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Chapter 1

Preliminaries

1.1 Motivations

We denote by A the standard problem

inf
u∈U

{
J(u; t0, tf , X0) = K(tf , Xf ) +

∫ tf

t0

L(s,Xs, us) ds

}
where J is the objective function which we want to minimize, u is our control state from
the admissible control U , K is the terminal cost, L is the running cost, and the systeem is
driven by a vector field f with

dXt = f(t,Xt, ut) dt

We may also need to satisfy equality constraints (like boundary conditions) and inequality
constraints (like path constraints or bounds). If we impose regularity demands on any of
the cost functions, solutions, or constraints, which will in turn change the conditions for
solutions. We will also focus on finding local minima, though conditions like convexity can
elevate these to global minima.

Example 1.1: Double Integrator Problem

Consider the minimum time problem where the cost function is given by

J(u; t0, X0) =

∫ tf (u)

t0

ds = tf (u)− t0

where the dynamics are
Ẍ(t) = u(t)

and the system ends at time tf (u) when it is stopped, in other words

Xf = 0

Ẋf = 0

In essence the goal is merely to stop at the origin as quickly as possible, within the
admissible control set. Here we’ll use U = PC([t0,∞] → [−1, 1]), where PC denotes
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the set of piecewise continuous functions.

The solutions satisfy the “bang bang principle”, where the optimal solution u∗

takes values only on the vertices of the range; that is, its range is in {±1}. It will be
governed by a switching function φ and a costate or adjoint p∗, under

u∗ =


1, φ(t; p∗) > 0

−1, φ(t; p∗) < 0

±1, φ(t, p∗) = 0

Solutions to this problem are known as closed loop solutions, meaning that the
solution can be built over time by measuring the feedback output, as opposed to
solving for the entire solution at once.

Example 1.2: Linear Quadratic Regulator

Consider the case of a lunar landar attempting to following a trajectory γ, but which
has some error in its position (i.e. off course). We can compute a retargeting flight
path δγ using the linearization

˙δγ ≈ ∇γfδγ +∇ugδu

Here the cost function is given quadratically as

J(u; t0, tf , X0) =
1

2

∫ tf

t0

⟨Xs, Q(s)Xs⟩+ ⟨us, R(s)us⟩ ds

where Q,R are symmetric, Q is positive semidefinite, and R is positive definite. and
the dynamics are

dXt = A(t)Xt dt+B(t)ut dt

A ∈ Rm×m, B ∈ Rm×n, and the admissible control set is C1([t0, tf ] → Rn). This is
solved by

u∗t = −R−1(t)BT (t)P (t)X∗
t

with P satisfying the Riccati differential equation

Ṗ (t) = −P (t)A(t)−AT (t)P (t)−Q(t) + P (t)B(t)R−1(t)BT (t)P (t)

and P (tf ) = 0.

In practice, control problems may be difficult or impossible to solve directly, so we may
require transcription of the problem into a form amenable to numerical methods. This may
be done directly, or first by deriving the necessary conditions through the costates.

There are a few methods for transcribing problems into a discretized form. Shooting
methods involve transcription of only the control state, but the state process is still solved
using the ODE involving f . For instance, if the admissible control states are C1([t0, tf ] → R),
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we might discretize U into four dimensions by replacing it with functions that take constant
values on each of the four subintervals in [t0, tf ].

On the other hand, collocation methods transcribe both the control and state process at
the same time.

1.2 Definitions and Conventions

We will denote a metric space by (M,d), and a topology by T . We assume all metric spaces
are given the induced topology. For x ∈M a metric space, we denote the open ε-ball about
x by B(x, ε), and the closed ball by B(x, ε). The closure of a set A is denoted A, its interior
Ao, and its boundary ∂A.

Definition 1.1

If (X,T ) is a topological space, then x∗ ∈ X is a local minimum for f : X → R if
there exists a neighborhood A ∈ T of x∗ where x∗ minimizes f on A.

Definition 1.2

Ck(Ω,R) denotes the space of k times continuously differentiable functions from
Ω → R. Cb(Ω,R) is the space of such functions where all derivatives and the function
are bounded.

1.3 Unconstrained Optimization

In this section we develop necessary and sufficient conditions for minima and strict minima
on open sets in Rn.

Proposition 1.1

If x∗ ∈ Ωo ⊆ Rn is a local minimum for f ∈ C1(Ω → R), then

∇f(x∗) = 0

Theorem 1.2: Taylor’s Formula with Remainder, Lagrange Form

Let f ∈ Ck+1(R,R). Let x, x∗ ∈ R, δx = x− x∗. Then there exists a point y strictly
between x, x∗ such that

f(x) = f(x∗)+f ′(x∗)δx+
1

2!
f ′′(x∗)δx2+. . .+

1

k!
f (k)(x∗)δxk+

1

(k + 1)!
f (k+1)(y)δxk+1
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Proposition 1.3

If x∗ ∈ Ωo ⊆ Rn is a local minimum for f ∈ C2(Ω,R), then

∂2f

∂x2
|x∗ ≥ 0

Definition 1.3

The Hessian of a function f ∈ C2(Ω,R) at a point x∗ ∈ Ωo is

(∇⊗2

x f |x∗)ij = ∂i∂jf

In particular the Hessian is symmetric.

Proposition 1.4

For f ∈ C2(Ω,R) and Ω ⊆ Rn, a sufficient condition for x∗ ∈ Ωo to be a strict local
minimum of f is for

∇xf |x∗ = 0

∇⊗2

x f |x∗ > 0

(where the second line says the Hessian is positive definite.)

Proof. Since all the eigenvalues are positive, and the Hessian is symmetric, we write

∇⊗2

x f |x∗ = QΛQT

such that 〈
q̂i, QΛQT q̂j

〉
= δijλi > 0

Then take B(x∗, ε) ⊆ Ωo and define g(α, q) : [0, ε] × Sn−1 → R by α × q 7→ f(x∗ + αq).
This gives the trace of f in the direction of q. Pick q = q̂1 and pick α ∈ (0, ε). By Taylor’s
theorem with remainder in α for 0 < β < α

g(α, q̂1) = f(x∗ + αq̂1) = g|0 + ∂αg|0α+
1

2
∂2αg(q̂1)|βα2

By assumption, ∂αg|0 = ∇xf |∗x · q̂1 = 0. So we see that

g(α, q̂1)− g(0, q̂1) =
1

2
∂2αg(q̂1)|βα2

Assume α≪ 1, so that
sign

(
∂2αg(q̂1)|β

)
= sign

(
∂2αg(q̂1)|0

)
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(possible since f is C2). This shows that f(x∗ + αq̂1) > f(x∗) for 0 < α < α+
1 . We can

repeat this work to show the same for −α−
1 < α < 0. We can also repeat this for the other

eigenvalues. Finally set α∗ = min{α+
i , α

−
i }. It follows that

f(x∗) < f(y)

for any y ∈ B(x∗, α).

Theorem 1.5: Taylor’s Formula with Remainder, Peano Form

Let f ∈ CK(R,R) and x, x∗ ∈ R, with δx := x− x∗. Then there exists RK : R → R
such that

f(x) =

K∑
i=0

1

i!
∂ixf |∗xδxi +RK(x)δxK

such that limx→x∗ RK(x) = 0. For convenience we use asymptotic notation

f(x) =

K∑
i=0

1

i!
∂ixf |∗xδxi + o(δxK)

Alternate Proof of 1.4. Use the Peano form to write

f(x∗ + αq) = f(x∗) +
1

2

〈
q,∇⊗2

f |x∗ , q
〉
α2 + o(α2, q)

For q ∈ Sn−1, define

h(q) = sup

{
ε > 0 : α ∈ B(0, ε) \ {0} =⇒

∣∣o(α2, q)
∣∣ < 1

2

〈
q,∇⊗2

x f |x∗q
〉
α2

}
By compactness, h attains a minimum on Sn−1, so there exists ε∗ such that the inequality
is true on B(0, ε∗) \ {0}.

1.4 Equality Constrained Optimization

Now we introduce equality constraints to study more interesting sets over which we may
optimize. For m ≤ n, define a set of constraints{

hi ∈ C1(Rn,R)
}m

i=1

and define the collective zero locus

M =
⋂
i

{hi = 0}

We will always assume that our constraints are nondegenerate, so that M ̸= ∅.
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Definition 1.4

A regular point is an element q ∈M such that the gradients

{∇xhi|q}i

are linearly independent. Note that if any gradient is zero, then q is not regular.

Definition 1.5

Let h ∈ C1(Ω,Rm), Ω ⊆ Rn. Then the Jacobian of h at q ∈ Ωo is

(∇xh|q)ij =
∂hi
∂xj

|q =

∇h
T
1

...
∇hTm


If the Jacobian is full rank, that is rank(∇xh|q) = min(m,n), then q is a regular point.

We define the tangent space in two equivalent ways:

Definition 1.6: Tangent Space, Geometric

Let q ∈ M = Mk be a point on a k-dimensional surface. The tangent space to M
at q, denoted TqM , is the vector space isomorphic to Rk defined iby

TqM :=
{
(q, y) ∈M × Rk : ⟨∇xhi, y⟩ = 0 ∀i

}
Definition 1.7: Tangent Space, Curves

Consider the family of curves
{
ψλ ∈ C1((−1, 1),MK)

}
λ∈Λ

such that ψα(0) = q. Let

f ∈ C1(MK ,R). Then by the chain rule,

∂α(f ◦ ψλ)|0 = ⟨∇xf |q, ∂αψλ|0⟩

In particular for f = hi, hi(ψλ(α)) ≡ 0, so

⟨∇xhi|q, ∂αψλ(0)⟩ = 0

This is the same inner product condition as the geometric definition, so we can just
define the tangent space to be the collection of ∂αψλ(0), endowed with vector space
structure and equivalence via curve equivalence.

Now we give necessary conditions on optimization on equality hypersurfaces.
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Proposition 1.6

Let M = Mk ⊆ Rn and k = n − m, with M defined by (hi)
m
i=1. If x∗ ∈ M is a

minimum of f ∈ C1(M,R) and x∗ is a regular point, then there exists λ ∈ Rm such
that

0 = ∇xf |x∗ +∇xh|x∗λ

In other words, f is linearly dependent with the gradients of the constraints.

Proof. Since x∗ is a regular point, we can form a basis of Rn given by the m gradients
(∇xhi|x∗)mi=1 and a basis of Tx∗M (say, (∂αψj(0))

k
j=1 for some ψj). Thus we can write

∇xf |x∗ as

∇xf |x∗ =

m∑
i=1

⟨∇xf |x∗ ,∇xhi|x∗⟩∇xhi|x∗ +

k∑
j=1

⟨∇xf |x∗ , ∂αψj(0)⟩∂αψj(0)

For any ψj , write gj = f ◦ ψj . Then g ≡ 0 since f = 0 on Mk, so

0 = ∂α|0 = ⟨∇xf |x∗ , ∂αψ|0⟩

So ∇xf |x∗ is a linear combination of the ∇xhi|x∗ .

The above proof is essentially a statement that the method of Lagrange multipliers
works.

Analytic Proof. This proof works for m = 1. Let d1, d2 ∈ Rn and define F : R2 → R2 by

F (α1, α2) = (f(x∗ + α1d1 + α2d2), h(x
∗ + α1d1 + α2d2))

In particular F (0, 0) = (f(x∗), 0). Now consider the matrix

∇F |(0,0) =
[
⟨∇f, d1⟩ ⟨∇f, d2⟩
⟨∇h, d1⟩ ⟨∇h, d2⟩

]
Suppose the rank of this matrix is 2. Then F is locally invertible at x∗. So there is an open
neighborhood around (f(x∗), 0) where F is invertible, and by passing through the inverse
map, there is (α1, α2) such that

π1 ◦ F (α1, α2) = f(x∗ + α1d1 + α2d2) < f(x∗)

π2 ◦ F (α1, α2) = 0

But this is a contradiction. So ∇F is not full rank. Since x∗ is a regular point, we can
choose d1 such that ⟨∇h, d1⟩ ̸= 0. Let d2 be arbitary, and define

λ∗ = −⟨∇f, d1⟩
⟨∇h, d1⟩
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Now, ∇F has rank exactly 1, so the columns are proportional. This means there is β such
that

⟨∇h, d1⟩ =
1

β
⟨∇h, d2⟩

⟨∇f, d1⟩ =
1

β
⟨∇f, d2⟩

Then

⟨∇f, d2⟩ = β(⟨∇f, d1⟩) = β(−λ⟨h, d1⟩) = −λ⟨∇h, d2⟩ =⇒ ⟨∇f + λ∇h, d2⟩ = 0

Since d2 is arbitrary,
∇f + λ∇h = 0

Definition 1.8

Let h : Rn → Rm and define the augmented Lagrangian cost function L :
Rn × Rm → R by

L(x, λ) = f(x) + ⟨λ, h(x)⟩

Corollary 1.7

In the same setup as the previous theorem, there is λ∗ ∈ Rm such that

∇xL|(x∗,λ∗) = ∇xf |x∗ +∇hTx∗λ∗ = 0

and
∇λL|(x∗,λ∗) = h(x∗) = 0

Essentially, the Lagrangian extends our constrained optimization to a higher dimension
space, on which we may perform unconstrained optimization (so long as the minimum is
regular). Thus the necessary and sufficient conditions look very similar to the unconstrained
case.

Theorem 1.8: Second Order Necessary Condition

Let M be the zero locus of h : Rn → Rm, with hi ∈ C2(Rn,R), f ∈ C2(M,R), and
let L be the augmented Lagrangian. Then the Hessian of the augmented Lagrangian
with respect to x is

∇⊗2

x L|(x,λ) = ∇⊗2

x f |(x,λ) +
∑
i

λi∇⊗2

x hi|(x,λ)

Moreover, if x∗ is a minimum of f and a regular point of M , then there exists
λ∗ ∈ Rm such that ∇⊗2

x L(x∗,λ∗) is positive semidefinite.
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Theorem 1.9: Second Order Sufficient Condition

If

∇xL|(x∗,λ∗) = 0 ∈ Rn

∇λL|(x∗,λ∗) = 0 ∈ RM

and ∇⊗2

x L|(x∗,λ∗) is positive definite, and moreover x∗ is regular, then x∗ is a strict
local minimum of f .

1.5 Mixed Constraint Mathematical Programs

Definition 1.9

A mixed constraint mathematical program is a problem of the form of finding

inf
Rn
f

subject to the constraints

he(x) = 0, e ∈ E

ci(x) ≤ 0, i ∈ I

with |E| = m < n and |I| ∈ N. When f, h, c are all linear functions, this is called a
linear program (LP); when f is quadratic and h, c are linear, this is a quadratic
program (QP). If f, h, c are all convex, then it is called a convex program (CVP).
Most generally, this can be called a nonlinear program (NLP).

While solving NLPs, it is often helpful to break it into sequential programs of simpler
type, like QPs or CVPs. For instance, sequential quadratic programs (SQP) involve
a method similar to gradient descent, but by solving a QP at every step, since we know f
locally looks like a QP at a minimum.

Definition 1.10

Let A ⊆ Rm be convex, and let f : A→ R. Define the epigraph of f by

B = {(x, y) : x ∈ A, y ≥ f(x)} ⊆ A× R

f is said to be convex if B is convex in Rm+1. Equivalently, f is said to be convex
if it is continuous and for x, y ∈ A, t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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Definition 1.11

A set C ⊆ Rn is called a cone if for all x ∈ C, t > 0, tx ∈ C.

Definition 1.12

For a mixed constraint program with equality constraints he, e ∈ E and inequality
constraints ci, i ∈ I, the feasible set is the set

Ω = {x ∈ Rn : ci(x) = 0, he(x) = 0}

The active set at a point x ∈ Ω is the set of indices for which x achieves equality;
that is,

A(x) = {i ∈ I : ci(x) = 0} ⊔ E

Example 1.3

Suppose f ∈ C1(Rn,R) and let c ∈ C1 be the only inequality constraint. Let x ∈ Ω
be a point in the feasible set. Let us try to find q ∈ Sn−1, α > 0 such that x+αq ∈ Ω
and f(x+ αq) < f(x).

If c(x) < 0 then A(x) = ∅, otherwise if c(x) = 0 then A(x) = {1}. In the first
case this locally just looks like unconstrained optimization and we are done by our
previous work, seting q = −∇xf |x.

Otherwise, we want to have ⟨∇f |x, q⟩ < 0 and c(x + αq) ≤ 0. Suppose such q, α
exist. Applying the mean value theorem to c, there is 0 < β < α such that

c(x+ αq) = c(x) + α⟨∇c|x+βq, q⟩ = α⟨∇c|x+βq, q⟩ ≤ 0

Let α be small enough such that for all β < α,

sign(⟨∇c|x, q⟩) = sign(⟨∇c|x+βq, q⟩)

So in particular we have

⟨∇f |x, q⟩ < 0, ⟨∇c|x, q⟩ ≤ 0

As a result, this cannot happen (which occurs at minima) if

⟨∇f |x, q⟩ = −λ∇c|x

for some λ ≥ 0. A concise way to express conditions for this under both cases of c(x)
is that there exists λ ≥ 0 such that

∇xL|(x,λ) = 0

λc(x) = 0

The second of these conditions is called the complementarity condition.

12



Definition 1.13

We say that the linear independence constraint qualification (LICQ) holds at
a point a ∈ Ω if

span {∇ci : i ∈ A(x)} = R|A(x)|

Proposition 1.10

Suppose x∗ is a minimum of f and the LICQ holds at x∗. Then there exists λ∗ ∈
R|E⊔I| such that

∇xL|(x∗,λ∗) = 0

and λ∗i ≥ 0 for all i ∈ I with

λ∗i ci(x) = 0, i ∈ I
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