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Introduction

The well-known quadratic formula expresses the roots of an arbitrary polynomial
of degree two in terms of the coefficients a1, a2, a3:

x1 =
−a2 +

√
a22 − 4a1a3
2a1

x2 =
−a2 −

√
a22 − 4a1a3
2a1

Similar but less well known formulas exist for expressing the roots of polynomials
of degree three and four in terms of their coefficients. However, the Abel-Ruffini
theorem shows that no formula may express the roots of an arbitrary polynomial
of degree five or higher, using radicals in terms of its coefficients.

Drawing from Abel’s Theorem in Problems and Solutions, by V.B. Alek-
seev, we will prove Abel’s Theorem using results about the monodromy groups
of functions expressible by radicals. This text will begin with a treatment of
groups. Then, it will develop the theory of multivalued functions. Finally, it
will define the monodromy group of a multivalued function in order to prove
the Abel-Ruffini theorem. Proofs will generally be omitted throughout, except
when particularly instructive.
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Chapter 1

Groups

1.1 Motivations

Across mathematics, many mathematical structures permit the combination of
two objects of a certain type to obtain another of the same type. For instance,
given two functions f, g, if the range of g is contained in the domain of f , then
the composition f ◦ g gives a new function. Given two integers x, y ∈ Z, x+ y is
also an integer (as is xy). The notion of a binary operation captures this process.
The study of groups, therefore, is the study of mathematical structures where
binary operations obey certain axioms.

1.2 Elementary Group Theory

Definition 1. A binary operation on a set M is a function M ×M → M .
The result of applying a binary operation ∗ on (a, b) ∈M ×M is denoted a ∗ b,
though the ∗ is often omitted when unambiguous.

Definition 2. A group is a set G together with a binary operation ∗ on G that
satisfies the following axioms:

• ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for any a, b, c ∈ G.

• There exists an identity element e ∈ G such that ae = ea = a for any
a ∈ G.

• For any a ∈ G, there exists an inverse element a−1 ∈ G such that
aa−1 = a−1a = e.

Example. (Z,+) is a group. Z is closed under addition and addition is asso-
ciative. For any integer m, m + 0 = 0 +m = m, so 0 is the identity element.
−m is also an integer, so inverses exist. △
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Example. (R+, ∗) is a group. It is closed under multiplication, which is asso-
ciative. 1 is the identity element, and the multiplicative inverse of a positive
real x is 1/x, which is also a positive real. △

Example. (R, ∗) is not a group, since there is no real number x such that
0x = 1, so 0−1 does not exist. △

The following properties are immediate consequences of the group axioms,
and their proofs are omitted.

• The product a1 ∗ a2 ∗ a3 ∗ . . . ∗ an is associative.

• The identity element of a group is unique.

• The inverse of an element a ∈ G is unique.

• (a−1)−1 = a.

• (ab)−1 = b−1a−1.

Definition 3. A finite group is a group with a finite number of elements. The
number of elements is called its order. An infinite group is a group with an
infinite number of elements.

Definition 4. Two elements a, b ∈ G commute if ab = ba. A group where every
pair of elements commutes is an abelian group.

Definition 5. Let (G, ∗G) be a group. If (H, ∗G) is a group, with H ⊆ G, then
(H, ∗G) is a subgroup of (G, ∗G), denoted H ≤ G. If H = {e}, then H is called
trivial.

The following properties are immediate consequences of the definition of a sub-
group:

• If e is the identity element of G, then e ∈ H for any H ≤ G.

• If a, b ∈ H ≤ G, then a ∗G b ∈ H and a−1
G ∈ H.

• The arbitrary intersection of subgroups is a subgroup.

Example. The rotations of a triangle is a subgroup of the symmetries of a
triangle. The even integers are a subgroup of the integers. △

1.3 Symmetry Groups

Definition 6. A bijection ϕ : M → M is a transformation of M . A trans-
formation of a geometric figure which preserves distance is a symmetry.

Example. Rotating an equilateral triangle by 120 degrees is a symmetry of the
triangle. △
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Definition 7. Given a geometric figure K, the symmetry group S of K is the
set of all symmetries of K, with composition as the group operation (ϕ1ϕ2 =
ϕ1 ◦ ϕ2 = ϕ1(ϕ2)).

Remark. Composition is associative for all functions, so it is associative for
symmetries. The composition of two symmetries is a symmetry. The identity
transformation ϕid : x 7→ x acts as the identity element, and since a symmetry
is bijective, the inverse ϕ−1 is also a symmetry satisfying ϕ◦ϕ−1 = ϕ−1◦ϕ = ϕid
for any ϕ. Thus, the symmetry group as defined above is indeed a group.

Figure 1.1:

Example. An equilateral triangle has six symmetries: rotation by 0, 120, and
240 degrees counterclockwise, which we denote e, r1, r2, and reflection over the
axes of symmetry, which we denote l1, l2, l3 according to Figure 1.1. When
considered as a symmetry group, the symmetries have the composition table
displayed in Table 1.1, where the column symmetry is performed first. Note
that the group is not abelian; however, the subgroup of rotations is abelian. △

e r1 r2 l1 l2 l3

e e r1 r2 l1 l2 l3
r1 r1 r2 e l3 l1 l2
r2 r2 e r1 l2 l3 l1
l1 l1 l2 l3 e r1 r2
l2 l2 l3 l1 r2 e r1
l3 l3 l1 l2 r1 r2 e

Table 1.1:
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1.4 Cyclic Groups and Isomorphisms

Definition 8. If {a1, a2, a3 . . .} ⊆ G, then the generated subgroup, denoted
⟨{a1, a2, a3 . . .}⟩, is the subset of G which can be obtained by finitely many multi-
plications and inversions of elements of {a1, a2, a3 . . .}. This subset is a subgroup
of G.

Definition 9. A group G is cyclic if G = ⟨a⟩ for some a ∈ G, and a is called
a generator of G.

Example. The group of rotations of a triangle is cyclic, with generators r1 and
r2, but not e. △

Example. For any n, the set of integers Z/nZ = {0, 1, 2, . . . , n− 1} with addi-
tion defined modulo n is a cyclic group of order n. △

In many cases, we are more interested with the structure of a group than the
elements of the group themselves. The definition of an isomorphism formalizes
the notion of two groups having identical structure.

Definition 10. An isomorphism between two groups G1, G2 is a bijection
ϕ : G1 → G2 such that for any g1, g2 ∈ G1, ϕ(g1 ∗G1

g2) = ϕ(g1) ∗G2
ϕ(g2). G1

and G2 are isomorphic, denoted G1
∼= G2, if there is an isomorphism between

them.

The following are immediate consequences of the definition of an isomor-
phism:

• G1
∼= G2, G2

∼= G3 =⇒ G1
∼= G3.

• If E ∼= F under ϕ, then ϕ(eE) = ϕ(eF ).

• If ϕ : G→ F is an isomorphism, then ϕ(g−1
G ) = [ϕ(g)]−1

F for any g ∈ G.

• If G is abelian and G ∼= H, then H is abelian.

Example. The group of rotations of a triangle is isomorphic to Z/3Z. △

Lemma. For any a,m, r, k ∈ Z/nZ, am ∗ ar = ak if and only if m + r ≡ k
mod n.

Theorem 1. If C is an arbitrary cyclic group of order n, then C ∼= Z/nZ.

Proof. Let a generate C. For any g ∈ C, g = am for some m ∈ {0, 1, . . . , n−1}.
Define ϕ : C → Z/nZ such that ϕ maps g = am to m. Let b = ax, c = ay

be elements of C. Then by the lemma, ϕ(bc) = ϕ(ax+y) = x +n y, where +n

denotes addition modulo n. Moreover, ϕ(b)+n ϕ(c) = ϕ(ax)+n ϕ(a
y) = x+n y.

Thus ϕ(b ∗C c) = ϕ(b) +n ϕ(c), and ϕ is bijective, so ϕ is an isomorphism and
thus C ∼= Z/nZ.

Theorem 2. If C is an arbitrary infinite cyclic group, then C ∼= Z.

Corollary. If G is cyclic, it is abelian.
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1.5 Direct Products, Cosets, Normal Subgroups,
and Quotient Groups

Definition 11. The direct product of two groups G,H, denoted G × H, is
the set of ordered pairs {(g, h) : g ∈ G, h ∈ H}, with the operation taken com-
ponentwise: (g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2).

The following are immediate consequences of the definition of the direct
product:

• G×H ∼= H ×G

• There exist G′, H ′ ≤ G×H such that G′ ∼= G and H ′ ∼= H.

• Z/nZ× Z/mZ ∼= Z/mnZ if and only if m,n are relatively prime.

• If G has order m and H has order n, then G×H has order mn.

Definition 12. Let H ≤ G. Then for any g ∈ G, the left coset of H in G is
the set gH = {gh : h ∈ H}.

The following are immediate consequences of the definition:

• If H has order n, then gH has order n for any g ∈ G.

• For H ≤ G, for any g ∈ G, g is in at least one left coset of H in G.

• If x ∈ yH, then xH = yH.

• If z ∈ xH and z ∈ yH, then xH = yH.

Definition 13. The results above imply that any H ≤ G partitions G into a
collection of left cosets, such that any two left cosets are either equal or disjoint,
but the union is equal to G. We call this the left partition of G by H.

Theorem 3 (Lagrange’s Theorem). If H ≤ G, G has order n, and H has order
m, then m divides G.

Proof. Suppose there are r cosets in the left partition of G by H. Then each
has order m, so G has order n = rm, and thus m divides n.

Definition 14. The order of an element x ∈ G is the least integer n, if it
exists, such that xn = e.

Corollary. If x ∈ G has order m and G has order n, then m divides n.

Corollary. If G has prime order p, then G ∼= Z/pZ, and every element g ̸= e ∈
G generates G.

Definition 15. Let H ≤ G. If the left and right partitions of G by H are equal,
then H is a normal subgroup of G, denoted H ⊴ G.
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When H ⊴ G, we refer to the partition of G by H rather than the left or right
partition, since they are equal. The following are easy to prove:

• If G is abelian, then every subgroup of G is normal.

• If H ≤ G, G has order n, and H has order n/2, then H ⊴ G.

Theorem 4. N ⊴ G if and only if for all g ∈ G and n ∈ N , g−1ng ∈ N .

Corollary. If N1 ⊴ G1 and N2 ⊴ G2, then N1 ×N2 ⊴ G1 ×G2.

Example. The center C of a group G is the set of all g ∈ G such that xg = gx
for any x ∈ G. For any g ∈ G and n ∈ C, g−1ng = ng−1g = n ∈ C, so
C ⊴ G. △

When G contains a normal subgroup, we can use the cosets of the normal
subgroup to create a new group which ”factors out” the structure of the normal
subgroup, leaving only the other group structure.

Definition 16. Let N ⊴ G. Then the quotient group of G by N , denoted
G/N , is the set of cosets in the partition of G by N . The binary operation of
G/N is defined as follows: If A = xN and B = yN , then AB = (xy)N .

It can be verified that G/N as defined above is indeed a group. N is the
identity element, the operation inherits associativity from G, and (xN)−1 =
(x−1)N .

Theorem 5. Let G1, G2 be groups. Then G1 × {e2} ⊴ G1 × G2, and (G1 ×
G2)/(G1 × {e2}) ∼= G2.

1.6 Homomorphisms

Under a group isomorphism, group structure is preserved precisely – that is, iso-
morphic groups have identical structure. By relaxing the condition of bijectiv-
ity, we define group homomorphisms. Under group homomorphisms, algebraic
structure is preserved:

Definition 17. A mapping ϕ : G → F such that ϕ(xy) = ϕ(x)ϕ(y) for any
x, y ∈ G is a homomorphism from G into F .

However, the existence of a homomorphism from G into F gives no infor-
mation on the relationship between G and F , since ϕ(g) = eF always exists.
Moreover, we must specify which direction the homomorphism acts in. The
following are immediate consequences of the definition of a homomorphism:

• Let ϕ : G → F be a surjective homomorphism. If G is abelian, then F is
abelian.

• Let ϕ : G→ F be a homomorphism. Then ϕ(eG) = eF .
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• Let ϕ : G → F be a homomorphism. Then for any u ∈ G, [ϕ(u)]−1
F =

ϕ(u−1
G ).

• Let ϕ1 : G → F and ϕ2 : F → H be homomorphisms. Then ϕ2 ◦ ϕ1 is a
homomorphism.

Although the definition of a group homomorphism only requires the preservation
of algebraic structure, it can be seen that other structure, namely subgroup and
normal subgroup structure, is also preserved:

• Let ϕ : G→ F be a homomorphism. Let X ≤ G, Y ≤ F . Then ϕ(X) ≤ F
and ϕ−1(Y ) ≤ G. In particular, ϕ(G) ≤ F

• Let ϕ : G→ F be a homomorphism. Let N ⊴ G. Then ϕ(N) ⊴ F .

• Let ϕ : G → F be a surjective homomorphism. Let N ⊴ F . Then
ϕ−1(N) ⊴ G.

As noted above, quotient groups allow us to preserve some group structure,
while removing other structure. Similarly, we have seen that homomorphisms
preserve some group structure, but not necessarily all. We now examine the
relationship between these two notions. We first identify quotient groups with
homomorphisms with the natural homomorphism:

Definition 18. Let N ⊴ G. Then the natural homomorphism ϕ : G→ G/N
maps g ∈ G to the unique coset T ∈ G/N such that x ∈ T .

In the other direction, each homomorhpism may be identified with a quotient
group in a natural way.

Definition 19. Let ϕ : G→ F be a homomorphism. The kernel of ϕ, denoted
kerϕ, is {g ∈ G : ϕ(g) = eF }.

It can be shown that kerϕ ⊴ G. Moreover, we have the following lemma:

Lemma. For any g1 ∈ T1 ∈ G/ kerϕ, g2 ∈ T2 ∈ G/ kerϕ, we have T1 = T2 if
and only if ϕ(g1) = ϕ(g2).

Theorem 6. Let ϕ : G → F be a surjective homomorphism. Then ψ :
G/ kerϕ→ F , with ψ(x kerϕ) = ϕ(x), is an isomorphism.

Proof. Let x1 kerϕ, x2 kerϕ ∈ G/ kerϕ. Denote X1 = x2 kerϕ,X2 = x2 kerϕ.
Then ψ(X1) = ψ(X2) ⇐⇒ ϕ(x1) = ϕ(x2) ⇐⇒ X1 = X2 (with the last
implication by the Lemma). So ψ is a bijection. We also have ψ(X1X2) =
ψ([x1x2] kerϕ) = ϕ(x1x2) = ϕ(x1)ϕ(x2) = ψ(X1)ψ(X2). So ψ is an isomor-
phism.

In particular, we have the following result:

Corollary. Let ϕ : G→ F be a homomorphism. Let ϕ(G) denote the image of
G under ϕ. Then G/ kerϕ ∼= ϕ(G).
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The previous discussion may be summarized with what is commonly referred
to as the first isomorphism theorem:

Theorem 7 (First Isomorphism Theorem). Let G,H be groups, and ϕ : G→ H
be a homomorphism. Then

• kerϕ ⊴ G.

• ϕ(G) ≤ F .

• ϕ(G) ∼= G/ kerϕ.

1.7 Solvable Groups

Definition 20. Let a, b ∈ G. Then the commutator of a and b, denoted [a, b],
is aba−1b−1.

It can be seen that [a, b]−1 = [b, a], and as a result, [a, b] = e if and only if
ab = ba.

Definition 21. The commutant of a group G, denoted K(G), is the set of
elements g ∈ G such that g = x1x2x3 . . . xn, where each xi = [ai, bi] for some
ai, bi ∈ G.

Example. Consider D6, the symmetries of the triangle. Let l be a reflection.
For any s ∈ D6, s = rl or s = r for some rotation r. So s and s−1 have either 0 or
2 instances of reflection, and thus [a, b] has either 0, 2, or 4 instances of reflection.
In either case, the reflections cancel according to the group presentation rule
lrl = r−1 for any rotation r. So [a, b] is always a rotation. Since D6 is not
abelian, K(D6) ̸= {e}, so we must have K(D6) = R3. In general, we have
K(D2n) = Rn

∼= Z/nZ. △

It can be shown that K(G) ⊴ G. It is also easily shown that K(G) = {e} if
and only if G is abelian. Then we have the following result:

Theorem 8. Let G be a group. Then G/K(G) is abelian.

Proof. Consider K(G/K(G)). Take any two cosets X,Y ∈ G/K(G). Suppose
X = xK(G), Y = yK(G). Then [X,Y ] = (xyx−1y−1)K(G). But (xyx−1y−1) =
[x, y] ∈ K(G), so [X,Y ] = K(G). Since X,Y were arbitrary, K(G/K(G)) =
K(G). But K(G) = eG/K(G), so G/K(G) is abelian.

Intuitively, this means that when we factor out K(G), we are factoring out
all of the ”nonabelian structure.” Moreover, since ab = ba =⇒ [a, b] = e, K(G)
contains no abelian structure (again, intuitively). Thus, K(G) contains exactly
the nonabelian structure of G.

Definition 22. For any group G, consider the sequence Ki(G), defined by
K0(G) = G and Ki+1(G) = K(Ki(G)). If there exists N such that KN (G) =
{e}, then G is said to be solvable.
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Some basic properties of solvable groups:

• If H ≤ G and G is solvable, H is solvable.

• Let N ⊴ G. Then G is solvable if and only if G/N is solvable.

• A group G is a simple group if the only normal subgroups of G are {e}
and G. A nonabelian simple group is not solvable.

• If G/N is abelian and N is solvable, then G is solvable.

Example. Consider the dihedral group D2n. K(D2n) = Rn
∼= Z/nZ (except in

the case n = 1, 2, when K(D2n) = {e}), which is abelian, so K(K(D2n)) = {e}.
So D2n is solvable. △

Example. Consider the group of rotations of the dodecahedron. It can be
shown that this group is simple. However, it is not abelian, so it is not solvable.

△

We also offer two equivalent conditions for solvability.

Theorem 9. A group G is solvable if and only if there exists G1, G2, G3 . . . Gn

such that Gn ⊴ Gn−1 ⊴ . . . ⊴ G2 ⊴ G1 ⊴ G, Gn is abelian, and each Gi−1/Gi

is abelian.

Proof. ( =⇒ ) By the definition of solvable groups, we set G1 = K1(G), G2 =
K2(G), . . . , Gn = Kn(G) = {e}. Then from Theorem 8, we have Gi+1 =
K(Gi) ⊴ Gi for each i, with Gi/Gi+1 = Gi/K(Gi) abelian. Lastly, Gn = {e}
which is abelian.

( ⇐= ) Proved inductively using the fact that if G/N is abelian and N is solv-
able, then G is solvable. Since Gn is solvable, and each quotient is abelian, G
is solvable.

Theorem 10. A group G is solvable if and only if there exists G1, G2, G3 . . . Gn

such that every Gi contains Ni ⊴ Gi such that Gi/Ni
∼= Gi+1, and Gn is

commutative.

1.8 Permutation Groups
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Chapter 2

Complex Numbers
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