that although there
is a one to one correspondence between positive definite matrices and inner
products, the correspondence between inner products and bases is not one-to-
one.

This allows us to easily calculate inner products that make bases orthogonal.

Example 7.12

Given the basis {
[
1
1

]
,

[
1
0

]
}, the change of basis matrix is

S =

[
1 1
0 1

]−1

=

[
1 −1
0 1

]
So the matrix for which they are orthonormal is

STS =

[
1 0
−1 1

] [
1 −1
0 1

]
=

[
1 −1
−1 2

]
So the inner product is

⟨x, y⟩STS = x1y1 − x1y2 − x2y1 + 2x2y2
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Definition 7.23

Let V,W be inner product spaces and T : V → W be a linear transfor-
mation. We say that a transformation T ∗ : W → V is an adjoint of T
if ⟨Tv,w⟩W = ⟨v, T ∗w⟩V for any v ∈ V,w ∈W .

Proposition 7.31

Let V,W be finite dimensional. Every T : V → W has a unique adjoint
T ∗.

Proof. Let v1, . . . , vn be an orthonormal basis of V . For any v, we must have

T ∗w = ⟨Tv1, w⟩v1 + . . .+ ⟨Tvn, w⟩vn
which we also take to be the definition.

Proposition 7.32

Let S : Rm → Rn. Then M(S∗) =M(S)T .

Proof. Note that we have ⟨Sv,w⟩ = ⟨v, S∗w⟩ for any v, w (where the inner
product is the standard dot products). Letting A = M(S), B = M(S∗), we
have Av · w = v · B. Then setting v = ei, w = ej , we get Aei · ej = aji and
ei ·Bej = bij , so we find that B = AT .

This gives us the notion of transpose for abstract vector spaces.

Definition 7.24

T : V → V is self-adjoint when T ∗ = T .

In the case of Rn, the self-adjoint operators are exactly the symmetric ma-
trices. So being self-adjoint is analogous to symmetricity for abstract spaces.

7.8 Singular Value Decomposition

Example 7.13

Let A =

[
−3 3
2 2

]
. Then

A

[
1
1

]
= 4

[
0
1

]
A

[
−1
1

]
= 6

[
1
0

]
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We can graphically track where the vectors are sent to to see what this
transformation does geometrically. Specifically, it rotates the vectors,
and then scales in different directions (so that circles map to ellipses).

Moreover, a perhaps surprising result is that this behavior occurs for any
matrix.

Theorem 7.33

For any T : V → U between inner product spaces, there exists orthonor-
mal bases B = {v1, . . . , vn} of V and a basis C = {u1, . . . , um} of U such
that T (vi) = σiui with all σi ≥ 0. The σi are known as singular values
of the matrix.

Note that by convention, we reorder the singular values so that they are in
decreasing order. We also note that for any σi which are outside the range, we
set σi to be 0.

This theorem, then, says that every transformation can be viewed as the compo-
sition of some isometry and some diagonalizable operator with an orthonormal
eigenbasis.

If we then consider what MB→C(T ) looks like, we will have aii = σi, such that
the matrix is essentially diagonal (it may not be square, but the main diagonal
will have the singular values.

To investigate how we may compute this basis, let us first relax the orthonormal-
ity requirement, and also assume invertibility. Suppose we have some invertible
transformation T : V → V . Then we if we pick B to be any basis of V and set
C to be the basis vectors after applying T , then we get

MB→C(T ) = In

If we relax the invertibility assumption, we have the following:

1. Let W = kerT . Pick some basis w1, . . . , wk of W .

2. Extend to a basis B = v1, . . . , vl, w1, . . . , wk of V .

3. Extend the set T (v1), . . . , T (vl) to a basis C = T (v1), . . . , T (vl), u1, . . . , ur
of W .

Then we have a matrix with l 1’s on the diagonal and zero everywhere else.

Now in order to ensure the bases B, C are orthonormal, we will need to adjust
the process.

Definition 7.25

A symmetric real matrix A is positive semidefinite if xTAx ≥ 0 for
any x, or equivalently if all the eigenvalues are nonnegative.
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Proposition 7.34

Let B be anm×nmatrix. Then BTB is symmetric and positive semidef-
inite.

Proof. (BTB)T = BTB, so BTB is symmetric. To calculate positive semidefi-
niteness, we calculate xTBTBx = (Bx)TBx = Bx ·Bx ≥ 0.

We can now prove that every matrix has a singular value decomposition.

Proof. Let T : V → U . Then T ∗T : V → V is symmetric, so the spectral
theorem says we can pick an orthonormal eigenbasis B = {v1, . . . , vm}. Let
us also order them such that λ1 ≥ λ2 ≥ . . . λm ≥ 0 (where ≥ 0 follows from
positive semidefiniteness). Suppose the first r eigenvalues are nonzero. Define
wi = T (vi) for each 1 ≤ i ≤ r. Then we claim that w1, . . . , wr are orthogonal
with ||wi|| =

√
λi.

To show this, pick wi, wj . Then ⟨wi, wj⟩U = ⟨T (vi), T (vj)⟩U = ⟨vi, T ∗◦T (vj)⟩V =
λj⟨vi, vj⟩ which is λj when i = j and 0 otherwise. Thus we have orthogonality
and we know the lengths of the vectors, which are all nonzero. Then we finish
the proof by normalizing each of the wi and extending to an orthonormal basis
of U . In this case, our singular values will be σi =

√
λi, 1 ≤ i ≤ r, and 0

otherwise.

Corollary

Any matrix A ∈ Mn×m(R) can be written as A = UΣV T , where U ∈
Mn×n(R) is orthogonal, Σ ∈Mn×m(R) has the singular values along the
diagonal and zero elsewhere, and V ∈Mm×m(R) is orthogonal.

Proof. Let T : Rm → Rn be LA, so A = Me→e(T ). Apply singular values
decomposition to get bases B, C. Then let U = Me→C and VB→e, and set
Σ =MB,C(T ).

Remark

If there are r nonzero singular values, then we can set Σ to be r × r
diagonal, U to be n× r semiorthogonal, and V to be m× r semiorthogo-
nal, since the zero singular values can be removed without affecting the
decomposition.

7.9 Quadratic Forms

In this section, we will discuss the nature of the zero loci of quadratic multivari-
ate polynomials.
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Example 7.14

Consider the equation x2+2xy+3y2 = 7. If we pick the change of basis

a = x−
√
3y, and b = x+

√
3y. Then letting λi =

1
2 ±

√
3
6 , we get

λ1a
2 + λ2b

2 = 7

which is an ellipse in the (possibly rotated) basis of a, b.

Definition 7.26

A quadratic form on R is a function q : Rn → R such that q ∈
span{xixj |i, j ≤ n}.

In other words, quadratic forms are linear combinations of x2i and xixj .

Example 7.15

Let q = x21 + x22. Then we can write this as q(x) = x · x = xT Ix.

Let q = 4x21 + 9x22. Then

q(x) = xT
[
4 0
0 9

]
x

Because the terms of quadratic forms correspond precisely to terms in the
expansion of ⟨x, x⟩, we find that we can precisely record any quadratic form
as q(x) = xTAx = ⟨x, x⟩A for some A, where aii is the coefficient of x2i in
q and aij is half the coefficient of xixj in q for i ̸= j (half because we split
cxixj = c/2(xixj + xjxi)). Note that this implies A is symmetric and thus can
be associated with a (semi) inner product.

Theorem 7.35

Let q = ⟨x, x⟩A. Let B = {v1, . . . , vn} be an orthonormal eigenbasis of
A with associated eigenvalues λ1, . . . , λn. Let x ∈ Rn be such that

MB(x) =

c1...
cn


Then q(x) = λ1c

2
1 + . . .+ λnc

2
n.
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Proof. We orthogonally diagonalize A as SDST , where

S =

 | | |
v1 . . . vn
| | |

 =Me→B

Then MB(x) =Me→BMe(x) = S−1x = STx. Then we have

q(x) = ⟨x, x⟩A = xTAx = xTSTDSx = (STx)TDSTx = ⟨STx, STx⟩D = λ1c
2
1+. . .+λnc

2
n

Then if we have an equation q = a, then we have some conic section. Specif-
ically,

• λ1, λ2 > 0 gives an ellipse.

• λ1 > 0, λ2 < 0 gives a hyperbola.

• λ1 = 0 gives two lines.

7.10 Jordan Canonical Form

So far, we have obtained important results about which matrices may be di-
agonalized. However, one important observation we made was that matrices
without enough eigenvalues may not be diagonalized. Using the Jordan canoni-
cal form, we can derive an alternate form which has many properties similar to
diagonalization, which can be applied to many more types of matrices.

First recall that the minimal polynomial for a square matrix A over F is the
monic polynomial µ(x) ∈ F[x] of lowest degree such that µ(A) = 0. We proved
uniqueness by showing that any two minimal polynomials must divide each other
and be monic, and we proved existence by consider the linearly dependent list
I, A,A2 . . . , An2

. Moreover, if the degree of minimal polynomial is d, then d is
the smallest integer such that the list In, A, . . . , A

d is linearly dependent.

Example 7.16

The minimal polynomial of

[
2 0
0 2

]
is x− 2, since A− 2I = 0.

The minimal polynomial of

[
2 0
0 3

]
is (x− 2)(x− 3).

In general, if we consider a block matrices, we get[
A O
O B

] [
C O
O D

]
=

[
AC O
O BD

]
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Thus, the minimal polynomial of 2 2
3


is (x− 2)(x− 3).

More generally, a diagonal matrix of the formλ . . .

λ


is (x− λ), and if the values are all distinct, then the minimal polynomial ofλ1 . . .

λn


is (x− λ1) . . . (x− λn).
For nondiagonalizable matrices, such as

A =

[
0 1
0 0

]
we can calculate A2 = 0, so x2 is the minimal polynomial.

Similarly, the minimal polynomial of0 1 0
0 0 1
0 0 0


is x3, since A3 = 0.

If we modify this by adding diagonal terms, such that

B =

λ 1 0
0 λ 1
0 0 λ


then B − λI = A, so (B − λI)3 = A3 = 0 and thus (x − λ)3 is the minimal
polynomial.

Let us now consider an arbitrary matrix of the form Jn(λ), which has λ along
the diagonal, 1 above the diagonal, and 0 elsewhere:

λ 1 . . . 0

λ
. . . 0
. . . 1

λ


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We refer to this as a Jordan block. Then in this case, the minimal polynomial
of Jn(λ) = (x− λ)n. Moreover, this is also its characteristic polynomial.

Now using what we have learned about minimal polynomials of block matrices,
we can see that by combining multiple block matrices, we get

µ

([
Jm(λ1) O
O Jk(λ2)

])
= (x− λ1)m(x− λ2)k

so long as λ1 ̸= λ2, and we can extend this to further eigenvalues.

The major result of Jordan canonical forms is that every complex matrix is
similar to a matrix which is composed of Jordan blocks, and moreover that this
matrix is unique (up to a conventional ordering).

Theorem 7.36

Let A be an n×n complex square matrix. Then A is similar to a matrix
J of the form

J =

Jn1
(λ1)

. . .

Jnk
(λk)


where λ1, . . . , λk are all the complex eigenvalues of A, possibly repeated,
and n1 + . . . + nk = n. Moreover, this matrix is canonical in the sense
that the pairs (ni, λi) are uniquely determined by A up to ordering.

Diagonal matrices, then, are a special case of the Jordan canonical form
where each Jordan block has size 1. In this way, we see that the Jordan canonical
form gives us a generalization of diagonalization which holds for every complex
matrix.

Corollary

The characteristic polynomial of J is given by

PJ = (x− λ1)n1 . . . (x− λk)nk

Incidentally, this allows us to prove the Cayley-Hamilton theorem:

Theorem

If A is square over F and pA(x) is the characteristic polynomial of A,
then pA(A) = 0.

Proof. We write A = SJS−1, so pA = pJ . Plugging A into pJ , we get pJ(A) =
pJ(SJS

−1) = SpJ(J)S
−1. We also have pJ(J) = 0 since this works for all

Jordan blocks and an induction argument shows it works for block matrices of
Jordan blocks.
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Note that for any Jordan block Jn(λ), its characteristic polynomial is pJn(λ)(x) =
(x−λ)n. Thus, almu(λ) = n. Moreover, note that Jn(λ)−λI has n−1 linearly
independent columns, so this dimension of its kernel is 1 and gemu(λ) = 1.

Thus we see that for a matrix in Jordan form, we can directly read off the alge-
braic and geometric multiplicities. Suppose that λ is an eigenvalue of A. Then
gemu(λ) is the number of Jordan blocks with eigenvalue λ. Moreover, almu(λ)
is the sum of the sizes of those blocks.

This also helps us calculate the minimal polynomial of a Jordan canonical form.
Supposing that an eigenvalue has two blocks, Jm(λ) and Jk(λ), then Jm(λ) will
go to 0 after m exponents, and Jk(λ) goes to 0 after k exponents. So the ex-
ponent of (x − λ) in the minimal polynomial is the maximum size of a Jordan
block corresponding to λ, given by max{nk : λk = λ}.

Thus we have seen that the Jordan canonical form is especially powerful because
it allows us to directly read off many invariants of a matrix, including its eigen-
values with algebraic and geometric multiplicity, its characteristic polynomial,
and its minimal polynomial.

We will now discuss how to calculate the Jordan canonical form.

1. Separate the different eigenvalues of A.

2. Consider the special case for each where µ(x) = (x− λ)d. Then the only
eigenvalue of A − λI is λ, and it is nilpotent. Thus we have reduced the
problem to classifying nilpotent matrices.

To accomplish this, we will consider these matrices from a geometric perspective.
Suppose that T : V → V has an eigenvalue λ. Then we have previously defined
the eigenspace of λ to be

Eλ := {v ∈ V : (T − λI)v = 0}

We expand the eigenspace as follows:

Definition 7.27

Let T : V → V have an eigenvalue λ. Then the generalized eigenspace
of λ in T is

Gλ := {v ∈ V : ∃k ∈ Ns.t.(T − λI)kv = 0}

where the corresponding vectors v are called generalized eigenvectors.

Lemma

Gλ is a T -invariant subspace.
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Proof. L let v1, v2 ∈ Gλ, t ∈ F, so that (T − λI)k1v1 = (T − λI)k2v2 = 0. Then
(T − λ)k1+k2(v1 + tv2) = 0 + tk1+k20 = 0, so it is closed under addition and
homogeneity. Moreover, for any v ∈ Gλ, if (T − λI)kv = 0, then (T − λ)kTv =
T (T − λ)kv = Tv = 0 so Tv ∈ Gλ. Note that we can do this switch because T
commutes with T k and with scalars. Thus Gλ is a T -invariant subspace.

Proposition 7.37

If λ1 ̸= λ2, then Gλ1
∩Gλ2

= {0}.

Proof. Let v ∈ Gλ1 ∩ Gλ2 . Suppose v ̸= 0. Let k1 > 0 be the smallest integer
such that (T − λ1I)k1v = 0. Then (T − λ1I)k1−1v ̸= 0. Let w = (T − λ1)k1−1.
Then (T − λ1)w = 0. So Tw = λ1w and thus w ∈ Gλ1

. We can expand w
into a linear combination of v and repeated applications of T to v. Since Gλ2

is
T -invariant, w ∈ Gλ2

. Then we can find a value k2 such that (T − λ2)k2w = 0,
then this implies that (λ1 − λ2)k2w = 0, which is not true unless w = 0. But
we chose k1 so w ̸= 0, so this is impossible. Thus we must have v = 0 and thus
Gλ1
∩Gλ2

= {0}.

Proposition 7.38

Suppose that λ1, . . . , λr are distinct eigenvalues. Then for any choice of
nonzero generalized eigenvectors vi ∈ Gλi , the vi are linearly indepen-
dent.

Proof. Induction on r using the previous proposition.

Theorem 7.39

Let λ1, . . . , λk be distinct eigenvalues of T : V → V with V finite dimen-
sional over C. Then V = Gλ1

⊕ . . .⊕Gλk
. Equivalently, for any v ∈ V , v

has a unique decomposition into a sum of generalized eigenvectors given
by v = v1 + . . .+ vr, vi ∈ Gλi

.

Of course, in the diagonalizable case, we already knew this was possible us-
ing eigenvectors and eigenspaces. In order to extend to the general case, we
need to use generalized eigenvectors and generalized eigenspaces.

Thus we see that we have reduced our space into a direct sum of generalized
eigenspaces, each with only eigenvalue, and thus we can consider them individ-
ually.
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Proposition 7.40: Bezout’s Identity

Let f(x), g(x) ∈ C[x] have no common roots. Then there exist
p(x), q(x) ∈ C[x] such that pf + qg = 1 identically. This result holds
over arbitrary fields by changing the ”no common roots” condition to
”no common irreducible factors.”

Example 7.17

If f = x2, g = x− 1, then p = 1 and q = (−x− 1) gives pf + qg = 1.

Recall that two integersm,n ∈ Z are coprime if there exist a, b ∈ Z such that
ma + nb = 1. Thus, we can consider the ”no common roots” or ”no common
irreducible factors” to be the equivalent notion of being coprime for polynomials.

An analogous fact holds for more polynomials: Suppose that f1(x), . . . , fr(x) ∈
C[x] such that there is no value which is a root of every polynomial (there may
be pairwise roots or higher, but no roots of all polynomials). Then there exists
p1, . . . , pr ∈ C[x] such that f1p1 + . . .+ frpr = 1.

This allows us to prove Theorem 7.39.

Proof of Theorem 7.39. Let µ(x) be the minimal polynomial of T . Then µ(x) =
(x− λ1)n1 . . . (x− λr)nr where the λi are distinct.

Define µi to be
µ(x)

(x−λi)ni
, that is, the minimal polynomial without the (x−λi) fac-

tors. Then µ1, . . . , µr have no common roots. Then by Bezout’s identity, we have
µ1p1 + . . .+ µrpr = 1 for appropriate polynomials. I claim that µi(T )pi(T )v ∈
Gλi for any v ∈ V . To prove this, note that (T − λi)

niµi(T ) = µ(T ) = 0.
Moreover, these terms sum to v since the sum of the polynomials is 1. So we
can decompose v into generalized eigenvectors.

Thus, we can now assume that T : V → V has only one eigenvalue λ. In
this case, the minimal polynomial must be µ(x) = (x− λ)k, so T is nilpotent.

Definition 7.28

A transformation T : V → V is nilpotent if T k = 0 for some k. A
square matrix A is nilpotent if Ak = 0 for some k. Without loss of
generality, we may take k = n.

Proposition 7.41

For T : V → V , if v ∈ V has k such that T kv = 0 and T k−1v ̸= 0, then
v, Tv, . . . , T k−1v are linearly independent.
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Proof. Take a linear combination and recursively apply T to conclude the com-
bination is trivial.

Proposition 7.42

If T : V → V is nilpotent, then there exists v1, . . . , vk such that
T k1−1v1, . . . , T v1, v1, . . . , T

kk−1vk, . . . , vk form a basis B of V for appro-
priate integers k1, . . . , kk > 0.

Proof. We induct on dimV . Let W = im(T ). W is T -invariant, and because
T is nilpotent, W ̸= V . Then we use induction ot pick a basis of w given by
w1, Tw1, . . . , T

k1−1w1, . . . , wr, Twr, T
kr−1wr. We extend each chain by writing

w1 = Tv1, and thus we claim that v1, T v1, . . . , T
k1v1, . . . , vr, T vr, . . . , T

krvr is
linearly independent. The proof is similar to the proof for the previous propo-
sition.

We now extend to a basis of V by adding u1, . . . , ur. In order for the inductive
hypothesis to work, we want u1, . . . , ur to be in kerT , but we also need them
to not overlap with the vectors we have already chosen. Let W ′ be the span of
the vectors we have chosen so far. Then T (ui) ∈ imT =W = T (w′) so there is
some w′

i ∈W ′ such that T (w′
i) = T (ui). Then replace ui with ui−w′

i such that
T (ui−w′

i) = 0. Lastly, we verify that this final list is still linearly independent.
Since it is of length dimV , it is a basis. We can also check that it is in the form
requested.

Corollary

The matrix of T under the above basis B is the Jordan canonical form
of MB(T ):

MB(T ) =


Jk1

(0)
Jk2

(0)
. . .

Jkk
(0)


Then in the general case, if T has only one eigenvalue, then T − λI is nilpo-

tent, so

T − λI ∼

Jn1
(0)

. . .

Jnk
(0)

 =⇒ T ∼

Jn1
(λ)

. . .

Jnk
(λ)


If T has multiple eigenvalues, then V is a direct sum of the generalized eigenspaces,
so we consider T on each generalized eigenspace and use the direct sum of the
derived matrices.

This proves the existence of the Jordan canonical form. In arbitrary fields,
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this form only exists for matrices whose characteristic polynomials may be split
into linear factors over the field (which follows automatically for algebraically
complete fields such as C).
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